首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
Studies of forest change in western North America often focus on increased densities of small-diameter trees rather than on changes in the large tree component. Large trees generally have lower rates of mortality than small trees and are more resilient to climate change, but these assumptions have rarely been examined in long-term studies. We combined data from 655 historical (1932–1936) and 210 modern (1988–1999) vegetation plots to examine changes in density of large-diameter trees in Yosemite National Park (3027 km2). We tested the assumption of stability for large-diameter trees, as both individual species and communities of large-diameter trees. Between the 1930s and 1990s, large-diameter tree density in Yosemite declined 24%. Although the decrease was apparent in all forest types, declines were greatest in subalpine and upper montane forests (57.0% of park area), and least in lower montane forests (15.3% of park area). Large-diameter tree densities of 11 species declined while only 3 species increased. Four general patterns emerged: (1) Pinus albicaulis, Quercus chrysolepis, and Quercus kelloggii had increases in density of large-diameter trees occur throughout their ranges; (2) Pinus jeffreyi, Pinus lambertiana, and Pinus ponderosa, had disproportionately larger decreases in large-diameter tree densities in lower-elevation portions of their ranges; (3) Abies concolor and Pinus contorta, had approximately uniform decreases in large-diameter trees throughout their elevational ranges; and (4) Abies magnifica, Calocedrus decurrens, Juniperus occidentalis, Pinus monticola, Pseudotsuga menziesii, and Tsuga mertensiana displayed little or no change in large-diameter tree densities. In Pinus ponderosaCalocedrus decurrens forests, modern large-diameter tree densities were equivalent whether or not plots had burned since 1936. However, in unburned plots, the large-diameter trees were predominantly A. concolor, C. decurrens, and Q. chrysolepis, whereas P. ponderosa dominated the large-diameter component of burned plots. Densities of large-diameter P. ponderosa were 8.1 trees ha−1 in plots that had experienced fire, but only 0.5 trees ha−1 in plots that remained unburned.  相似文献   

2.
Vast areas of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forest in the western United States have become unnaturally dense because of relatively recent land management practices that include fire suppression and livestock grazing. In many areas, thinning treatments can re-establish the natural ecological processes and help restore ecosystem structure and function. Precipitous global climate change has focused attention on the carbon storage in forests. An unintended consequence of fire suppression has been the increased storage of carbon in ponderosa stands. Thinning treatments reduce standing carbon stocks while releasing carbon through the combustion of fuel in logging machinery, burning slash, and the decay of logging slash and wood products. These reductions and releases of stored carbon must be compared to the risk of catastrophic fire burning through the stand and releasing large quantities of carbon to the atmosphere to more fully understand the costs and benefits – in carbon terms – of forest restoration strategies.  相似文献   

3.
Sample plots were established in the principal forest types in the the Nevado de Toluca National Park, Mexico including those dominated by Pinus hartwegii, Abies religiosa, Quercus laurina and Alnus jorullensis. The vertical structure was defined by three strata in the coniferous forests and two strata in the broadleaved forests. Timber harvesting in Abies religiosa and Quercus laurina forests and fires generated by humans in Pinus hartwegii forests impeded the recruitment of saplings. Mature trees were also heavily impacted by logging in Pinus hartwegii forests. On the contrary, Alnus jorullensis forests were increasing due to the disturbance of Pinus and Quercus forests, as well abandoned crop lands within the park. A combination of logging, uncontrolled fire, and grazing appears to be compromising the recruitment of important tree species in this national park. These factors, together with human settlements, have also increased the proportion of early successional species. Changes in forest structure from human disturbance indicate a need to control these activities if conservation goals are not to be compromised.  相似文献   

4.
Remote ponderosa pine (Pinus ponderosa) forests on the North Rim of Grand Canyon National Park, Arizona, USA provide valuable examples of reference conditions due to their relatively uninterrupted fire regimes, limited grazing history, and protection from logging. Wildfire is an important disturbance agent in upland forests of the Interior West, yet repeated measurements taken before and after lightning-ignited fires are rare. In 1999, a low-severity Wildland Fire Use fire burned 156 ha on Fire Point, a peninsula dominated by old-growth ponderosa pines, which had not burned for at least 76 years. We measured understory plant community and forest floor characteristics in 1998 (1 year before the fire) and 2001 (2 years after the fire) at this site and at nearby reference sites that did not burn in 1999 but have had continuing fire regimes throughout the past century. After the wildfire, the plant community at Fire Point shifted toward higher compositional similarity with the reference sites. Analysis of functional group composition indicated that this change was due primarily to an increase in annual and biennial forbs. Gayophytum diffusum, Polygonum douglasii, Chenopodium spp., Solidago spp., Elymus elymoides, Calochortus nuttallii, Hesperostipa comata, and Lotus spp. were indicative of forests influenced by recent fires. Species richness, plant cover, plant layer density and plant diversity were significantly lower at Fire Point than at the reference sites, possibly due to long-term fire exclusion, but the fire did not increase the rate of change in these variables after 2 years. Few exotic species were present at any site. Forest floor depths at Fire Point were reduced to depths similar to the reference sites, primarily due to consumption of the duff layer. There was a significant inverse relationship between the ratio of duff:litter and species richness. Compared to fire-excluded forests, old-growth ponderosa pine forests influenced by low-intensity surface fires generally have greater plant species richness (especially annual forbs) and lighter fuel loads. This study supports the continued application of the Wildland Fire Use strategy in old-growth montane forests to maintain and improve forest health by altering understory species composition and reducing fuel loads.  相似文献   

5.
The frequency and intensity of ecosystem disturbance, including outbreaks of forest insects and forest fires, is expected to increase in the future as a result of higher temperatures and prolonged drought. While many studies have concentrated on the future climatic impacts on fire, little is known about the impact of future climate on insect infestation. Paleoecological techniques are important in this regard in identifying the potential relationships between climate and insect outbreaks in the past, as a predictive tool for the future. We examine a high-resolution 20th century record of spruce beetle (Dendroctonus rufipennis) infestation from a small, subalpine lake, comparing the paleoecological record to the historical and tree-ring record of the event. An extensive spruce beetle outbreak occurred in northwestern Colorado during the 1940s and 1950s, causing widespread mortality of mature Picea engelmannii. Pollen analysis of this period documents the decline of Picea and its replacement locally by Abies lasiocarpa, paralleling age and composition studies of modern forest stands in the region. This study is a proof of concept that, when applied to longer sedimentary records, could produce a detailed record of infestation for the Late Holocene or older time periods. This information will be useful to forest managers in efforts to plan for the effects of D. rufipennis infestations, and subsequent succession within high elevation conifer forests.  相似文献   

6.
The future trajectory of forest ecosystems under climate change is heavily debated. Previous studies on the impacts of climate change on forest ecosystems have focused mainly on direct effects of altered climatic conditions, whereas interactions with disturbance events have been largely neglected. The aim of this study is to explore interactions of drought with fire disturbance and to assess their effects on tree species shifts in the European Central Alps. Tree recruitment after a stand replacing wildfire in the Rhone valley, Switzerland, was measured along an altitudinal temperature moisture gradient. Recruitment was more successful in pioneer species (Betula pendula, Populus tremula and Salix appendiculata) than in pre-fire stand forming (PFSF) species (Larix decidua, Picea abies and Pinus sylvestris). Seedling and sapling density was not related to fire intensity, but it correlated with the distance to the forest edge in PFSF species. The window of opportunity for seedling establishment was short (1–2 years), and moisture deficit was the main limiting factor for tree recruitment at lower altitudes. We suggest that prolonged drought periods, as projected under continued global warming, will further aggravate tree recruitment success after fire disturbance at low altitudes of the Central Alps and may eventually lead to a shift from PFSF species to either more drought-tolerant species or to forest-free vegetation.  相似文献   

7.
Salvage logging after natural disturbance has received increased scrutiny in recent years because of concerns over detrimental effects on tree regeneration and increased fine fuel levels. Most research on tree regeneration after salvage logging comes from fire-prone systems and is short-term in scope. Limited information is available on longer term responses to salvage logging after windstorms or from forests outside of fire-prone regions. We examined tree and shrub regeneration after a stand-replacing windstorm, with and without salvage logging and prescribed fire. Our study takes place in northern Minnesota, USA, a region where salvage logging impacts have received little attention. We asked the following questions: (i) does composition and abundance of woody species differ among post-disturbance treatments, including no salvage, salvage alone, and salvage with prescribed burning, 12 years after the windstorm?; (ii) is regeneration of Populus, the dominant pre-blowdown species, inhibited in unsalvaged treatments?; and (iii) how do early successional trajectories differ among post-blowdown treatments? Twelve years after the wind disturbance, the unsalvaged forest had distinctly different composition and abundance of trees and woody shrubs compared to the two salvage treatments, despite experiencing similar wind disturbance severities and having similar composition immediately after the blowdown. Unsalvaged forest had greater abundance of shade tolerant hardwoods and lower abundance of Populus, woody shrubs, and Betulapapyrifera, compared to salvage treatments. There was some evidence that adding prescribed fire after the blowdown and salvage logging further increased disturbance severity, since the highest abundances of shrubs and early successional tree species occurred in the burning treatment. These results suggest that salvage treatments (or a lack thereof) can be used to direct compositional development of a post-blowdown forest along different trajectories, specifically, towards initial dominance by early successional Populus and B.papyrifera with salvage logging or towards early dominance by shade tolerant hardwoods, with some Populus, if left unsalvaged.  相似文献   

8.
9.
Altered fire regimes and increased drought can lead to major vegetation changes, especially in ecotones. A decrease in fire can lead to woody species encroachment in prairies and increasing forest stand density. The threat of global climate change raises questions about potential increases in the length, severity, and incidence of droughts substantially altering species composition. Re-measured upland forests in south-central North America's midcontinent forest-prairie ecotone exhibited major changes in woody species composition and structure over fifty years and successional trajectories appeared to favor invasive Juniperus virginiana L. over the previous dominant Quercus species. The objective of this study was to determine whether climate and fire exclusion affected the recruitment history of dominant woody species in these upland forests located near the xeric western edge of the eastern deciduous forest biome of North America. We removed cores and cross-sections from 992 J. virginiana, Quercus marilandica Münchh. and Q. stellata Wangenh. trees from eleven forest stands located across central and northwest Oklahoma, and determined their ages using standard dendrochronological methods. Recruitment of all species increased following a severe mid-20th century drought, but a rapid increase in J. virginiana recruitment and decrease in Quercus recruitment appeared to be linked to a decrease in fire. Future fire regime changes and increased drought due to global climate change could lead to widespread shifts from Quercus- to Juniperus- dominated forests and cause substantial changes to ecosystem services.  相似文献   

10.
In some areas of the Mediterranean basin where the understory stratum represents a critical fire hazard, managing the canopy cover to control the understory shrubby vegetation is an ecological alternative to the current mechanical management techniques. In this study, we determine the relationship between the overstory basal area and the cover of the understory shrubby vegetation for different dominant canopy species (Pinaceae and Fagaceae species) along a wide altitudinal gradient in the province of Catalonia (Spain). Analyses were conducted using data from the Spanish National Forest Inventory. At the regional scale, when all stands are analysed together, a strong negative relationship between mean shrub cover and site elevation was found. Among the Pinaceae species, we found fairly good relationships between stand basal area and the maximum development of the shrub stratum for species located at intermediate elevations (Pinus nigra, Pinus sylvestris). However, at the extremes of the elevation-climatic gradient (Pinus halepensis and Pinus uncinata stands), stand basal area explained very little of the shrub cover variation probably because microsite and topographic factors override its effect. Among the Fagaceae species, a negative relationship between basal area and the maximum development of the shrub stratum was found in Quercus humilis and Fagus sylvatica dominated stands but not in Quercus ilex. This can be due to the particular canopy structure and management history of Q. ilex stands. In conclusion, our study revealed a marked effect of the tree layer composition and the environment on the relationship between the development of the understory and overstory tree structure. More fine-grained studies are needed to provide forest managers with more detailed information about the relationship between these two forest strata.  相似文献   

11.
Vegetation and birds were inventoried on the same plot before and after a severe windstorm in 1999 disturbed a mature black spruce (Picea mariana)–jack pine (Pinus banksiana) forest in northern Minnesota. Following the storm, another plot was established in an adjacent portion of the forest that was salvage-logged. Birds were inventoried on both plots through 2002. The original unsalvaged plot was prescribed-burned in 2004, but vegetation was surveyed through 2003, and through 2005 on the salvaged plot. We examined the effects of wind disturbance by comparing the pre-storm bird and vegetation communities with those developing afterwards through 2002 and 2003, respectively, and the effects of salvage logging by comparing vegetation and the bird community on the unsalvaged plot with those in the salvaged area. Wind reduced the canopy of the forest by over 90% with a temporary increase in the shrub layer, mostly resulting from tip-ups. Several plant species, including jack pine and beaked hazel (Corylus americana), appeared temporarily in the ground layer (<1 m height), but did not persist through 2003. Quaking aspen (Populus tremuloides) root sprouts were abundant in 2001, but decreased dramatically by 2003. Delayed mortality of tipped trees resulted in reduction of the shrub layer to pre-storm levels, and release of advanced regeneration black spruce and balsam fir (Abies balsamea). Bird species using the forest changed from dominance by canopy-foraging species to ground-brush foraging species, with an overall increase in bird diversity. Salvage logging resulted in significant reduction in coarse woody debris, and successful recruitment of jack pine seedlings. Quaking aspen sprouts were nearly 30 times more abundant in the salvage-logged area compared to the unsalvaged control. Ruderal species, especially red raspberry (Rubus ideaus), fringed bindweed (Polygonum cilinode), and several sedges (Carex spp.), were significantly more abundant after salvage logging. The bird community, on the other hand, was greatly diminished by salvage logging, with a reduction in diversity, density, and overall richness of species.  相似文献   

12.
The Mediterranean basin is a fire-prone area and is expected to continue being so according to projected climate and socioeconomic changes. Sustainable exploitation of forest biomass could have a positive effect on wildfire hazard mitigation. A modelling approach was used to compare how four different Scenarios for biomass collection for energy use affect fire behaviour and potential burnt area at landscape level under extreme meteorological conditions in a typical Mediterranean Massif. A case study of Pinus halepensis stands in Valencia (Eastern Spain) was conducted. The FARSITE simulator was used to evaluate the burnt area and fire behaviour parameters. Simulations predicted a significant increase in the burnt area and the values of most fire behaviour parameters in a Scenario of rural abandonment, relative to the current situation. Biomass management through thinning reduced canopy bulk density; however, no differences in the values of the main fire behaviour parameters were detected. Thinning and understory clearing, including biomass collection in large shrub fuel model areas, significantly reduces fire hazard. Forest biomass sustainable harvesting for energy is expected to reduce fire hazard if management includes intense modification of fuel models, comprising management of shrub biomass at the landscape level. Strong modification of forest fuel models requires intensive silvicultural treatments. Therefore, forest biomass collection for energy in the Mediterranean basin reduces fire hazard only if both tree and shrub strata are managed at landscape level.  相似文献   

13.
Forest gap models are important tools for assessing the impact of global climate change on forest dynamics of tree species composition and size structure. In this study, the FAREAST gap model was used to examine the response of forest dynamics on Gongga Mountain, which is located on the southeastern fringe of the Tibetan Plateau, under three climate change scenarios. The simulated results showed that the climax community of the deglaciation slash would be mixed species of Picea brachytyla, Tsuga chinensis, and Pinus densata under climate change scenarios, as opposed to the pure Abies fabri forest under the current climate. Climate change also drove replacement of Populus purdomiis by Betula utilis, which became the most abundant pioneer tree species on the deglaciation slash. Under scenarios of climate change, three responses of the four typical forests distributed between 2200 and 3580 m above sea level are observed, such as dieback of today’s forest at 2200 and 3150 m, gradual change of the species composition at 2780 m, and afforestation at 3580 m. It is worth noting that the scenarios of climatic change are of inherent uncertainty, in the same way as the formulation of the ecological factors used in the models. It is suggested that simulations not be interpreted as predictions of the future development of the forest, but as a means of assessing their sensitivity to climate change. It is concluded that mountainous forests are quite sensitive to climate change.  相似文献   

14.
The subalpine coniferous forests on the eastern Qinghai-Tibet Plateau provide a natural laboratory for studying the effect of climate warming on terrestrial ecosystems. Research on differences between tree species in their responses to experimental warming can provide insights into their regeneration behavior and community composition under a future warmer climate. We used open-top chamber (OTC) to determine the short-term effect of two levels of air temperature (ambient and warmed) and light (full light and ca. 10% of full-light regimes) on the early growth and physiology of Betula albo-sinensis and Abies faxoniana seedlings. The OTC manipulation increased mean air temperature and soil surface temperature by 0.51 and 0.34°C, respectively, in a 60-year-old plantation and 0.69 and 0.41°C in forest openings, respectively. Warming generally increased plant growth, biomass accumulation, and advanced physiological processes for seedlings of both species. In response to warming, both tree species allocated relatively more biomass to foliage and had significantly decreased root/shoot ratios (R/S), which might provide the two species with an adaptive advantage when other environmental factors were not limiting. Warming may enhance photosynthesis in the two seedlings by increasing efficiency of PSII in terms of increases in F v/F m, photosynthetic pigment concentrations, and apparent quantum yield (Φ). However, the effects of warming on seedling growth and physiological performance varied by light conditions and species. For B. albo-sinensis seedlings, the effects of warming were pronounced only under full-light conditions, while the growth and physiological responses of A. faxoniana seedlings to warming were found only under low-light conditions. Competitive and adaptive relationships between the two species may be altered as a result of response differences to warming manipulation. The shortterm beneficial impact of warming on the early growth and development of the two species suggests that global warming may lead to changes in regeneration dynamics and species composition in subalpine coniferous forest ecosystems.  相似文献   

15.
The unique forest ecosystems investigated were created on the place of natural steppe biogeocoenoses 60?years ago. The aim of the study was to elucidate the effect of plant species on the formation of organic C and N stocks in soils and to estimate nitrogen availability for artificial wood plantation. For this purpose, 290 soil samples were taken from four forest monocultures (Quercus robur L., Pinus sylvestris L., Cotinus coggygria Scop., and Acer tataricum L.) and from virgin steppe ecosystem. The amounts and stocks of organic C, total and readily nitrified N, and seasonal dynamics of NO3 ? and NH4 + ions activities were determined. It was shown that the species composition of the stands influenced the stock of organic C and N in soils. The storages of C and total N differed by 74 and 4.4?Mg/ha?1, respectively, in the litter and upper horizons (0–40-cm layer) in the stands studied. The differences in distribution of stocks of these elements in virgin steppe and artificial forest ecosystems were found. Organic C and N stocks increased 1.6–6.6 times in the forest litter compared to the steppe one, while in 5–40-cm layer, the storages of C and N decreased by 20–35% compared to the virgin soil. The impact of litter on total N content in arid climate was limited in 0–5-cm layer. The deficit of mineral N compounds was observed in autumn in soil with low stock of total N.  相似文献   

16.
The role of disturbance in structuring vegetation is widely recognized; however, we are only beginning to understand the effects of multiple interacting disturbances on ecosystem recovery and development. Of particular interest is the impact of post-disturbance management interventions, particularly in light of the global controversy surrounding the effects of salvage logging on forest ecosystem recovery. Studies of salvage logging impacts have focused on the effects of post-disturbance salvage logging within the context of a single natural disturbance event. There have been no formal evaluations of how these effects may differ when followed in short sequence by a second, high severity natural disturbance. To evaluate the impact of this management practice within the context of multiple disturbances, we examined the structural and woody plant community responses of sub-boreal Pinus banksiana systems to a rapid sequence of disturbances. Specifically, we compared responses to Blowdown (B), Fire (F), Blowdown-Fire, and Blowdown-Salvage-Fire (BSF) and compared these to undisturbed control (C) stands. Comparisons between BF and BSF indicated that the primary effect of salvage logging was a decrease in the abundance of structural legacies, such as downed woody debris and snags. Both of these compound disturbance sequences (BF and BSF), resulted in similar woody plant communities, largely dominated by Populus tremuloides; however, there was greater homogeneity in community composition in salvage logged areas. Areas experiencing solely fire (F stands) were dominated by P. banksiana regeneration, and blowdown areas (B stands) were largely characterized by regeneration from shade tolerant conifer species. Our results suggest that salvage logging impacts on woody plant communities are diminished when followed by a second high severity disturbance; however, impacts on structural legacies persist. Provisions for the retention of snags, downed logs, and surviving trees as part of salvage logging operations will minimize these structural impacts and may allow for greater ecosystem recovery following these disturbance combinations.  相似文献   

17.
甘肃小陇山灌木林不同改造模式天然更新研究   总被引:1,自引:0,他引:1       下载免费PDF全文
用样方法,研究了小陇山林区5种典型灌木林地改造模式的乔木树种天然更新幼苗的密度和多样性。结果表明:5种灌木林地改造模式的乔木树种天然更新情况总体良好,小于50 cm高度级幼苗数量相对较少,大于50 cm高度级幼苗的存活率较高;5种改造模式天然更新树种以锐齿栎为主,其中,全面割灌改造日本落叶松(模式3)更新幼苗物种丰富度最高,全面割灌改造油松模式(模式2)天然更新树种丰富度最小;带状割灌改造模式(模式4和模式5)和全面割灌改造华山松模式(模式1)的更新树种多样性较高,各树种分配均匀,优势树种的集中性较低;改造树种华山松的天然更新能力较油松日本落叶松强,带状割灌改造模式更有利于华山松天然更新。  相似文献   

18.
Fire is a widespread natural disturbance agent in most conifer-dominated forests. In light of climate change and the effects of fire exclusion, single and repeated high-severity (stand-replacement) fires have become prominent land management issues. We studied bird communities using point counting in the Klamath-Siskiyou ecoregion of Oregon, USA at various points in time after one or two high-severity fires. Time points included 2 and 3 years after a single fire, 17 and 18 years after a single fire, 2 and 3 years after a repeat fire (15 year interval between fires), and >100 years since stand-replacement fire (mature/old-growth forest). Avian species richness did not differ significantly among habitats. Bird density was highest 17 and 18 years after fire, lowest 2 years after fire, and intermediate in repeat burns and unburned forest. Bird community composition varied significantly with habitat type (A = 0.24, P < 0.0001) with two distinct gradients in species composition relating to tree structure (live to dead) and shrub stature. Using indicator species analysis, repeat burns were characterized by shrub-nesting and ground-foraging bird species while unburned mature forests were characterized by conifer-nesting and foliage-gleaning species. Bird density was not related to snag basal area but was positively related to shrub height. Contrary to expectations, repeated high-severity fire did not reduce species richness, and bird densities were greater in repeat burns than in once-burned habitats. Broad-leaved hardwoods and shrubs appear to play a major role in structuring avian communities in the Klamath-Siskiyou region. In light of these results, extended periods of early seral broadleaf dominance and short-interval high-severity fires may be important to the conservation of avian biodiversity.  相似文献   

19.
乌拉山自然保护区位于典型草原与荒漠草原的交界处,是研究干旱区山地物种多样性的理想区域。利用α多样性指数、β多样性指数以及重要值,对乌拉山主要森林群落(白桦林、油松林)林下灌木层和草本层的物种多样性以及群落结构进行了研究,结果表明:(1)群落草本层α多样性指数明显高于灌木层;(2)群落灌木层、草本层α多样性指数表现为:白桦林〉天然油松林〉人工油松林;天然油松林〉人工油松林〉白桦林〉柄扁桃灌丛;(3)群落β多样性指数表现出同一种森林群落类型之间绝大多数呈轻度相似性;不同森林群落类型之间呈极不相似;生境条件的差异、人为干扰等因素对群落β多样性的影响较为明显;(4)群落物种组成以菊科、蔷薇科植物为主,草本植物以多年生中生、中旱生、旱生植物为主,林下灌木水分生态型以中生为主。  相似文献   

20.
Development of understory vegetation has been influenced by the many densely stocked second-growth forest stands in North America, which have an extended stem exclusion successional stage. Understory composition and structure is important for ecosystem functioning, while also having social and economic value through the harvest of certain herb and shrub species. The potential for co-management of young and mature, managed and unmanaged stands for timber and non-timber forest products (NTFPs) was assessed in two separate replicated experiments. Experiment A examined pole-sized lodgepole pine (Pinus contorta) stands that had been pre-commercially thinned (PCT) to target densities of 250, 500, 1000, and 2000 stems/ha. Half of each of these four thinning units was repeatedly fertilized, resulting in eight experimental units. Experiment B examined six different stand types: young plantations, pole-sized lodgepole pine stands either PCT, PCT plus repeated fertilization, or unthinned, mature, and old growth. Fifty-four herb and shrub species were identified as potential NTFPs, with the responses of individual species, as well as mean total herb, shrub, berry-producing and overall total NTFPs being assessed. In Experiment A, mean total abundance (crown volume index) of NTFPs, as well as mean total herb NTFPs were significantly greater in fertilized than in unfertilized stands. Thinning treatments did not significantly affect NTFP volume, however, fertilization treatments produced five significant responses by individual species (Achillea millefolium, Epilobium angustifolium, Taraxacum officinale, Arctostaphylos uva-ursi, Rubus idaeus). In Experiment B, four of the six species responses that were significant had greater abundance in young, managed stands (young plantation, thinned, or thinned-fertilized) than in the unmanaged stands. Mean total NTFP volume and mean total herb NTFP volume also followed this pattern. A. uva-ursi, E. angustifolium, Lonicera involucrata, Sorbus sitchensis and Thalictrum occidentale all had significantly higher abundance in young, managed stands than in all other treatments. Results suggest that co-management for timber and NTFPs is possible in this ecosystem, with further research needed to evaluate livelihood values of these crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号