首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leaf-cutting ants consume up to 10% of canopy leaves in the foraging area of their colony and therefore represent a key perturbation in the nutrient cycle of tropical forests. We used a chronosequence of nest sites on Barro Colorado Island, Panama, to assess the influence of leaf-cutting ants (Atta colombica) on nutrient availability in a neotropical rainforest. Twelve nest sites were sampled, including active nests, recently abandoned nests (<1 year) and long-abandoned nests (>1 year). Waste material discarded by the ants down-slope from the nests contained large concentrations of nitrogen and phosphorus in both total and soluble forms, but decomposed within one year after the nests were abandoned. Despite this, soil under the waste material contained high concentrations of nitrate and ammonium that persisted after the disappearance of the waste, although soluble phosphate returned to background concentrations within one year of nest abandonment. Fine roots were more abundant in soil under waste than control soils up to one year after nest abandonment, but were not significantly different for older sites. In contrast to the waste dumps, soil above the underground nest chambers consistently contained lower nutrient concentrations than control soils, although this was not statistically significant. We conclude that the ‘islands of fertility’ created by leaf-cutting ants provide a nutritional benefit to nearby plants for less than one year after nest abandonment in the moist tropical environment of Barro Colorado Island.  相似文献   

2.
Phosphorus fractions in Brazilian Cerrado soils as affected by tillage   总被引:3,自引:0,他引:3  
No-tillage systems lead to physical, chemical and biological changes in soil. Soil fertility is responsive to changes in tillage as it depends on nutrient status, soil water content and biological characteristics. This work aimed to determine long term changes in phosphorus forms and availability in the profile of two tropical soils under conventional and no-till systems, and to discuss the significance of these changes on plant growth and demand for P fertilizers. Undisturbed soil cores with 20 cm in diameter were collected to a depth of 40 cm, accommodated in PVC tubes and taken to a greenhouse, where the experiment was conducted. Two soils were collected in Central Brazil, in areas under Cerrado. Both soils had been cropped for at least 10 years under conventional tillage and no-till. In the greenhouse, pots received phosphorus fertilization or not at 43.7 kg ha−1, and soybean was grown for 60 days, when soil P fractions were determined. Labile P fractions in the soil profile were not affected by management systems, and there was no accumulation of available P under no-till. A large amount of P added as fertilizer was adsorbed in soil and remained in moderately labile fractions, mainly on uppermost soil layers. Therefore, the phosphate fertilizer has promoted P accumulation on less available fractions in soil, remaining P on the soil after crop harvest. Eventually this phosphorus could migrate to more labile fractions and be available for crops grown in succession.  相似文献   

3.
Soil P availability has been identified as one of the key factors controlling wetland productivity, structure, and function. Soil P fractions at different depths in newly formed wetlands along a salinity gradient in Yellow River Delta (China) were studied using a modified Hedley fraction method. The total P (Pt) content ranged from 471.1 to 694.9 mg kg–1, and diluted HCl‐extractable inorganic P (Dil‐HCl‐Pi) ranged from 324 to 524.2 mg kg–1. The Dil‐HCl‐Pi is the predominant P form in all profiles, with on average 70% of the Pt extracted as Pi. Organic P (Po) comprised (4.2 ± 2.0)% (mean ± SD) of the Pt, due to low organic‐matter content in coastal salt marsh ecosystems. The labile P (resin‐P, NaHCO3‐Pi, and NaHCO3‐Po) and moderately labile P (NaOH‐Pi and NaOH‐Po) concentrations were both low, ranged from 11.6 to 38.1 and 2.8 to 21.3 mg kg–1, respectively, constituting (3.7 ± 1.1)% and (2.0 ± 0.7)%, respectively, of Pt, suggesting low availability of P to plants in these soils. Our results suggested that vegetation cover significantly influenced soil P dynamics and availability. In particular, the labile P content under Tamarix chinensis increased significantly by 23.2%–145.5% compared with adjacent soils. These findings have important implications for wetland conservation or restoration and long‐term sustainable management of newly formed wetland ecosystems in the Yellow River Delta.  相似文献   

4.
The objective of this work was to assess the changes of soil P fractions by Lotus corniculatus and to determine contribution of each fraction to plant P nutrition. Phosphorus was added at a rate of 240 mg/pot as triple superphosphate (20% P), phosphate rock (13% P), or poultry litter (2% P) to a Vertisol or an Inceptisol; a control treatment (without P fertilizer) was also included. Then, L. corniculatus was sowed and harvested eight times; both yields and P content of plant were determined at each harvest. Soil P fractions were determined by Hedley’s modified method. The content of labile and moderately labile P [anionic exchange membrane-Pi (AEM-Pi), NaHCO3-Pi, and NaOH-Pi] fractions were markedly reduced and were probably due to P uptake by plants. The content of the HCl-Pi fraction of the phosphate-rock-treated soil decreased whereas that of the residual P fraction was not modified. The content of organic forms increased in all treatments. The content of both labile organic P and moderately labile organic P were positively and significantly correlated with the P concentration of roots and with roots biomass, suggesting that the increase in these two organic fractions was related to root production. AEM-Pi accounted for 95% and 84% of absorbed P in Vertisol and Inceptisol, respectively.  相似文献   

5.
Phosphorus (P) forms were sequentially extracted from peat derived soils (Eutric Histosols and Gleysols) at eight sites in Saxony‐Anhalt (Germany) to disclose general differences in P pools between mineral and organic soils and to investigate effects of peat humification and oxidation in conjunction with land use and soil management on the P status of soils. Overall 29 samples providing a wide variety of basic chemical properties were subjected to the Hedley fractionation. The Histosol topsoils contained more total P (Pt) (1345 ± 666 mg kg—1) than the Gleysol topsoils (648 ± 237 mg kg—1). The predominant extractable fractions were H2SO4‐P (36—63 % of Pt) in calcareous and NaOH‐Po (0—46 % of Pt) in non‐calcareous Histosols. These soils had large pools of residual P (13—93 % of Pt). Larger contents and proportions of Po and of labile P fractions generally distinguished organic from mineral soils. Regression analyses indicated that poorly crystalline pedogenic oxides and organic matter were binding partners for extractable and non‐extractable P. Intensive management that promotes peat humification and oxidation results in disproportional enrichments of labile P fractions (resin‐P, NaHCO3‐Pi, and NaHCO3‐Po). These changes in P chemistry must be considered for a sustainable management of landscapes with Histosols and associated peat derived soils.  相似文献   

6.
Abstract

Laboratory drying may alter manure phosphorus (P) distribution. The effects of freeze, air (22°C), and oven (65°C) drying on sequentially fractioned poultry manure P were examined. Higher drying temperatures resulted in lower percentage of dry matter. Increased H2O‐ and decreased sodium bicarbonate (NaHCO3)‐extractable P with drying provided evidence that drying increases poultry manure P solubility. Labile fractions were predominantly inorganic P (Pi), whereas sodium hydroxide (NaOH) and hydrochloric acid (HCl) fractions had significant amounts of organic P (Po). Drying altered H2O‐ and NaHCO3‐extractable Pi but had no consistent effect on Po in these fractions. This work suggests that variations due to drying should be taken into consideration when evaluating manures for P availability or when comparing data in which different drying methods have been utilized.  相似文献   

7.
A major source of runoff phosphorus (P) from agricultural soils is land-applied animal manure. Our work reports P levels in pasture soils in northern Alabama affected by long-term (0–20 years) application of poultry litter (PL). Sequential fractionation revealed different buildup patterns of labile and stable P fractions in these soils. Phosphorus built up in subsurface (20–40 cm and 40–60 cm deep) soils with lower application rates than P accumulated in surface (0–20 cm deep) soils, indicating a greater potential for surface runoff than leaching from these pasture fields. Correlation analysis of the surface soils showed levels of stable P extractable by sodium hydroxide (NaOH) were related to the cumulative amount of PL applied. The level of water-extractable P increased because PL application was significantly related to the number of years the soil receiving PL, not the annual application rate or the cumulative amount of PL applied.  相似文献   

8.
Changes in soil caused by drought and wildfire in a Dipterocarp rainforest in Sabah, Malaysia were assessed by phosphorus fractionation, extractable nitrogen and nutrient limited respiration kinetics (after addition of glucose+N or P). Fire increased the concentration of total phosphorus (P) in the litter layer (per ha and per dry soil) by raising the 0.2 M NaOH extractable-P. In the soil organic layer, membrane exchangeable P was reduced by fire while 1.0 M HCl extractable-P, and 0.5 M NaHCO3 extractable-P increased. Microbially available P increased after the fire and was most closely related to NaOH extractable-P that has been considered available to plants only over long time-scales. Total nitrogen (N) increased in the litter layer (per ha and per dry soil) due to post-fire litter fall, while the NO3 increased up to 10-fold down to the 10 cm mineral soil. In contrast, the microbially available N decreased by 50%. Basal respiration and substrate-induced respiration increased in the litter layer and decreased in the organic horizon (per dry soil and per organic matter). P limited microbial growth resulted in a slow and non-exponential increase in respiration, presumably reflecting the P-fixing nature of the soils, while N limitation resulted in a fast exponential increase. However, higher respiration rates were eventually achieved under P limitation than under N limitation.  相似文献   

9.
施磷对滨海盐土无机磷组分的动态影响   总被引:1,自引:0,他引:1  
采用蒋柏藩、顾益初提出的土壤无机磷组分测定方法,在50d的培养过程中对滨海盐土的各无机磷组分进行了跟踪测定。结果表明:施入盐土中的无机磷在短期内主要增加土壤中的Ca2-P和Ca8-P的含量,而对A1-P、Fe-P和O-P的影响较小;施入盐土的无机磷首先转化成Ca2-P,然后再向Ca8-P、Ca10-P、Al-P、Fe-P和O-P转化;培养过程中,水分和温度的有利条件促进了土壤微生物的活动,加强了微生物对无机磷的固定。  相似文献   

10.
Hedley labile phosphorus(P) pools in soil tend to be several times larger than annual forest requirements, even in highly weathered soils characterized by P limitation. The discrepancy between plant and soil P status could be partly attributable to the frequently adopted air-drying pretreatment that tends to increase soil P solubility. In this study, the effects of air-drying on the distribution of Hedley P fractions were examined using soils collected under 4 forest types at Gongga Mountain, so...  相似文献   

11.
Habitat loss and fragmentation reduce diversity of tropical bird communities, but the predictability of how communities in fragments disintegrate over time remains unclear. We compared bird community changes of two lowland forest reserves, La Selva Biological Station (LSBS), Costa Rica and Barro Colorado Island (BCI), Panama, both approximately the same size (1500 ha) and at similar latitude (9-10 N) in Central America. Both reserves are losing bird species despite LSBS’s connection to an existing large park (incomplete isolation) and BCI’s favorable location within a largely forested landscape. We examined characteristics of guilds and species lost from the sites to determine whether patterns were similar, and thus predictable. Some of the same guilds declined at both reserves, particularly insectivores and ground/understory nesters. At LSBS mixed-species flock participants, forest species, and burrow-nesters also declined or became extirpated disproportionately. At BCI edge species became extirpated. Body mass was a poor predictor of species and guild loss at both sites, except for carnivores at La Selva. Thus, fragmentation appears to influence some guilds more than others, but which species decline or disappear in tropical forest fragments is also influenced by site-specific factors, mostly yet to be determined. We need to understand such idiosyncratic effects of fragmentation better, rather than rely on one-size-fits-all management plans to conserve bird communities in tropical forest fragments.  相似文献   

12.
The speciation of phosphorus (P) in native and degraded peat soils is an analytical challenge, and synchrotron‐based P K‐edge X‐ray absorption near‐edge structure (XANES) is a suitable method to gain information on P species in soils and organic materials. The objective of the present study was to test if P K‐edge XANES reflected differences in P fractions in fen peat due to sequential extraction and peat degradation. We investigated each one top‐ and subsoil sample of a Fibric Histosol, which differed in the degree of humification (H8 vs. H5) and concentration of total P (Pt) (1944 mg kg–1 vs. 436 mg kg–1). In the topsoil, residual P, H2SO4‐P, and NaOH‐P accounted for roughly the same proportions of Pt (≈30%). In the subsoil, residual P (64% of Pt) was more abundant than NaOH‐P (21% of Pt) and H2SO4‐P (10% of Pt). Among many different P reference standards, the P XANES spectra reflected differences in mineral P more distinctive than in organic P compounds. Phosphorus XANES spectra of the residues after each sequential extraction step all showed a prominent white‐line peak at around 2152 eV. Stepwise removal of resin‐P, NaHCO3‐P, and NaOH‐P were reflected mainly by the peak intensity but scarcely by distinct spectral features. Extraction with H2SO4 led to the disappearance of spectral features of Ca and Mg phosphates which is a first direct hint to these compounds in the peat. In conclusion, a combined sequential fractionation and spectroscopic (31P NMR, P K‐ and L‐edge XANES with linear‐combination fits) approach is proposed to overcome limitations of the present study and gain more insight into the P species in peat soils.  相似文献   

13.
We used chemical extraction methods and 31P-nuclear magnetic resonance (NMR) to investigate the effects of vegetation on the amount and structural composition of phosphorous (P) in the sub-alpine soils of central Taiwan. Chemical extraction methods were used to measure inorganic P (Pi) and organic P (Po) in main soil horizons. The soil P composition was assessed by 31P-NMR spectroscopy on alkaline EDTA–NaOH extracts. According to the results of chemical extractions, the forest soil had a higher amount of Pi than the grassland soil, which might be a result of the mineralization of Po. 31P-NMR spectra showed inorganic orthophosphate (up to 67%) and orthophosphate monoesters (up to 75%) as the major forms of P extracted in forest and grassland soils, respectively. Smaller proportions of orthophosphate diesters and trace amounts of phosphonates and pyrophosphate were found. With possible hydrolysis of P compounds during chemical extraction and slight systemic error in the processes of extraction with NMR, the results from NMR analysis are, in general, consistent with those of chemical extraction.  相似文献   

14.
Summary Potential P and C mineralization rates were determined in a 12-week laboratory incubation study on subarctic forest and agricultural soil samples with and without N fertilizer added. There was no significant difference in net inorganic P produced between N fertilized and unfertilized soils. The forest soil surface horizons had the highest net inorganic P mineralized, 32 mg P kg-1 soil for the Oie and 17 mg P kg-1 soil for the Oa. In the cropped soils net inorganic P immobilization started after 4 weeks and lasted through 12 weeks of incubation. Cumulative CO2–C evolution rates differed significantly among soils, and between fertilizer treatments, with the N-fertilized soils evolving lower rates of CO2–C than the unfertilized soils. Soils from the surface horizons in the forest evolved the highest rates of CO2–C (127.6 and 89.4 mg g-1 soil for the Oie and Oa horizons, respectively) followed by the cleared uncropped soil (42.8 mg g-1 soil C), and the cropped soils (25.4 and 29.0 mg g-1 soil C). In vitro soil respiration rates, or potential soil organic matter decomposition rates, decreased with increasing time after clearing and in accord with the degree of disturbance. Only soils with high potential C mineralization rates and high organic P to total P ratios, mineralized P by the end of the study. Mineralizable P appeared to be associated with readily mineralizable organic C.  相似文献   

15.
周驰  宋春雷  陈玺  李阳  曹秀云  周易勇 《土壤》2013,45(1):60-66
以巢湖沿岸土壤和沉积物为对象,分析了速效磷、藻类可利用性磷、有机磷含量和碱性磷酸酶活性的空间变化格局,并测定了磷吸附参数.结果表明,土壤有机磷含量差异显著,以草地最高,而速效磷和藻类可利用性磷含量无明显差异;酶活性及速效磷含量与有机磷含量呈显著正相关,土壤对正磷酸根的吸附量与土壤中有机磷含量呈正相关;湖泊沉积物中有机磷含量与周边土壤中有机磷含量显著正相关.因此,土壤有机磷及其酶促水解过程是调节沉积物作为磷源或磷汇功能的关键因素之一.  相似文献   

16.
Soil phosphorus (P) availability was compared with Mehlich‐1 soil testing and P fractionation at a research farm (RF) and 32 private farms (PFs) in north Florida. The environmental risks caused by P release were evaluated using the P saturation ratio (PSR). Soil Mehlich‐1 P at the RF and the PFs was 41.9 ± 4.1 and 278 ± 13 mg/kg, respectively. The dominant inorganic P fraction for all farms was NaOH‐Pi (Al/Fe‐bound P) followed by HCl‐Pi (Ca/Mg‐bound P) at most of the PFs but by NaOH‐Po for the RF. Furthermore, the high PSR at the PFs indicated high risks of P loss from soil. To improve P use efficiency and enhance ecological sustainability, better P nutrient management should be implemented for Florida crop production.  相似文献   

17.
Tropical forests contain a large stock of soil carbon, but the factors that constrain its mineralization remain poorly understood. Microorganisms, when stimulated by the presence of new inputs of labile organic carbon, can mineralize (‘prime’) soil organic matter to acquire nutrients. We used stable carbon isotopes to assess how nutrient demand and soil properties constrain mineralization of added labile (sucrose) carbon and pre-existing (primed) soil carbon in tropical forest soils. In a series of lowland tropical forest soils from Panama, we found that the mineralization of fresh labile carbon was accelerated foremost by phosphorus addition, whereas the mineralization of pre-existing soil carbon was constrained foremost by nitrogen addition. However, there was variation in the relative importance of these nutrients in different soils and the largest effects on the acceleration of sucrose metabolism and constraint of priming occurred following the addition of nitrogen and phosphorus together. The respiration responses due to sucrose or primed soil carbon mineralization were reduced at pH below 4.8 and above 6.0. We conclude that in these tropical forest soils, phosphorus availability is more important in promoting microbial mineralization of sucrose carbon, whereas nitrogen availability is more important in constraining the priming of pre-existing soil organic carbon. This response likely arises because nitrogen is more closely coupled to organic matter cycling, whereas phosphorus is abundant in both organic and inorganic forms. These results suggest that the greatest impact of priming on soil carbon stocks will occur in moderately acidic tropical forest soils of low nitrogen availability. Given long-term changes in both atmospheric carbon dioxide and nitrogen deposition, the impact of priming effects on soil carbon in tropical forest soils may be partially constrained by the abundance of nitrogen.  相似文献   

18.
We investigated the effects of land uses on P distribution and availability in selected calcareous soils under different management practices. KCl‐P (labile P), NaOH‐P (Fe‐Al‐bound P), HCl‐P (Ca‐bound P), and residual P (Res‐P) fractions at 0–30 cm depth were determined for soils planted to garlic, orchard, pasture, potato, leafy vegetables, and wheat. Trends in P distribution between chemical fractions were similar between land uses. Ca‐bound P was the most abundant P fraction in the soils, constituting between 61% and 78% of the total P, whereas P associated with labile was less abundant (< 2%). Soils under leafy vegetables and wheat along with pasture presented the highest and lowest values in all fractions of P, respectively. Labile P generally was highest for leafy vegetables and potato. Labile P and Fe‐Al‐bound P comprised < 1.4% and 8% of total P, respectively. Residual P ranged from ≈ 14% (potato and garlic) to 31% (pasture). Long‐term fertilization increased P allocation to inorganic fractions, as Ca‐bound P contained 78% of total P for potato and garlic and 74% for leafy vegetables but 61% for pasture. A strong positive correlation between labile P and Fe‐Al‐bound P (r = 0.534, p < 0.01), labile P and Ca‐bound P (r = 0.574, p < 0.01), Ca‐bound P and Fe‐Al‐bound P (r = 0.504, p < 0.01), Olsen‐P and CaCl2‐P (r = 0.821, p < 0.01) was found. Principal‐component analysis showed that the first four components accounted for most of the variation, 32.5%, 16.9%, 12.9%, and 7.9% of total variation, respectively.  相似文献   

19.
Abstract

Sustainable food production includes mitigating environmental pollution and avoiding unnecessary use of non-renewable mineral phosphate resources. Efficient phosphorus (P) utilization from organic wastes is crucial for alternative P sources to be adopted as fertilizers. There must be predictable plant responses in terms of P uptake and plant growth. An 18-week pot experiment was conducted to assess corn (Zea mays L.) plant growth, P uptake, soil test P and P fractionation in response to application of organic P fertilizer versus inorganic P fertilizer in five soils. Fertilizers were applied at a single P rate using: mono-ammonium phosphate, anaerobically digested dairy manure, composted chicken manure, vegetable compost and a no-P control. Five soils used varied in soil texture and pH. Corn biomass and tissue P concentrations were different among P fertilizers in two soils (Warden and Quincy), with greater shoot biomass for composted chicken manure and higher tissue P concentration for MAP. Plant dry biomass ranged from highest to lowest with fertilizer treatment as follows: composted chicken manure?>?AD dairy?=?MAP?=?no-P control?=?vegetable compost. Soil test P was higher in soils with any P fertilizer treatment versus the no-P control. The loosely bound and soluble P (2.7?mg P kg?1) accounted for the smallest pool of inorganic P fractions, followed by iron bound P (13.7?mg P kg?1), aluminum bound P (43.4?mg P kg?1) and reductant soluble P (67.9?mg P kg?1) while calcium bound P (584.6?mg P kg?1) represented the largest pool of inorganic P.  相似文献   

20.
ABSTRACT

Sequential phosphorus (P) fractionation is a procedure often used to assess P dynamics in riparian soils and stream sediments. The most commonly used method to quantify P in fractionation extracts is the molybdate blue-ascorbic acid (MB-AA) colorimetric method. Because sequential P fractionation generates a large number of samples, it would be advantageous to use a single, rapid analytical technique to determine P concentrations. Thus, we investigated the malachite green (MG) colorimetric method for determining P concentrations in the diverse sequential fractionation matrices. For the MG method, a 96-well standard microplate was used, and absorbance was read on a universal microplate reader. We found that the MG and MB-AA methods agreed for determining P concentration in extracts of water, 1 M hydrochloric acid (HCl), and concentrated sulfuric acid (H2SO4). Small differences between the two methods were found for extracts of 0.5 M sodium bicarbonate (NaHCO3) and 0.1 M sodium hydroxide (NaOH), and concentrated HCl, most likely related to differing characteristics of the sediments that were analyzed. Despite this discrepancy for some extracts in the sequential extraction, the microplate system-MG method can be valuable because of its simplicity, sensitivity, and rapidity compared to the MB-AA method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号