首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major mechanism of resistance to most insecticides in Frankliniella occidentalis (Pergande) is metabolic, piperonyl butoxide (PBO) suppressible, mediated by cytochrome-P450 monooxygenases and conferring cross-resistance among insecticide classes. The efficacy of insecticide mixtures of acrinathrin, methiocarb, formetanate and chlorpyrifos was studied by topical exposure in strains of F. occidentalis selected for resistance to each insecticide. The method consisted in combining increasing concentrations of one insecticide with a constant low rate of the second one as synergist. Acrinathrin activity against F. occidentalis was enhanced by carbamate insecticides, methiocarb being a much better synergist than formetanate. Monooxygenase action on the carbamates would prevent degradation of the pyrethroid, hence providing a level of synergism by competitive substrate inhibition. However, the number of insecticides registered for control of F. occidentalis is very limited, and they are needed for antiresistance strategies such as mosaics and rotations. Therefore, a study was made of the synergist effect of other carbamates not used against thrips, such as carbofuran and carbosulfan, against a susceptible strain and a field strain. Neither carbamate showed synergism to acrinathrin in the susceptible strain, but both did in the field strain, carbosulfan being a better synergist than carbofuran. The data obtained indicate that low rates of carbamates could be used as synergists to restore some pyrethroid susceptibility in F. occidentalis.  相似文献   

2.
Susceptibility to spinosad of western flower thrips (WFT), Frankliniella occidentalis (Pergande), from south-eastern Spain was determined. LC(50) values of the field populations without previous exposure to spinosad collected in Murcia in 2001 and 2002 ranged from 0.005 to 0.077 mg L(-1). The populations collected in Almeria in 2003 in greenhouses were resistant to spinosad (LC(50) > 54 mg L(-1)) compared with the authors' highly susceptible laboratory strain. The highly sensitive laboratory strain leads to very high resistance ratios for the field populations (>13 500), but these ratios do not necessarily mean resistance problems and control failures (spinosad field rate 90-120 mg L(-1)). The populations collected in Murcia from some greenhouses in 2004 were also resistant to spinosad (RF > 3682). Spinosad overuse, with more than ten applications per crop, produced these resistant populations in some greenhouses. Spinosad showed no cross-resistance to acrinathrin, formetanate or methiocarb in laboratory strains selected for resistance towards each insecticide. Correlation analysis indicated no cross-resistance among spinosad and the other three insecticides in 13 field populations and in nine laboratory strains. The synergists piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM) did not enhance the toxicity of spinosad to the resistant strains, indicating that metabolic-mediated detoxification was not responsible for the spinosad resistance. These findings suggest that rotation with spinosad may be an effective resistance management strategy.  相似文献   

3.
The interactions between six insecticides (methiocarb, formetanate, acrinathrin, deltamethrin, methamidophos and endosulfan) and three potential synergists (piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM)) were studied by topical exposure in strains selected for resistance to each insecticide, and in a susceptible strain of Frankliniella occidentalis (Pergande). In the susceptible strain PBO produced appreciable synergism only of formetanate, methiocarb and methamidophos. Except for endosulfan, PBO synergized all the insecticides to varying degrees in the resistant strains. A very high level of synergism by PBO was found with acrinathrin, which reduced the resistance level from 3344- to 36-fold. PBO slightly synergized the carbamates formetanate (4.6-fold) and methiocarb (3.3-fold). PBO also produced a high synergism of deltamethrin (12.5-fold) and methamidophos (14.3-fold) and completely restored susceptibility to both insecticides. DEF did not produce synergism with any insecticide in the resistant strains and DEM was slightly synergistic to endosulfan (3-fold). These studies indicate that an enhanced detoxification, mediated by cytochrome P-450 monooxygenases, is the major mechanism imparting resistance to different insecticides in F occidentalis. Implications of different mechanisms in insecticide resistance in F occidentalis are discussed.  相似文献   

4.
The toxicity of spinosad, a new insecticide derived from the bacterium Saccharopolyspora spinosa, was evaluated against susceptible and resistant strains of house fly (Musca domestica L.). Spinosad was highly toxic to house flies based on 72-h LD50 values and the symptoms of poisoning were consistent with a neurotoxic mechanism of action. Spinosad was relatively slow acting, with the maximum toxicity noted at 72 h. Piperonyl butoxide and S,S,S,-tribu-tylphosphorotrithioate synergized the toxicity of spinosad by 3·0- and 1·8-fold, respectively, while diethyl maleate had no significant effect. These results suggest that there is a small degree of monooxygenase-mediated spinosad detoxification in house flies, while hydrolases may be only minimally important and glutathione transferases may have no role. There were no substantial levels of cross-resistance detected, except in the LPR strain where a low 4·3-fold cross-resistance was observed. The cyclodiene-resistant OCR strain was 2·7-fold more sensitive to spinosad than the susceptible strain (CS). These results suggest that cross-resistance may not be a limiting factor for the use of spinosad against house flies. © 1998 Society of Chemical Industry  相似文献   

5.
6.
Non‐target‐site resistance (NTSR) comprises a set of mechanisms conferring resistance to multiple modes of action. Investigation of the number of loci involved in NTSR will aid in the understanding of these resistance mechanisms. Therefore, six different multiple herbicide‐resistant Alopecurus myosuroides plants with different herbicide history were crossed in two generations with a susceptible wild type. Seeds from the backcrossing generation were studied for their segregation rate for resistance to five herbicides with four different modes of action (HRAC groups C2, A, B and K3). Taking into account that NTSR is a set of quantitative traits, the numbers of loci controlling NTSR were estimated using a normal mixture model fitted by the NLMIXED procedure of SAS. Each herbicide was controlled by a different number of loci comparing the six plants. In most of the cases, chlorotoluron resistance was controlled by one locus, whereas resistance to fenoxaprop‐P‐ethyl needed one or two loci. Resistance to pinoxaden was in all plants conferred by two loci. Cross‐resistance of fenoxaprop‐P‐ethyl and pinoxaden was found in all backcrossings, indicating that at least one of the two loci is responsible for both resistances. Resistance to mesosulfuron + iodosulfuron was conferred by a minimum of two loci. Results indicated that a minimum of five different loci can be involved in a multiple NTSR plant. Furthermore, the plant‐specific accumulation of NTSR loci was demonstrated. Such behaviour should be taken into account when evaluating the development and further spread of herbicide resistance.  相似文献   

7.
8.
9.
Sagittaria trifolia L. is one of the most serious weeds in paddy fields in Japan. Since the late 1990s, severe infestations of S. trifolia have occurred following applications of sulfonylurea herbicides in Akita prefecture. In this study, two accessions of S. trifolia, R1 and R2, were collected from paddy fields with severe infestations and their resistance profiles were determined in comparison to a susceptible accession, S1. R1 and R2 were highly resistant to bensulfuron‐methyl. R1 was also highly resistant to pyrazosulfuron‐ethyl, but R2 was susceptible. Relative to S1, R1 had an amino acid substitution at the Pro197 residue of acetolactate synthase (ALS), a well‐known mutation that confers sulfonylurea resistance, suggesting that R1 has a target‐site‐based resistance (TSR) mechanism. The sequence of the ALS gene in R2 was identical to that in S1. A Southern blot analysis indicated that there was only one copy of the ALS gene in S1 and R2. These results suggest that R2 has a non‐target‐site‐based resistance (NTSR) mechanism. R2 was moderately resistant to imazosulfuron but susceptible to thifensulfuron‐methyl. R2 and S1 were susceptible to pretilachlor, benfuresate, MCPA‐ethyl and bentazon. The results reveal the occurrence of two sulfonylurea‐resistant biotypes of S. trifolia that show different mechanisms of cross‐resistance to sulfonylureas related to TSR in R1 and NTSR in R2.  相似文献   

10.
11.
BACKGROUND: The western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an economically important pest. The genetic basis of acrinathrin resistance was investigated in WFT. RESULTS: The resistant strain, selected in the laboratory for acrinathrin resistance from a pool of thrips populations collected in Almeria (south-eastern Spain), showed a high resistance to acrinathrin (43-fold based on LC(50) values) compared with the laboratory susceptible strain. Mortality data from reciprocal crosses of resistant and susceptible thrips indicated that resistance was autosomal and not influenced by maternal effects. Analysis of probit lines from the parental strains and reciprocal crosses showed that resistance was expressed as a codominant trait. To determine the number of genes involved, a direct test of monogenic inheritance based on the backcrosses suggested that resistance to acrinathrin was probably controlled by one locus. Another approach, which was based on phenotypic variances, showed n(E), or the minimum number of freely segregating genetic factors for the resistant strain, to be 0.79. CONCLUSION: The results showed that acrinathrin resistance in WFT was autosomal and not influenced by maternal effects, and was expressed as a codominant trait, probably controlled by one locus.  相似文献   

12.
13.
14.
BACKGROUND: Myzus persicae is a globally important aphid pest that is mainly controlled through the application of chemical insecticides. Recently, a clone of M. persicae exhibiting control‐compromising levels of resistance to neonicotinoid insecticides was described. The resistance of this clone was associated with reduced affinity of imidacloprid for the target site (the nicotinic acetylcholine receptor) as a result of mutation of a key amino acid residue (R81T) in the loop D region of a nAChR β1 subunit. The potent levels of resistance conferred by this mechanism are cause for considerable concern, and the frequency and distribution of the mutation in worldwide populations of M. persicae require careful monitoring. In this study, a high‐throughput assay has been developed that allows detection of the mutation in individual aphids. RESULTS: A real‐time TaqMan assay to detect the R81T substitution was developed that proved to be sensitive and specific in tests of analytical sensitivity and in a blind genotyping trial of DNA extracted from individual aphids comprising the three possible genotypes. The assay was then used to examine the frequency of the R81T mutation in aphids collected and stored in ethanol from peach orchards in southern France. The R81T frequency varied from 33 to 100% in seven populations from the department of Gard, France. CONCLUSIONS: This study describes a rapid and sensitive assay that very effectively detects the R81T mutation in individual aphids. The results also have practical significance for the control of M. persicae in southern France and provide contemporary data to inform current resistance management strategies. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
BACKGROUND: Bemisia tabaci Gennadius Q‐biotype has readily developed resistance to numerous insecticide classes. Studies in the Mediterranean area are needed to clarify the resistance status and cross‐resistance patterns in this invasive whitefly biotype. The levels of resistance in nymphs of seven strains of B. tabaci Q‐biotype from south‐eastern Spain to representative insecticides were determined. RESULTS: Six populations had low to moderate levels of resistance to azadirachtin (0.2‐ to 7‐fold), buprofezin (11‐ to 59‐fold), imidacloprid (1‐ to 15‐fold), methomyl (3‐ to 55‐fold), pyridaben (0.9‐ to 9‐fold), pyriproxyfen (0.7‐ to 15‐fold) and spiromesifen (1‐ to 7‐fold), when compared with a contemporary Spanish Q‐biotype reference population (LC50 = 2.7, 8.7, 15.2, 19.9, 0.34, 20.9 and 1.1 mg L?1 respectively). A single population collected from a greenhouse subject to intensive insecticide use exhibited generally higher resistance levels to the same array of compounds (31‐, 1164‐, 3‐, 52‐, 9‐, 19‐ and 3‐fold respectively). Pyridaben and spiromesifen were extremely effective against nymphs of all strains, with LC50 values significantly below recommended application rates. CONCLUSION: In contrast to previous reports, high rates of efficacy exist for numerous insecticide classes against B. tabaci Q‐biotype populations in these intensive agricultural regions of south‐eastern Spain. This probably reflects the recent and significant reductions in exposure that have resulted from a wider uptake of IPM technologies and strategies. However, the continued presence of resistance genes also suggests that a reversion to levels of high insecticide exposure could result in a rapid selection for resistance. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
17.
BACKGROUND: Frankliniella occidentalis (Pergande) is among the most important crop pests in the south‐east region of Spain; its increasing resistance to insecticides constitutes a serious problem, and understanding the mechanisms involved is therefore of great interest. To this end, F. occidentalis populations, collected from the field at different locations in south‐east Spain, were studied in terms of total esterase activity and esterase isoenzyme pattern. RESULTS: Individual thrips extracts were analysed by native polyacrylamide gel electrophoresis (PAGE) and stained for esterase activity with the model substrate α‐naphthyl acetate. Significant correlations were found between resistance to the insecticides acrinathrin and methiocarb and the presence of a group of three intensely stained bands, named Triplet A. For each individual thrips extract, total esterase activity towards the substrates α‐naphthyl acetate and α‐naphthyl butyrate was also measured in a microplate reader. Insects possessing Triplet A showed a significantly higher α‐naphthyl acetate specific activity and α‐naphthyl acetate/α‐naphthyl butyrate activity ratio. This observation allowed a reliable classification of susceptible or resistant insects either by PAGE analysis or by total esterase activity determination. CONCLUSION: The PAGE and microplate assays described can be used as a monitoring technique for detecting acrinathrin‐ and methiocarb‐resistant individuals among F. occidentalis field populations. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
19.
20.
The western flower thrips, Frankliniella occidentalis (Pergande), is a serious pest in the south-east of Spain owing to its direct feeding on crops, transmission of the tomato spotted wilt virus and its very high level of resistance to insecticides. Mechanisms of resistance were examined using field populations of F. occidentalis with different susceptibilities to acrinathrin, methiocarb (selective insecticides), endosulfan, metamidophos and deltamethrin (broad-spectrum insecticides). Esterase activity towards alpha-naphthyl acetate and p-nitrophenyl acetate in resistant strains was significantly higher than in the reference strain (MLFOM) for both model substrates. This higher activity was significantly correlated with acrinathrin and methiocarb resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号