首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Ammonium molybdate was tested as a potential fungicide for use in apples (cv Golden Delicious) against blue and grey mould, important post‐harvest diseases of pome fruits. In tests in vivo at 20 °C, ammonium molybdate (15 mM ) reduced lesion diameters of Penicillium expansum, Botrytis cinerea and Rhizopus stolonifer by 84%, 88% and 100% respectively. When apples treated with ammonium molybdate were stored at 1 °C for three months, a significant reduction in severity and incidence of P expansum and B cinerea was observed in both years of study (1998 and 1999). In the second year of the experiment the reduction in disease severity was greater than 88% for both pathogens, and the level of control was similar to, or greater than, that observed with the fungicide imazalil. When ammonium molybdate was applied as a pre‐harvest treatment, a significant reduction in blue mould decay was observed after three months in cold storage. In vitro, ammonium molybdate greatly inhibited spore germination of P expansum and B cinerea, although better inhibition was obtained against grey mould. Ammonium dimolybdate, sodium molybdate and potassium molybdate were also tested in vitro in comparison with ammonium molybdate as inhibitors of spore germination, but only ammonium molybdate inhibited spore germination by more than 50%. © 2001 Society of Chemical Industry  相似文献   

2.
为获得对番茄灰霉病具有良好防效的生防芽胞杆菌, 采用对峙培养、双层平板以及生防相关特性检测等方法筛选高活性拮抗菌株, 根据形态学、生理生化特性及多基因测序进行菌株种类鉴定, 通过离体果实和盆栽试验明确供试菌株的防病促生效果。结果表明, 芽胞杆菌JZB30-1对番茄灰霉病菌等10余种植物病原真菌和细菌具有广谱抑菌活性; 该菌株具有合成蛋白酶、纤维素酶、脂肽类物质,分泌铁载体、生长激素及溶磷等特性, 经鉴定其为解淀粉芽胞杆菌Bacillus amyloliquefaciens; 菌株JZB30-1无菌发酵滤液50倍液喷施处理, 对番茄果实灰霉病防效为95.0%, 发酵液10倍稀释液灌根, 番茄株高、鲜重分别较对照增加25.7%和28.4%。相关结果为利用解淀粉芽胞杆菌JZB30-1进行番茄灰霉病生物防治提供理论依据。  相似文献   

3.
拮抗细菌FD6分离自福建闽侯青口青菜根围土壤,采用凹玻片法和离体叶片接种法测定菌株FD6的抑菌能力,经16S rDNA序列比对和相关生理生化性状分析,对生防细菌FD6进行了鉴定,并通过PCR扩增、薄层层析、薄层色谱生物自显影等探讨FD6产生抗生素的种类及其抑菌效果。结果表明,FD6的细菌悬浮液可显著抑制灰霉病菌分生孢子萌发,抑制率达99%,FD6培养滤液的抑制率仅为31%;细菌悬浮液对番茄灰霉病防效达59.7%。FD6的16S rDNA序列与假单胞菌属Pseudomonas的相似性达99%,系统进化树显示与荧光假单胞菌P.fluorescens遗传距离最近,结合生理生化表型特征将FD6菌株鉴定为荧光假单胞菌P.fluorescens。菌株FD6可产生硝吡咯菌素、2,4-二乙酰基间苯三酚、藤黄绿脓菌素、嗜铁素、氢氰酸和蛋白酶等抗菌物质,不产生吩嗪-1-羧酸,其中,硝吡咯菌素可直接抑制番茄灰霉病菌孢子萌发和菌丝的生长。  相似文献   

4.
Two antagonistic yeasts, Candida membranaefaciens and Pichia guilliermondii, were evaluated for the control of the blue mold of apple caused by Penicillium expansum. Dual culture, cell-free metabolite and volatile tests were used for in vitro assay. Yeast strains of two genera inhibited growth of P. expansum; inhibition varied from 30.27% to 44.19% in dual culture, from 79.40% to 90.57% in the volatile metabolite test, and from 72.99% to 88.77% in the cell-free metabolite test. Calcium chloride (2% w/v) significantly inhibited the growth of the pathogen P. expansum, but did not affect the colony-forming units (CFU) of the yeasts C. membranaefaciens and P. guilliermondii in potato dextrose broth. The concentration of yeast suspension influenced spore germination and germ tube growth of P. expansum in vitro, as well as disease incidence and lesion development in fruits. There were significant negative relationships between the suspension concentrations of the yeasts and the growth as well as infectivity of the pathogen. The addition of calcium resulted in lower spore germination rates and slower growth of germ tubes in vitro, as well as in lower disease incidences and smaller lesion diameters compared with treatments with yeast antagonists alone. When yeast cell suspensions reached a concentration of 107 CFU ml-1, growth of the pathogen was completely limited in vitro, and no infection was found in apple fruits treated with or without calcium. This article has been retracted because part of the data shown has already been published before, by different authors. An erratum to this article can be found at  相似文献   

5.
The yeast Pichia anomala strain K was selected in Belgium from the apple surface for its antagonistic activity against post-harvest diseases of apples. The efficacy of this strain against P. expansum was evaluated in the laboratory in three scenarios designed to mimic practical conditions, with different periods of incubation between biological treatment, wounding of fruit surface, and pathogen inoculation. Higher protection levels and higher final yeast densities were obtained when the applied initial concentration was 1 × 108 cfu ml−1 than when it was only 1 × 105 cfu ml−1. The protection level correlated positively with the yeast density determined in wounds and was influenced by apple surface wetness. In orchard trials spanning two successive years, biological treatment against P. expansum, based on a powder of P. anomala strain K (1 × 107 cfu ml−1), β-1,3-glucans (YGT 2 g l−1), and CaCl2.2H20 (20 g l−1), was applied to apples pre- or post-harvest under practical conditions and its effect compared with standard chemical treatments. The first year, the highest reduction (95.2%) against blue decay was obtained by means of four successive fungicide treatments and the next-highest level (87.6%) with pre-harvest high-volume spraying of the three-component mixture 12 days before harvest. The second year, the best results were obtained with post-harvest Sumico (carbendazim 25% and diethofencarb 25%) treatment and post-harvest biological treatment, both by dipping the apples, 88.3 and 56.3% respectively. A density threshold of 1 × 104 cfu cm−2 of strain K on the apple surface seemed to be required just after harvest for high protective activity, whatever the method and time of application. In the case of pre-harvest biological treatments, variations in meteorological conditions between the 2 years may have considerably affected strain K population density and its efficacies.  相似文献   

6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号