首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Herbicide‐resistant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide‐resistant oilseed rape (Brassica napus L.) genotypes were used to examine the response of attached Cuscuta campestris Yuncker to glyphosate, imazamox and glufosinate. Cuscata campestris was allowed to establish on all oilseed rape genotypes before herbicides were applied. RESULTS: Unattached seedlings of C. campestris, C. subinclusa Durand & Hilg. and C. gronovii Willd. were resistant to imazamox and glyphosate and sensitive to glufosinate, indicating that resistance initially discovered in C. campestris is universal to all Cuscuta species. Glufosinate applied to C. campestris attached to glufosinate‐resistant oilseed rape had little impact on the parasite, while imazamox completely inhibited C. campestris growth on the imidazolinone‐resistant host. The growth of C. campestris on glyphosate‐resistant host was initially inhibited by glyphosate, but the parasite recovered and resumed growth within 3–4 weeks. CONCLUSION: The ability of C. campestris to recover was related to the quality of interaction between the host and parasite and to the resistance mechanism of the host. The parasite was less likely to recover when it had low compatibility with the host, indicating that parasite‐resistant crops coupled with herbicide resistance could be highly effective in controlling Cuscuta. Published 2009 by John Wiley & Sons, Ltd.  相似文献   

2.
Two winter oilseed rape (Brassica napus) cultivars, tolerant to glyphosate and glufosinate, were compared with a conventional cultivar at three sites over 4 years, in 3‐year crop rotations in the UK. The winter oilseed rape was grown in Years 1 and 4, with winter cereals, which received uniform herbicide treatments, in the intervening years. The second winter oilseed rape treatments were applied to randomised sub‐plots of the original plots. Weed densities were recorded in autumn and spring and weed biomass was measured in summer. At most sites, there was only one application of glufosinate or glyphosate, whereas two products were often used on the conventional variety. The timing of glyphosate and glufosinate application was, on average, 34 days later than that of the conventional broad‐leaved weed control treatments. Overall weed control, across all sites and years, was not statistically different between the conventional, glyphosate and glufosinate treatments. However, glyphosate achieved higher control of individual weed species more frequently than the other treatments. Glufosinate and the conventional treatments were similar in performance. The treatments in Year 1 sometimes affected weed populations in the subsequent cereal crops and, in rare instances, those in the rape in Year 4. Carry‐over effects were small after most treatments. In general, weed survival was greater in the oilseed rape crops, irrespective of the treatment, than it was in the intervening cereal crops.  相似文献   

3.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   

4.
Herbicide‐resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate‐resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate‐resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate‐resistant crops over broad areas facilitated the evolution of glyphosate‐resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate‐resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl‐CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate‐resistant crops had initially. In the more distant future, other herbicide‐resistant crops (including non‐transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide‐resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

5.
Greenhouse bioassays were carried out from 1999 to 2002 on several types of soils of central Italy to assess the carry‐over risk of imazamox residues to non‐target crops. No observable effect levels (NOELs) were determined on quartz sand; sugar beet showed the highest sensitivity to imazamox (NOEL 0.4–0.8 ng a.i. mL?1 of substrate), followed by spinach, oilseed rape, fennel, cauliflower and lettuce (NOELs from 1 to 5 ng a.i. mL?1 of substrate). Wheat, sunflower, grain sorghum and maize were not very sensitive to this herbicide. Imazamox availability was greatest on sandy soils and decreased in soils with high clay or organic carbon content, where herbicide efficiency was less than 50%, with respect to non‐sorptive media. The decline of herbicide efficiency was quick in sandy soils, where herbicide efficiency dropped to 50% in less than 3 days. In clay‐loam or organic soils, 50% relative efficiency was reached in 15–33 days. Such results suggest that imazamox sprayed at normal field application rates can pose slight risks of carry‐over of residues, which may damage very sensitive species (sugar beet, oilseed rape and spinach) in sandy soils. In these cases, safe recropping intervals of 1–3 months are required, so current label guidelines for imazamox are adequate to protect rotational vegetable crops in central Italy.  相似文献   

6.
Response of wild Brassica juncea populations to glyphosate   总被引:1,自引:0,他引:1  
BACKGROUND: Wild Brassica juncea (L.) is a troublesome arable land weed and ruderal. It is critical to understand the responses of this weed to herbicides, because the assessment of its susceptibility profile has important ecological and evolutionary consequences for future cultivation of herbicide-tolerant oilseed rape. The response of 31 wild populations from different geographic origins in China to glyphosate was evaluated with two bioassay methods, and variable responses were found in initial studies. Dose-response assays were conducted to characterize the extreme populations further, and shikimate accumulation in vivo was determined using a spectrophotometric method. RESULTS: On the basis of ID(50) values, the resistance ratios (R/S) were 5.85 and 4.19 for two glyphosate-resistant B. juncea populations in germination tests, whereas they were 4 times more resistant to glyphosate in spray tests. There were differences in shikimate accumulation patterns between the two biotypes. Shikimate concentrations in resistant populations began to decline from 6 days after treatment (DAT), while they increased continually in susceptible populations. CONCLUSION: The results obtained suggest that the populations responded differentially to glyphosate, and this variability may provide the genetic basis for evolution of individuals with increased resistance to glyphosate, with important implications for herbicide resistance management, especially in the context of risk assessment of glyphosate-tolerant crops.  相似文献   

7.
As herbicide‐resistant weeds have spread in the agricultural fields of grain‐exporting countries, their seeds could be introduced into other countries as contaminants in imported grain. The spread of resistance genes through seed and pollen can cause significant economic loss. In order to assess the extent of the problem, we investigated the contamination by herbicide‐resistant annual ryegrass (Lolium rigidum) of wheat imported from Western Australia into Japan. Annual ryegrass seeds were recovered from wheat shipments and seed bioassays were conducted to identify resistance to the herbicides that are commonly used in Australia: diclofop‐methyl, sethoxydim, chlorsulfuron, and glyphosate. Nearly 4500 ryegrass seeds were detected in 20 kg of wheat that was imported in both 2006 and 2007. About 35% and 15% of the seeds were resistant to diclofop‐methyl, 5% and 6% were resistant to sethoxydim, and 56% and 60% were resistant to chlorsulfuron in 2006 and 2007, respectively. None was resistant to glyphosate in either year. As the contamination of crops by herbicide‐resistant weeds is probably a common phenomenon, the monitoring of incoming grain shipments is necessary to stem the further spread of herbicide‐resistant weeds into importing countries.  相似文献   

8.
The aim of the present study was to determine whether post-emergence application of glufosinate to transgenic crops could lead to an increase in residues or to the formation of new, hitherto unknown metabolites. Transgenic oilseed rape and maize plants were treated separately with L-glufosinate, D-glufosinate or the racemic mixture. Whereas about 90% of the applied D-glufosinate was washed off by rain and only 5-6% was metabolised, 13-35% of the applied L-glufosinate remained in the form of metabolites and unchanged herbicide in both transgenic maize and oilseed rape. The main metabolite was N-acetyl-L-glufosinate with total residues of 91% in oilseed rape and 67% in maize, together with small amounts, of 5% in oilseed rape and 28% in maize, of different methylphosphinyl fatty acids. These metabolites were probably formed from L-glufosinate by deamination and subsequent decarboxylation. The residues were distributed in all fractions of the plants, with the highest contents in treated leaves and the lowest in the grains (0.07-0.3% in maize and 0.4-0.6% in oilseed rape). There was no indication of an accumulation of total residues or of residue levels above the official tolerances for glufosinate.  相似文献   

9.
BACKGROUND: Imidazolinone-tolerant oilseed rape (Brassica napus L.) varieties are currently grown in Canada, North America, Chile and Australia with high acreage. A Europe-wide introduction has started and will be pushed further for both spring and winter varieties. The primary aim of this study was to evaluate the impact of imidazolinone tolerance for future volunteer oilseed rape control in subsequent crops, particularly winter wheat. RESULTS: A greenhouse bioassay showed cross-tolerance of imidazolinone-tolerant oilseed rape towards sulfonylureas, triazolopyrimidines and sulfonylaminocarbonyltriazolinones (resistance factors between 5 and 775), with a homozygous variety expressing a much higher tolerance level compared with a heterozygous variety. Calculated ED90 values suitable for controlling tolerant plants were always much higher than the recommended herbicide dose. Generally, results were confirmed under field conditions, but with higher efficacies than expected in some cases (e.g. florasulam). Herbicides with an alternative mode of action were found to be effective in controlling imidazolinone-tolerant volunteers in subsequent winter wheat crops. CONCLUSION: Herbicide strategies have to be adjusted for volunteer control in subsequent crops if imidazolinone-tolerant oilseed rape varieties are to be grown. However, agronomic tools (harvest date, harvest technique, tillage) should be used conscientiously in the first place to keep volunteer oilseed rape densities at the lowest possible level. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
The global area covered with transgenic (genetically modified) crops has rapidly increased since their introduction in the mid-1990s. Most of these crops have been rendered herbicide resistant, for which it can be envisaged that the modification has an impact on the profile and level of herbicide residues within these crops. In this article, the four main categories of herbicide resistance, including resistance to acetolactate-synthase inhibitors, bromoxynil, glufosinate and glyphosate, are reviewed. The topics considered are the molecular mechanism underlying the herbicide resistance, the nature and levels of the residues formed and their impact on the residue definition and maximum residue limits (MRLs) defined by the Codex Alimentarius Commission and national authorities. No general conclusions can be drawn concerning the nature and level of residues, which has to be done on a case-by-case basis. International residue definitions and MRLs are still lacking for some herbicide-crop combinations, and harmonisation is therefore recommended.  相似文献   

11.
Transgenic herbicide‐resistant rice is needed to control weeds that have evolved herbicide resistance, as well as for the weedy (feral, red) rice problem, which has been exacerbated by shifting to direct seeding throughout the world—firstly in Europe and the Americas, and now in Asia, as well as in parts of Africa. Transplanting had been the major method of weedy rice control. Experience with imidazolinone‐resistant rice shows that gene flow to weedy rice is rapid, negating the utility of the technology. Transgenic technologies are available that can contain herbicide resistance within the crop (cleistogamy, male sterility, targeting to chloroplast genome, etc.), but such technologies are leaky. Mitigation technologies tandemly couple (genetically link) the gene of choice (herbicide resistance) with mitigation genes that are neutral or good for the crop, but render hybrids with weedy rice and their offspring unfit to compete. Mitigation genes confer traits such as non‐shattering, dwarfism, no secondary dormancy and herbicide sensitivity. It is proposed to use glyphosate and glufosinate resistances separately as genes of choice, and glufosinate, glyphosate and bentazone susceptibilities as mitigating genes, with a six‐season rotation where each stage kills transgenic crop volunteers and transgenic crop × weed hybrids from the previous season. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Non‐destructive assessment of herbicide effects may be able to support integrated weed management. To test whether effects of herbicides on canopy variables could be detected by sensors, two crops were used as models and treated with herbicides at BBCH 20 using a logarithmic sprayer. Twelve days after spraying at BBCH 25 and 42 days after sowing, nine sensor systems scanned a spring barley and an oilseed rape field experiment sown at different densities and sprayed with increasing field rates of glyphosate and tribenuron‐methyl. The objective was to compare ED50s for crops and weeds derived by the different sensors in relation to crop density and herbicides. Although sensors were not directly developed to detect herbicide symptoms, they all detected changes in canopy colours or height and crop density. Generally ED50s showed the same pattern in response to crop density within herbicide, but there were marked differences between barley and oilseed rape. We suggest that the results of comparing the various sensor outputs could become a stepping stone to future standardisation for the benefit of the research and development of sensors that will detect herbicide effect on crops and weeds, particularly at the most vulnerable stages of development of the canopy.  相似文献   

13.
In southern Australia, oriental mustard (Sisymbrium orientale) has been controlled successfully by triazine herbicides for several decades. The screening of 40 populations that were collected from the southern grain belt of Australia during 2010 and 2013 for resistance to six different herbicides (glyphosate, diflufenican, imazamox, chlorsulfuron, atrazine and 2,4‐dichlorophenoxyacetic acid) identified two oriental mustard populations as highly resistant to atrazine. Compared to the known oriental mustard‐susceptible populations (S1 and S2), these two resistant populations (P17 and P18) from near Horsham, Victoria, Australia, were 311‐ and 315‐fold resistant to atrazine, as determined by a comparison of the LD50 values. However, there was no resistance to diuron detected in these populations. Sequencing of the chloroplast psbA gene identified a missense mutation of serine 264 to glycine in both herbicide‐resistant oriental mustard populations, which is known to confer high‐level atrazine resistance in other species.  相似文献   

14.
Orobanche ramosa is a parasitic Angiosperm responsible for severe yield losses in several economical crops. It is a serious threat in oilseed rape in France and Morocco and is appearing in carrot crops in Morocco. In this study, several varieties of oilseed rape and carrot were screened in order to identify resistant cultivars and to characterize the resistance mechanisms involved. All the 15 oilseed rape varieties tested were susceptible. In carrot, the varieties 'Colmar à coeur rouge' and 'Nantaise demi-longue' were susceptible, whereas 'Palaiseau' and 'Buror' were resistant. In the susceptible 'Colmar à coeur rouge' carrot no defence reactions were found and the development of the parasite inhibited carrot tap root formation. In the resistant carrot varieties, the parasite germinated, became attached to the host root but became necrotic before emergence. In 'Buror' carrot, formation of a mechanical barrier was associated with the restriction to the cortex of the parasite. In maize cv. 'Vigni', a non-host of O. ramosa, thickening of xylem vessels, cell divisions in the central cylinder and formation of an encapsulation layer were observed in association with restricted development of Orobanche haustoria.  相似文献   

15.
Journal of Plant Diseases and Protection - Herbicide-tolerant winter oilseed rape (OSR) varieties offer the opportunity of using imazamox for weed control, an active ingredient belonging to the...  相似文献   

16.
Despite frequent use for the past 25 years, resistance to glyphosate has evolved in few weed biotypes. The propensity for evolution of resistance is not the same for all herbicides, and glyphosate has a relatively low resistance risk. The reasons for these differences are not entirely understood. A previously published two‐herbicide resistance model has been modified to explore biological and management factors that account for observed rates of evolution of glyphosate resistance. Resistance to a post‐emergence herbicide was predicted to evolve more rapidly than it did to glyphosate, even when both were applied every year and had the same control efficacy. Glyphosate is applied earlier in the growing season when fewer weeds have emerged and hence exerts less selection pressure on populations. The evolution of glyphosate resistance was predicted to arise more rapidly when glyphosate applications were later in the growing season. In simulations that assumed resistance to the post‐emergence herbicide did not evolve, the evolution of glyphosate resistance was less rapid, because post‐emergence herbicides were effectively controlling rare glyphosate‐resistant individuals. On their own, these management‐related factors could not entirely account for rates of evolution of resistance to glyphosate observed in the field. In subsequent analyses, population genetic parameter values (initial allele frequency, dominance and fitness) were selected on the basis of empirical data from a glyphosate‐resistant Lolium rigidum population. Predicted rates of evolution of resistance were similar to those observed in the field. Together, the timing of glyphosate applications, the rarity of glyphosate‐resistant mutants, the incomplete dominance of glyphosate‐resistant alleles and pleiotropic fitness costs associated with glyphosate resistance, all contribute to its relatively slow evolution in the field.  相似文献   

17.
The introduction of crops resistant to the broad spectrum herbicide glyphosate, N-(phosphonomethyl)glycine, may constitute an answer to increased contamination of the environment by herbicides, since it should reduce the total amount of herbicide needed and the number of active ingredients. However, there are few published data comparing the fate of glyphosate in the environment, particularly in soil, with that of substitute herbicides. The objective of this study is to compare the fate of glyphosate in three soils with that of four herbicides frequently used on crops that might be glyphosate resistant: trifluralin, alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine, and metazachlor, 2-chloro-N-(pyrazol-1-ylmethyl)acet-2',6'-xylidide for oilseed rape, metamitron, 4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-triazin-5-one for sugarbeet and sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione for maize. The distribution of herbicides between the volatilized, mineralized, extractable and non-extractable fractions was studied, along with the formation of their metabolites in laboratory experiments using 14C-labelled herbicides, over a period of 140 days. The main dissipation pathways were mineralization for glyphosate and sulcotrione, volatilization for trifluralin and non-extractable residues formation for metazachlor and metamitron. The five herbicides had low persistence. Glyphosate had the shortest half-life, which varied with soil type, whereas trifluralin had the longest. The half-lives of metazachlor and sulcotrione were comparable, whereas that of metamitron was highly variable. Glyphosate, metazachlor and sulcotrione were degraded into persistent metabolites. Low amounts of trifluralin and metamitron metabolites were observed. At 140 days after herbicide applications, the amounts of glyphosate and its metabolite residues in soils were the lowest in two soils, but not in the third soil, a loamy sand with low pH. The environmental advantage in using glyphosate due to its rapid degradation is counterbalanced by accumulation of aminomethylphosphonic acid specifically in the context of extensive use of glyphosate.  相似文献   

18.
Greenhouse studies were conducted to evaluate the sensitivity of three commercial cultivars, eight experimental cultivars and common bermudagrass to clethodim, glufosinate and glyphosate. Each herbicide was applied at eight doses. Data were regressed on herbicide dose using a log-logistic curve (R2 = 0.56-0.95 for clethodim, R2 = 0.60-0.94 for glufosinate, and R2 = 0.70-0.96 for glyphosate). The herbicide rate that elicited a 50% plant response (I50) in the bermudagrass cultivars ranged from 0.04 to 0.19 kg ha(-1) clethodim, 0.19 to 1.33 kg ha(-1) glufosinate and 0.34 to 1.14 kg ha(-1) glyphosate. Relative to other cultivars, common bermudagrass was intermediate in its response to clethodim and among the most tolerant cultivars to glufosinate and glyphosate. TifSport was relatively tolerant to clethodim and glufosinate compared with other cultivars, but relatively sensitive to glyphosate. One cultivar, 94-437, was consistently among the most sensitive cultivars to each of the herbicides. While there were differential herbicide tolerances among the tested bermudagrass cultivars, there did not appear to be any naturally occurring herbicide resistance that could be commercially utilized. However, research indicated that breeding efforts should target herbicide resistance that is at least four times the registered use rate. Also, TifSport and Tifway have been identified as suitable representatives of triploid hybrid bermudagrass cultivars to be used to evaluate the success of turfgrass renovation programs.  相似文献   

19.
In the intensely farmed corn-growing regions of the mid-western USA, surface waters have often been contaminated by herbicides, principally as a result of rainfall runoff occurring shortly after application of these to corn and other crops. In some vulnerable watersheds, water quality criteria for chronic human exposure through drinking water are occasionally exceeded. We selected three settings representative of vulnerable corn-region watersheds, and used the PRZM-EXAMS model with the Index Reservoir scenario to predict corn herbicide concentrations in the reservoirs as a function of herbicide properties and use pattern, site characteristics and weather in the watersheds. We compared herbicide application scenarios, including broadcast surface pre-plant atrazine and alachlor applications with a glyphosate pre-plant application, scenarios in which losses of herbicides were mitigated by incorporation or banding, and scenarios in which only glyphosate or glufosinate post-emergent herbicides were used with corn genetically modified to be resistant to them. In the absence of drift, in almost all years a single runoff event dominates the input into the reservoir. As a result, annual average pesticide concentrations are highly correlated with annual maximum daily values. The modeled concentrations were generally higher than those derived from monitoring data, even for no-drift model scenarios. Because of their lower post-emergent application rates and greater soil sorptivity, glyphosate and glufosinate loads in runoff were generally one-fifth to one-tenth those of atrazine and alachlor. These model results indicate that the replacement of pre-emergent corn herbicides with the post-emergent herbicides allowed by genetic modification of crops would dramatically reduce herbicide concentrations in vulnerable watersheds. Given the significantly lower chronic mammalian toxicity of these compounds, and their vulnerability to breakdown in the drinking water treatment process, risks to human populations through drinking water would also be reduced.  相似文献   

20.
BACKGROUND: A simulation model is used to explore the influence of biological, ecological, genetic and operational (management) factors on the probability and rate of glyphosate resistance in model weed species. RESULTS: Glyphosate use for weed control prior to crop emergence is associated with low risks of resistance. These low risks can be further reduced by applying glyphosate in sequence with other broad-spectrum herbicides prior to crop seeding. Post-emergence glyphosate use, associated with glyphosate-resistant crops, very significantly increases risks of resistance evolution. Annual rotation with conventional crops reduces these risks, but the proportion of resistant populations can only be reduced to close to zero by mixing two of three post-emergence glyphosate applications with alternative herbicide modes of action. Weed species that are prolific seed producers with high seed bank turnover rates are most at risk of glyphosate resistance evolution. The model is especially sensitive to the initial frequency of R alleles, and other genetic and reproductive parameters, including weed breeding system, dominance of the resistance trait and relative fitness, influence rates of resistance. CONCLUSION: Changing patterns of glyphosate use associated with glyphosate-resistant crops are increasing risks of evolved glyphosate resistance. Strategies to mitigate these risks can be explored with simulation models. Models can also be used to identify weed species that are most at risk of evolving glyphosate resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号