首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of suspended and fine channel bed sediment were used to examine the spatial and temporal variability in the amount of fine-grained sediment and associated contaminants temporarily stored in the Na Borges River (319 km2) in Mallorca and the relationship of such channel storage to the fluxes of fine sediment and associated contaminant through the system. This Mediterranean groundwater-dominated river drains a predominantly agricultural catchment, although urbanisation during the twentieth century has changed the catchment hydrology. A re-suspension technique was used to obtain estimates of channel storage at monthly intervals during the 2004–2005 hydrological year at eight locations along the main stem of the stream (i.e. 26 km). The estimates of fine sediment storage ranged between 0 and 13,000 g m− 2, with a mean value of 2400 g m− 2. Only Cu exceeded the critical threshold (36 μg g− 1), established by existing guidelines for the contaminant content of fluvial sediment. The results demonstrated significant spatial and temporal variability, in response to the influence of urban point sources, agricultural practises, seasonal groundwater interactions and the first-flush effect. The amount of fine sediment entering storage during the study period was 515.2 t, representing the net increase in storage over the study period. As a result, the mean specific storage was 21 t km− 1. Suspended-sediment load and temporary fine sediment storage are the two basic components of the channel sediment budget that interact to determine sediment transport through a channel system, and they can therefore be used to compute the total input of sediment and associated contaminants to the system. Accordingly, storage values were compared with estimates of suspended sediment load and associated contaminant load values at three measuring stations along the river. During the study period, storage in the main channel system represented 87% of the sediment input and 68% of the contaminant input, indicating that deposition was more important than transport. The low gradient of the main channel and the low return period (i.e. 0–2.5 years) of the flood events that occurred during the study period meant that remobilised bed sediment and associated contaminants were redeposited downstream rather than being flushed to the catchment outlet as suspended sediment. Furthermore, the river bed is dry during the summer months, allowing sealing and crusting processes to stabilise the sediment deposited during the wet season and thereby reduce its availability for remobilisation at the beginning of the next wet season. Together, these factors promote sediment deposition and storage, with the result that sediment progressively accumulate over several hydrological years until a major flood event (i.e. return period ≈ 5 years) evacuates the stored sediment.  相似文献   

2.
Estimation of sediment load from Himalayan basins is of considerable importance for the planning, designing, installation and operation of hydro-power projects, including management of reservoirs. In the present study, an assessment of physical and chemical load, sediment yield and erosion rate has been undertaken at eight different locations in the Sainj and Tirthan watersheds. The analysis revealed that the maximum load was transferred during the monsoon season. Moreover, the estimated average chemical erosion rate of the Sainj (83 t km− 2 yr− 1) and Tirthan (80 t km− 2 yr− 1) watersheds were higher than that of the Indian average (69 t km− 2 yr− 1) representing all the rivers. Both watersheds were eroding physically and chemically at a faster rate than that of the world global average erosion rate (185 t km− 2 yr− 1). The flattish nature of the channels in some segments of these watersheds showed a lower transport of sediments, where as the constricted segments having steep bed slopes increased the velocity of flow and the sediment transport rate. These findings have important implications for water resource management in the context of sediments mobilization, erosion, channel management, ecological functions and operation of the hydro-power projects in the Lesser Himalayan region.  相似文献   

3.
Our aim was to establish the long-term effects of repeated applications after 20 y of organic amendments (farmyard manure at 10 t ha−1 y−1, and urban sewage sludge at two different rates, 10 t ha−1 y−1 and 100 t ha−1 every 2 y) on the quality of a sandy and poorly buffered soil (Fluvisol, pH 6). Chemical characteristics and biodegradability of the labile organic matter, which is mainly derived from microbial biomass and biodegradation products of organic residues, were chosen as indicators for soil quality. The organic C content had reached a maximal value (30.6 g C kg−1 in the 100 t sludge-treated soil), i.e. about 2.5 times that in the control. Six years after the last application, the organic C content and the microbial biomass content remained higher in sludge-treated soils than in the control. In contrast, the proportion of labile organic matter was significantly lower in sludge-treated soils than in manure-treated and control soils. The labile organic matter of sludge extracts appeared less humified than that of manure-treated and control soils.  相似文献   

4.
Runoff is the key factor to understand the land degradation causing high risk of soil erosion and can reduce the water available for human societies and ecosystems. The dynamics of runoff and suspended sediment transport are not completely understood. In this study, we examined the trends, breaking point and regime changes for the runoff and sediment load at different temporal scales using 50 years of continuous observational data from a highly erodible sub‐catchment with an area of 7,325 km2 in the Beiluo River basin on the Loess Plateau, China. At the annual scale, the runoff and sediment load declined significantly (p < 0·05) with decreasing rates of −0·23 mm y−1 and −164·9 Mg km−2 y−1, respectively. Abrupt changes in the runoff and sediment load series were detected between 1979 and 1999; thus, the data were divided into intervals of 1960–1979, 1980–1999 and 2000–2009. The flow duration curve analysis indicated increasing low‐flow values and decreasing daily runoff and sediment discharge peaks, which suggested that soil and water conservation measures reduced the volume of runoff and the sediment load. This led to a more uniform runoff regime. At the flood event scale, we investigated the relationship between runoff and the suspended sediment load based on 123 flood events, which showed clearly that the magnitude and frequency of hyper‐concentrated sediment flows decreased in 2000–2009 compared with 1960–1999. The annual erosive rainfall exhibited non‐significant changes throughout the entire study period. We conclude that soil and water conservation measures (e.g. afforestation, grassing, terraces and check dams) have played major roles in the changes in runoff and the sediment load in the Beiluo River catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A Holocene sediment budget was constructed for the 758 km2 Dijle catchment in the Belgian loess belt, in order to understand long-term sediment dynamics. Hillslope sediment redistribution was calculated using soil profile information from 809 soil augerings, which was extrapolated to the entire catchment using morphometric classes. As large parts of the forests within the catchment prove to have undergone little or no erosion since medieval times, a correction was applied for the presence of forests. Total Holocene erosion amounts 817 ± 66 Mt for the catchment, of which 327 ± 34 Mt was deposited as colluvium. This corresponds with a net Holocene soil erosion rate of 10.8 ± 0.8 × 103 Mg ha− 1 for the entire Dijle catchment. Alluvial deposits were studied through 187 augerings spread over 17 cross-valley transects. The total alluvial sediment deposition equals 352 ± 11 Mt or 42% of total eroded sediment mass. Results indicate that at the scale of a medium-sized catchment the colluvial sediment sink is as important as the alluvial sediment sink and should not be neglected. As a result the estimation of erosion through alluvial storage and sediment export would yield large errors. Dating of sediment units show an important increase in alluvial deposition from medieval times onwards, indicating the important influence of agricultural activities that developed from that period. Mean sediment export rates from the catchment for the last 1000–1200 years range between 0.8 and 1.3 Mg ha− 1 a− 1 and are consistent with present suspended sediment measurements in the Dijle. Erosion for agricultural land for this period is 9.2 ± 2.2 Mg ha− 1 a− 1. Sediment budgets for the various tributary catchments provide an insight in the sources and sinks of sediment at different scales within the catchment.  相似文献   

6.
The magnetic properties of soil have been increasingly applied as a rapid and economic way to monitor environment pollution. Sediments from a growing islet in the lower reach of Yangtze River as well as the suspended particles in the surrounding river water were used to identify anthropogenic influence on the magnetic susceptibility (MS) of the Yangtze River sediment. Results show that newly deposited sediments in 2004 have significantly higher MS (~ 150 × 10−8 m3 kg−1) on average than that of the ancient deposit (~ 50 × 10−8 m3 kg− 1). Scanning electron microscope (SEM) of the extracted magnetic particles from newly deposited sediments and fly ash samples indicates large contribution of fly ash for the samples with elevated MS. Dependence of MS on grain size is evident, which enable calculation of the MS of suspended particles from river sediment. A value of 32 × 10−8 m3 kg− 1is inferred for the suspended particles in ancient Yangtze River. The records from 2004 to 2010 indicate progressive increase in the MS of the suspended particles in Yangtze River from 67 to 96 × 10−8 m3 kg− 1, which is much higher than that of the ancient. Mass balance calculation based on the increasing MS suggests that at least 7% of the fly ash produced within the catchment of Yangtze River was released into the environment.  相似文献   

7.
Soil erosion in southeast Spain is a complex process due to strong interactions between biophysical and human components. Significant progress has been achieved in the understanding of soil hydrological behavior, despite the fact that most investigations were focused on the experimental plot scale. Although experimental plots allow exploring the effect of multiple biophysical and anthropogenic factors, they provide limited insights in the combined effect of all factors acting together at the landscape scale. In this study, area-specific sediment yields (SSY) have been estimated based on the volume of sediment trapped behind 36 check dams in the southeast of Spain. Low SSY-values were reported (mean = 1.40 t ha−1 year−1: median = 0.61 t ha−1 year−1). SSY variability could be explained for 67% by catchment characteristics such as drainage area, soil characteristics, land cover, average catchment slope, and annual rainfall. The low SSY values are probably caused by the agricultural abandonment that occurred over the past decades and allowed the recovery of natural vegetation. Furthermore, our results suggest that the soils have eroded in the past to such an extent that nowadays not much sediment is detached by overland flow due to residual enrichment of clay and stones. Also, sediment is to a large extent trapped locally in the catchment, as indicated by the negative relationship between SSY and catchment area.  相似文献   

8.
This paper examines the relations between rainfall, runoff and suspended sediment transport in the Isábena basin during a quasi-average hydrological year. The Isábena is a mesoscale river basin that drains a mountainous area comprising patches of highly erodible materials (badlands). The paper includes an analysis of the different hydrological and sedimentary responses of the catchment to a similar rainfall. Thirty-four floods were studied, with a very variable response observed. Runoff coefficients ranged from 0.32% to 33%. The sedimentary response was also highly variable, with maximum suspended sediment concentrations (SSC) oscillating between < 0.1 and 90 g l− 1 and flood sediment loads varying from 27 to 54,000 t per hydrological event. Most sediment load was concentrated in spring when competent floods occur frequently. Pearson correlation matrix and backward stepwise multiple regression indicate that the hydrological response of the catchment is strongly correlated with total precipitation, event duration, and rainfall of the previous days. Very low correlation was observed with rainfall intensity. The relation between rainfall and sediment transport followed the same trend. Sediment variables (e.g., total load and SSC) were significantly correlated with variables such as total rainfall and rainfall over the previous days, although the significance level was lower in comparison with the runoff related variables. There was again no correlation between sediment variables and rainfall intensity. On-going research in the area suggests that, apart from rainfall, factors such as sediment availability in the badlands and accumulation of sediment in the channels influences the river's sedimentary response. The non-linear hydrosedimentary response is reflected in the wide range of runoff coefficients and sediment loads that have been observed in response to similar amounts of precipitation.  相似文献   

9.
The Ca l?Isard catchment (1.32 km2), a sub-basin of the Vallcebre experimental catchments, yields large amounts of sediments (about 580 Mg km− 2 year− 1) that are produced in relatively small but very active eroded areas (badlands). Several lines of evidence suggest that there is a delay between sediment production, caused by intense summer rainstorms, and sediment transport, occasioned by the main floods produced by large precipitation events following wet antecedent conditions. First, a calibration–validation exercise was carried out with sediment yield data obtained using containers provided with slot divisors in a badlands micro-catchment (1240 m2). Then, the model was applied to the main badlands areas in the Ca l?Isard sub-catchment for a 4-year period and the simulated sediment yields were compared with the records at the gauging station. The test was performed with the Generalized Likelihood Uncertainty Estimation (GLUE) approach for assessing the uncertainty associated with model predictions, which assumes that many parameter sets can give acceptable simulations. The results demonstrated the capacity of KINEROS2 to simulate badland erosion, although it showed limited robustness. A clear temporal mismatch between erosion and sediment transport and the relevance of sediment stores in the catchment were confirmed, while the total weights of sediment were generally under-predicted. The limited suitability of the area used for calibration or the role of sediment sources not simulated in the approach may account for this shortcoming.  相似文献   

10.
Surface runoff, soil loss, suspended sediment concentration (SSC), texture of eroded soils and suspended sediment were determined on slightly eroded chernozems (mouldboard fall-ploughed) during years with different amounts of snow in three areas of southern West Siberia (Predsalairye, Priobye and Kuznetsk hollow). These areas have different geomorphological and climatic characteristics and soils. Observations were made from 1969 to 2007. The soil loss during very low-snow and low-snow years did not exceed 2 t ha− 1. After winters with normal amounts of snow, the runoff led to slight soil loss (2–5 t ha− 1). Soil losses in high-snow and very high-snow years varied from slight to severe (4.8–15.8 t ha− 1) depending on studied area. The main sediment exported during intensive snowmelt and the 1 mm of runoff transported from 35 to 150 kg ha− 1 of soil material. The removal of soil particles < 0.01 mm (especially clay) prevailed during the initial and final stages of snowmelt. Clay removal by meltwater from the ploughed layer in high-snow and very high-snow years varied from 3300 to 4200 kg ha− 1 and, in the initial and final stages of snowmelt clay removal, accounted for 1260–1,500 kg ha− 1. Among the three studied regions, Predsalairye had decreased soil erosion resistance and was the area with the greatest danger of erosion.  相似文献   

11.
In order to assess the extent of sediment connectivity between uplands and lowlands and to quantify the processes of in-channel deposition and remobilization, measurements of suspended sediment fluxes were conducted in a nested rural catchment of the Mexican Volcanic Belt. Data were collected over one year at three upland sites (3 to 12 km2) and two downstream stations (390–630 km2). Our results show that a structural discontinuity in the catchment (i.e. abrupt slope decrease at the junction between piedmonts and the alluvial plain from 2 to 10% to < 0.1%) could be compensated by functional continuity during floods. Direct conveyance of fine sediment to the outlet occurred when a high stream transport capacity was reached. Erosion of the streambed was observed on various occasions and accounted for up to 50% of the flux leaving the catchment during one event. Conversely, temporary in-channel storage was apparent on other occasions, amounting to up to 52% of the flux recorded upstream during one storm. These two distinct behaviours were approximately equally distributed along the rainy season and strongly driven by the extent of coupling between surface and subsurface water. This work indeed highlights the role of baseflow spatial variations in determining the extent of lowland sediment conveyance. Riverbed erosional processes occurred when large differences in pre-event baseflow values (i.e. at least a twofold longitudinal increase) were observed between the 5-km distant lowland stations. Our findings outline the importance of systematically taking into consideration the baseflow parameter in research focusing on fine sediment transport across scales.  相似文献   

12.
Soil aggregation is of great importance in agriculture due to its positive effect on soil physical properties, plant growth and the environment. A long-term (1996-2008) field experiment was performed to investigate the role of mycorrhizal inoculation and organic fertilizers on some of soil properties of Mediterranean soils (Typic Xerofluvent, Menzilat clay-loam soil). We applied a rotation with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) as a second crop during the periods of 1996 and 2008. The study consisted of five experimental treatments; control, mineral fertilizer (300-60-150 kg N-P-K ha−1), manure at 25 t ha−1, compost at 25 t ha−1 and mycorrhiza-inoculated compost at 10 t ha−1 with three replicates. The highest organic matter content both at 0-15 cm and 15-30 cm soil depths were obtained with manure application, whereas mineral fertilizer application had no effect on organic matter accumulation. Manure, compost and mycorrhizal inoculation + compost application had 69%, 32% and 24% higher organic matter contents at 0-30 cm depth as compared to the control application. Organic applications had varying and important effects on aggregation indexes of soils. The greatest mean weight diameters (MWD) at 15-30 cm depth were obtained with manure, mycorrhiza-inoculated compost and compost applications, respectively. The decline in organic matter content of soils in control plots lead disintegration of aggregates demonstrated on significantly lower MWD values. The compost application resulted in occurring the lowest bulk densities at 0-15 and 15-30 cm soil depths, whereas the highest bulk density values were obtained with mineral fertilizer application. Measurements obtained in 2008 indicated that manure and compost applications did not cause any further increase in MWD at manure and compost receiving plots indicated reaching a steady state. However, compost with mycorrhizae application continued to significant increase (P < 0.05) in MWD values of soils. Organic applications significantly lowered the soil bulk density and penetration resistance. The lowest penetration resistance (PR) at 0-50 cm soil depth was obtained with mycorrhizal inoculated compost, and the highest PR was with control and mineral fertilizer applications. The results clearly revealed that mycorrhiza application along with organic fertilizers resulted in decreased bulk density and penetration resistance associated with an increase in organic matter and greater aggregate stability, indicated an improvement in soil structure.  相似文献   

13.
Ecosystem processes in African savannas can be better conserved if management is based on a mechanistic understanding of wildlife dynamics in livestock-dominated landscapes. For Laikipia District, a non-protected savanna region in northern Kenya, we used spatially explicit estimates of density to characterize factors influencing the dynamics of large herbivores on three land-use types: commercial ranches that favor wildlife, communal ‘group ranches’ practicing pastoralism, and the remainder (‘transitional’ properties). For 21-year time series of nine wild and two domestic species, linear model selection was used to ascribe between 45% (Grant’s gazelle) and 95% (plains zebra) of observed variation in biomass density to land use, rainfall-dependence, density-dependence, and trends over time.Strongly opposing patterns of variation across the landscape in wildlife and livestock densities affirmed the primacy of land use among factors influencing wildlife abundance in non-protected areas. Rainfall limited densities of only the dominant grazing species throughout the monitoring period (plains zebra and cattle), and of most other species while their densities were high. Regulating effects of density were detected only for the dominant wild grazing and browsing species (zebra and giraffe). All but two wild species (zebra and Grant’s gazelle) declined on at least one land-use type, for reasons that varied among land uses.Where favored, diverse and abundant wild herbivores (mean of 1.7 t km−2 on pro-wildlife ranches) can thrive even when sharing the landscape with a slightly higher biomass density of livestock (mean of 2.7 t km−2). Where not favored, only a few resilient wild species (e.g. gazelles and plains zebra) persist with high densities of livestock (mean of 4.6 t km−2 on transitional ranches). Maintaining higher wild species diversity in the landscape will depend on the creation of a network of unfenced conservation areas in which livestock densities are persistently low or zero, which are sufficiently large to act as ‘sources’ of wild species that are prone to displacement by humans and livestock, and which generate benefits to community members that exceed opportunity costs.  相似文献   

14.
Sediments deposited by (paleo) flash floods can hold valuable information on processes of environmental change, land degradation or desertification. In order to assess the suitability of flash flood deposits as proxies for land degradation, we monitored a representative gully segment in North Ethiopia (Ashenge catchment), investigated a sequence of alluvial debris fans downstream of this segment and dated a neighbouring subaquatic debris fan using short‐lived 210Pb isotope counting. During one rainy season (July–September 2014), we measured daily rainfall, peak discharge, bedload transport, suspended sediment load and sediment deposition rates. The data show that sediment deposition in the debris fans is significantly dependent on micro‐topography (net incision in micro‐channels) (p < 0·1) and position within the sequence (net incision farther away from the lake) (p < 0·05). As sediment transfer to the lake significantly depends on the balance between available water and sediment (ratio rainfall depth/bedload transport) (p < 0·05), we could reconstruct the hydro‐sedimentary evolution of the gully over the past half century and validate it with aerial photographs and semi‐structured interviews. The findings are consistent with the short‐lived isotope count results, indicating increased sediment supply from the 1970s onwards, when little amounts of clay were deposited in the lake (<5%), and a subrecent clear water effect that resulted in increased deposition rates of clay in the lacustrine debris fan. Overall, our analysis indicates that debris fan sediments can be used to estimate past environmental degradation rates, if the contemporary water and sediment behaviour is well understood. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
《CATENA》2004,55(2):183-212
The Baurières plain within the upper Drôme River basin was used to reconstruct recent changes in sediment supply in relation to changes in land use within an alpine catchment. A considerable body of archival information is available. Furthermore, the plain acts as a natural sediment trap and the reach–basin interaction has not been disrupted by human activity. Based on archival data, channel geometry measurements, dendrogeomorphological and radionuclide analysis (Cs137 and unsupported Pb210), the trends in channel change and sediment supply over the past two centuries are assessed and their causes are interpreted.Dendrogeomorphology and radionuclide profiles show that the floodplain is characterised by a decrease in sedimentation rate in the 1960s. The ex-Pb210 profiles also suggest a spatial modification of the relative contribution in sediment supply of the catchment. Bedload yields are estimated to be at least 26 m3 km−2 year−1 between 1928 and 1996 based on an estimate of storage over a channel length of 11.5 km. Archival data concerning bedload removal from traps yields an estimate of 25.6 m3 km−2 year−1 between 1993 and 2001. These two values are very comparable suggesting no major modification in bedload transport within the reach during the 20th century. If the bedload supply has not strongly decreased in the studied reach during this period, the bedload sources have changed. The volume of sediment stored in the Beaurières area between 1928 and 1996 corresponds to at least 40% of the sediment delivered by channel degradation from an upstream alluvial reach.Both changes in floodplain sedimentation as well as changes in bedload and suspended contributions from catchment sources are interpreted as responses to land use but also flow regime. Hillslope sediment production strongly decreased due to planned hillslope afforestation and torrent regulation at the end of the 19th century, and spontaneous hillslope afforestation resulting from grazing decline, mainly in the two decades following World War II. The observed change in suspended sediment supply which occurred around 1960–1965 has a clear synchronicity with spontaneous catchment afforestation following World War II. After this period, a decrease in sediment supply, a change in source, but also a decrease in peak flow, were observed.Changes in run-off are complex and cannot be caused with only land use change. Flood hydrographs underwent peak decreases and duration increases through the 20th century because of increase in water retention capacity of the forested catchment. In addition flood seasonality has changed, with September and October flood events being much less frequent in the last part of the 20th century.  相似文献   

16.
17.
The effect of organic and inorganic fertiliser amendments is often studied shortly after addition of a single dose to the soil but less is known about the long-term effects of amendments. We conducted a study to determine the effects of long-term addition of organic and inorganic fertiliser amendments at low rates on soil chemical and biological properties. Surface soil samples were taken from an experimental field site near Cologne, Germany in summer 2000. At this site, five different treatments were established in 1969: mineral fertiliser (NPK), crop residues removed (mineral only); mineral fertiliser with crop residues; manure 5.2 t ha−1 yr−1; sewage sludge 7.6 t ha−1 yr−1 or straw 4.0 t ha−1 yr−1 with 10 kg N as CaCN2 t straw−1. The organic amendments increased the Corg content of the soil but had no significant effect on the dissolved organic C (DOC) content. The C/N ratio was highest in the straw treatment and lowest in the mineral only treatment. Of the enzymes studied, only protease activity was affected by the different amendments. It was highest after sewage amendment and lowest in the mineral only treatment. The ratios of Gram+ to Gram− bacteria and of bacteria to fungi, as determined by signature phospholipid fatty acids, were higher in the organic treatments than in the inorganic treatments. The community structure of bacteria and eukaryotic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) and redundancy discriminate analyses of the DGGE banding patterns. While the bacterial community structure was affected by the treatments this was not the case for the eukaryotes. Bacterial and eukaryotic community structures were significantly affected by Corg content and C/N ratio.  相似文献   

18.
Simulation models are frequently used tools for suspended sediment load quantification in mesoscale catchment areas. To improve the simulation results, it is important to compare and verify different models using measured data. In this study, we tested two continuous simulation, semi-distributed erosion and sediment transport models AnnAGNPS and SWAT for the period of 1995–2004 in the Blšanka river basin. The catchment (374 km2) is an agricultural hop-growing region in the north-western part of the Czech Republic. Both models were calibrated using the first 5 years of data, and then validated using the second 5 years of daily discharge and suspended sediment yield values. For the long-term continuous simulation, the results of SWAT model simulation showed a better agreement to the measured data, while for short-term rainfall-runoff event simulation, especially short duration intensive rainfall events, suspended load was more accurately predicted by AnnAGNPS. Land use changed significantly in parts of the river basin during the observation period. Many hop-gardens were dismantled and arable land was partially converted to grassland and pasture. This enabled us to test the applicability of AnnAGNPS and SWAT models under changing land use conditions. According to both models, suspended sediment load was reduced after the land use changes by 10%–30%, which was in agreement with decreasing sediment discharge observed at the watershed outlet.  相似文献   

19.
Methane (CH4) uptake by soil can possibly be suppressed more in regions with heavy summer precipitation, such as those under the East Asian monsoon climate, as compared to that in regions with a dry summer. In order to determine how precipitation patterns affect seasonal and spatial variations in CH4 fluxes in temperate forest soils, such fluxes and selected environmental variables were measured on different parts of a hill slope in a cypress forest in central Japan. On the upper and middle parts of the slope, CH4 uptake was observed throughout the year, and the uptake rates increased slightly with soil temperature and decreased with soil water content. The CH4 flux predicted using data for the middle and upper parts of the slope ranged from −1.12 to −0.83 kg-CH4 ha−1 y−1 (i.e. CH4 uptake by soil) and from −2.30 to −2.04 kg-CH4 ha−1 y−1, respectively. In contrast, in the relatively wet lower part of the slope near an in-stream wetland, large CH4 emissions (>2 mg-CH4 m−1 d−1) were observed during the rainy summer. In this wetter plot, the soil functioned as a net annual CH4 source in a rainy year. Hence the variation in CH4 flux with a change in soil water conditions and soil temperature on the lower part of the slope contrasted to that on the upper and middle parts of the slope. The predicted CH4 flux for this lower plot ranged from −0.45 kg-CH4 ha−1 y−1 in a dry year to 1.80 kg-CH4 ha−1 y−1 in a rainy year. Our results suggest that consideration of the soil water conditions across a watershed is important for estimating the CH4 budgets for entire forest watershed, particularly in regions subject to a wet summer.  相似文献   

20.
Particulate phosphorus (P) can be transported via soil erosion in overland flow to waters, where it provides a long-term source of P for aquatic biota, and can accelerate freshwater eutrophication. Hence, knowledge of P sources is important for good environmental management. However, data on P, and related Fe, losses from various structures of a post-mining landscape are lacking. A year-long monitoring, and ten short rainfall simulations on plot scale, at ridges and rills and a combination of them, revealed high erosion from bare lignite mining dumps at Schlabendorf-North, Lusatia, Germany. The mean annual soil erosion rate from the year-long monitoring site was 18 × 106 kg km− 2 yr− 1, corresponding to 0.034 g m− 2 min− 1. The erosion rates were lowest at rill plots (1.9–4.4 g m− 2 min− 1), intermediate at ridge plots (14.3–37.1 g m− 2 min− 1), and highest at a combined rill and ridge plot (48.7–63.4 g m− 2 min− 1). These differences in extent were due to small scale differences in morphology and extreme water repellency. The hydrophobicity leads to very low infiltration, thus generating surface runoff even at low rainfall intensities. Loss rates of P and Fe, as deduced from the year-long erosion rate, were 470–650 kg km− 2 yr− 1, and 37.9 × 103–71 × 103 kg km− 2 yr− 1 respectively. However, these P inputs from lignite mining dump erosion, consisting of P-poor (17–90 μg g− 1) tertiary spoil materials, into aborning mining lakes, are negligible since they are accompanied by high Fe inputs, which favour an efficient P co-precipitation in the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号