共查询到20条相似文献,搜索用时 15 毫秒
1.
Catchment scale sediment budgeting models are increasingly being used to target remediation works aimed at controlling erosion and improving water quality. Gully erosion is often a major sediment source and needs to be accounted for in such models in a manner consistent with the scale of analysis and available data. Using 130 measurements of gully cross-sectional area and 45 measurements of gully wall sediment texture, the variability in gully dimensions and particle size distribution for the Lake Burragorang catchment in Australia is examined. The distribution of gully cross-sectional area measurements is log-normally distributed and modelling indicates a representative value of 23 m2 be used in catchment sediment budgeting applications. The proportion of gully eroded sediment contributing to the bedload budget (defined as particles > 63 μm diameter) of a river link is approximately half, though may be higher in igneous landscapes. A continental scale spatially distributed subsoil texture dataset provided limited capacity to predict the finer scale spatial variation in the proportion of sediment contributing to bedload from gully erosion within the Lake Burragorang catchment. 相似文献
2.
Establishing sediment budgets for two small lowland agricultural catchments in the UK 总被引:2,自引:0,他引:2
Sediment budgets have been established for two small (<4 km2), lowland, agricultural catchments, by using 137Cs measurements, sediment source fingerprinting and more traditional monitoring techniques to quantify the individual components of the budget. The gross and net erosion rates for the fields on the catchment slopes were estimated using 137Cs measurements within selected fields, which encompassed a representative range of slope angles, slope lengths and land use. These estimates were extrapolated over the entire catchment, using a simple topographically driven soil erosion model (Terrain-Based GIS, TBGIS) superimposed on a DEM, to derive catchment average gross and net erosion rates. Suspended sediment yields were measured at the catchment outlets and sediment source fingerprinting techniques were used to establish the relative contributions from the catchment surface, subsurface tile drains and eroding channel banks to the sediment yields. In-channel and wetland storage were quantified using both direct measurements and 137Cs measurements. The sediment budgets established for the catchments highlighted the importance of subsurface tile drains as a pathway for sediment transfer, accounting for ca. 60% and 30% of the sediment output from the two catchments. Erosion from channel banks contributed ca. 10% and 6% of the sediment output from the two catchments. Although the suspended sediment yields from these catchments were considered high by UK standards (ca. 90 t km−2 year−1), the sediment delivery ratios ranged between 14% and 27%, indicating that a major proportion of the mobilised sediment was stored within the catchments. In-field and field-to-channel storage were shown to be of similar magnitude, but storage of sediment in the channel system and associated wetlands was relatively small, representing <5% of the annual suspended sediment yield. 相似文献
3.
Annual soil losses in southern Italy can exceed 100–150 t ha− 1 year− 1. Where erosion on agricultural land is particularly severe, land use change and afforestation are frequently seen as the most appropriate means of reducing erosion risk. However, the overall effectiveness of afforestation in reducing soil erosion remains uncertain, due to the poor development of the forest cover in some areas, leading to significant areas with sparse tree cover, and the erosional impact of forest harvesting, which commonly involves clearcutting. The study reported here addresses this uncertainty and focuses on two small catchments (W2 and W3) located in Calabria, southern Italy, for which measurements of suspended sediment yield are available. Both the catchments originally supported a rangeland vegetation cover and they were planted with eucalyptus trees in 1968. Currently, only catchment W3 supports a continuous forest cover. In catchment W2 the forest cover is discontinuous and there is a significant area of the catchment (ca. 20%) where the tree cover is sparse and the vegetation cover is dominated by natural grasses. Two additional erosion plots were established within catchment W2 in 1991, in order to explore the effect of the density of the tree cover on soil erosion. Information on the sediment yields from the two catchments and the plots for 10 storm events that occurred during the period December 2005–December 2006 and associated information on the 137Cs and excess 210Pb of the sediment, have been used to investigate the effectiveness of afforestation in reducing sediment mobilisation and net soil loss from the catchments involved. The results demonstrate that the areas of greatest soil loss are associated with the slopes where the tree cover is discontinuous, and that forest harvesting by clearcutting causes significant short-term increases in sediment mobilisation and sediment yield. These findings, which are consistent with previous work undertaken within the same area, emphasize the importance of vegetation cover density in influencing rates of soil loss in the study catchments. The study also provided a useful demonstration of the potential for using measurements of the 137Cs and 210Pbex content of sediment, in combination with more traditional sediment monitoring, to investigate sediment sources and to compare the sediment dynamics of catchments subjected to different land management practices. 相似文献
4.
Modelling of snowmelt erosion and sediment yield in a small low-mountain catchment in Germany 总被引:1,自引:0,他引:1
Temporal variability and spatial heterogeneity of surface runoff generation triggers the dynamics of source areas of sediment and sediment-associated nutrient transport. Reliable modelling of hydrological special situations i.e. snowmelt is of high importance for the quality of erosion and sediment yield modelling. Data from the research catchment Schäfertal demonstrate the individuality of snowmelt events in terms of runoff coefficient and delivery ratio. This 1.44 km2 low mountain catchment is characterised by a high portion of arable land with a winter grain/winter rape crop rotation. The integrated winter erosion and nutrient load model (IWAN) considers these dynamic aspects by coupling a hydrological model with a sediment load model. Cell size of this raster-based approach is 10 × 10 m2. Additionally, snowmelt rill erosion is simulated with a newly developed physically based model that is firstly applied on a catchment scale. A sensitivity analysis of this model system component demonstrates the plausibility of the model approach and the overall robustness of the model system IWAN. The results of the long-term hydrological modelling from 1991 to 2003 are reliable and form the basis for the simulation of six snowmelt events which were observed in the Schäfertal catchment. The estimated total runoff volumes for these events match the observations well. The modelled overland runoff coefficients vary from 0.001 to 0.72. The mean values of cell erosion, which were modelled with one set of parameters for all six events range from 0.0006 to 0.96 t ha− 1. The total modelled erosion for the events with unfrozen soil and low amount of surface runoff is of a factor 50 below those with partly frozen soil. In addition to these distinctions, the major differences are caused by flow accumulation in shallow depressions in variable parts of the catchment. However, the validation of these results on the single event scale is restricted due to limited spatial data. Total simulated sediment yield at the catchment outlet was as high as 13.84 t which underestimates the observed values, with the exception of one event. Oversimplification of the modelled channel processes may be a reason. The temporal variability and spatial heterogeneity of the surface roughness parameter, which was identified to be sensitive, also causes uncertainty in the parameter estimation. Despite these findings, the model system IWAN was applied successfully on the catchment scale and the simulated results are reliable. 相似文献
5.
This study presents a Holocene sediment budget for the upland catchment of the Speyerbach in the Palatinate Forest, southwestern Germany. The influences of both, data availability and the choice of an appropriate soilscape model on the sediment budget calculations are investigated. For budget calculations the spatial distribution of soils was derived from the soil map 1:50,000. Thickness values of soil truncation and colluvial burial were extracted from two soil data sets with varying information content. Data processing contained a disaggregation of the soil map with the help of land use data. In order to model the sediment budget a reference soil thickness (a so-called soilscape model), which represents the initial conditions is necessary. As upland soils are developed in periglacial solifluction sheets, the main solifluction sheet (MSS, “Hauptlage”) showing a constant thickness and being affected by soil forming processes was chosen. 相似文献
6.
Development of improved soil erosion and sediment yield prediction technology is required to provide catchment stakeholders with the tools they need to evaluate the impact of various management strategies on soil loss and sediment yield in order to plan for the optimal use of the land. In this paper, a newly developed approach is presented to predict the sources of sediment reaching the stream network within Masinga, a large‐scale rural catchment in Kenya. The study applies the revised universal soil loss equation (RUSLE) and a developed hillslope sediment delivery distributed (HSDD) model embedded in a geographical information system (GIS). The HSDD model estimates the sediment delivery ratio (SDR) on a cell‐by‐cell basis using the concept of runoff travel time as a function of catchment characteristics. The model performance was verified by comparing predicted and measured plot runoff and sediment yield. The results show a fairly good relationship between predicted and measured sediment yield (R2=0·82). The predicted results show that the developed modelling approach can be used as a major tool to estimate spatial soil erosion and sediment yield at a catchment scale. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
7.
Analysis of sediment sources is an important component in the development of catchment sediment budgets and in determining links between erosion from sources and sediment delivery to catchment outlets. In this study 137Cs and 210Pbex were used to determine surface and sub-surface source contributions of fine sediment in a small upland headwater catchment (1.6 km2) in south-eastern Australia. The findings from this analysis are employed in an adjustment procedure to better differentiate sediment source erosion processes by utilising channel survey and erosion pin data. This improved the precision of estimates of sediment-source erosion-process contributions from hillslopes and channel/gully walls. A mean of 74% of in-channel deposits and suspended sediment exiting the study catchment was derived from sub-surface sources and when adjusted for erosion process this increased to 81%, which may be attributed to channel and gully wall erosion alone. Net erosion of the channel floor was low and constitutes only a small part of the total channel source input to sediment flux. Variability in sediment source contributions within the catchment was high, with rapid transition from hillslope to channel source dominance of sediment flux with distance downstream in the study catchment. 相似文献
8.
R. P. C. Morgan 《CATENA》2001,44(4)
A revised version of the Morgan–Morgan–Finney model for prediction of annual soil loss by water is presented. Changes have been made to the way soil particle detachment by raindrop impact is simulated, which now takes account of plant canopy height and leaf drainage, and a component has been added for soil particle detachment by flow. When tested against the same data set used to validate the original version at the erosion plot scale, predictions made with the revised model gave slopes of a reduced major-axis regression line closer to 1.0 when compared with measured values. The coefficient of efficiency, for sites with measured runoff and soil loss, increased from 0.54 to 0.65. When applied to a new data set for erosion plots in Denmark, Spain, Greece and Nepal, very high coefficients of efficiency of 0.94 for runoff and 0.84 for soil loss were obtained. The revised version was applied to two small catchments by dividing them into land elements and routing annual runoff and sediment production over the land surface from one element to another. The results indicate that, when used in this way, the model provides useful information on the source areas of sediment, sediment delivery to streams and annual sediment yield. 相似文献
9.
Distributed erosion and sediment yield models are being increasingly used for predicting soil erosion and sediment yields in agricultural catchments. In most applications, validation of such models has commonly been restricted to comparison of the predicted and measured sediment output from a catchment, because spatially distributed information on rates and patterns of soil redistribution within the catchment has been lacking. However, such spatially distributed data are needed for rigorous model testing, in order to validate the internal functioning of a model and its applicability at different spatial scales. The study reported in this paper uses two approaches to test the performance of the agricultural non-point source pollution (AGNPS) and areal non-point source watershed environmental response simulation (ANSWERS) erosion and sediment yield models in two small catchments in Devon, UK. These involve, firstly, comparison of observed and predicted runoff and sediment output data for individual storm events monitored at the basin outlets and, secondly, information on the spatial pattern of soil redistribution within the catchments derived from 137Cs measurements. The results obtained indicate that catchment outputs simulated by both models are reasonably consistent with the recorded values, although the AGNPS model appears to provide closer agreement between observed and predicted values. However, the spatial patterns of soil redistribution and the sediment delivery ratios predicted for the two catchments by the AGNPS and ANSWERS models differ significantly. Comparison of the catchment sediment delivery ratios and the pattern of soil redistribution in individual fields predicted by the models with equivalent information derived from 137Cs measurements indicates that the AGNPS model provides more meaningful predictions of erosion and sediment yield under UK conditions than the ANSWERS model and emphasises the importance of using information on both catchment output and sediment redistribution within the catchment for model validation. 相似文献
10.
Multi-parameter fingerprinting of sediment deposition in a small gullied catchment in SE Australia 总被引:4,自引:0,他引:4
The determination of relative contributions of potential sediment sources is an important step in the development of management strategies to combat soil erosion. In a 1.2 km2 gullied catchment in southeastern New South Wales, multi-parameter fingerprinting of sediment deposited in successive downstream pools has identified gully walls as the dominant sediment source when the grazed pasture surface was the only other potential source. The median fractional contributions remained relatively steady in the successive downstream pools, with the gully walls responsible for between 90% and 98% of the pool sediment. This result was achieved despite the ratio of the source areas varying considerably between successive nested subareas. Reliability bounds on the predictions, accounting for limited sampling of sources, were well constrained and varied between 5.4% and 13.8%. Downstream of an unsealed road crossing, sediment from the road source dominated the pool sediments such that contributions from the pasture surface and gully sources could not be determined. 相似文献
11.
Erosion studies at multiple scales have shown selectivity in particle transport and delivery can be inferred from nutrient enrichment. Most studies reveal the enrichment ratio (ER) of phosphorus on sediment is high, demonstrating the deposition of coarser particles over the transport pathway. Experimental work on burnt landscapes often takes place at the hillslope plot scale (1–10 m2) by necessity, with inferences made on system sediment and nutrient responses from small areas. Scale effects on generation and delivery need to be considered in such cases. In a study in wet eucalypt forests burnt by wildfire, phosphorus concentration on mineral sediment and organic material at the point (0.01 m2), plot (1–10 m2) and catchment (106 m2) was used to estimate ERs over two scales. The data revealed ERs of 1.5 from point to plot and 2 from plot to catchment. These ratios are relatively low compared with other studies. We suggest the principal reason is short transport pathways which act to decrease deposition, due to the spatial heterogeneity of post-burn soil hydraulic properties. The association of total phosphorus with mineral material was slightly higher than with organic matter. The study suggests that using plot scale hillslope experiments to infer sediment and nutrient loss after wildfire would have overestimated losses by around 100%. 相似文献
12.
The Southern Pre-Pyrenees experienced a substantial land-use change over the second half of the 20th century owing to the reduction of agricultural activities towards the formation of a more natural forest landscape. The land-use change over the last 50 years with subsequent effects on water and sediment export was modelled with the process-based, spatially semi-distributed WASA-SED model for the meso-scale Canalda catchment in Catalonia, Spain. It was forwarded that the model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, although the model failed to reproduce the shape of the hydrograph and the total discharge of several individual rainstorm events, hence the simulation capabilities are not yet considered sufficient for decision-making purposes for land management. As there are only a very limited amount of measured data available on sediment budgets with altered land-use and climate change settings, the WASA-SED model was used to obtain qualitative estimates on the effects of past and future change scenarios to derive a baseline for hypothesis building and future discussion on the evolution of sediment budgets in such a dryland setting. Simulating the effects of the past land-use change, the model scenarios resulted in a decrease of up to 75% of the annual sediment yield, whereas modelled runoff remained almost constant over the last 50 years. The relative importance of environmental change was evaluated by comparing the impact on sediment export of land-use change, that are driven by socio-economic factors, with climate change projections for changes in the rainfall regime. The modelling results suggest that a 20% decrease in annual rainfall results in a decrease in runoff and sediment yield, thus an ecosystem stabilisation in regard to sediment export, which can only be achieved by a substantial land-use change equivalent to a complete afforestation. At the same time, a 20% increase in rainfall causes a large export of water and sediment resources out of the catchment, equivalent to an intensive agricultural use of 100% of the catchment area. For wet years, the effects of agricultural intensification are more pronounced, so that in this case the intensive land-use change has a significantly larger impact on sediment generation than climate change. The WASA-SED model proved capable in quantifying the impacts of actual and potential environmental change, but the reliability of the simulation results is still circumscribed by considerable parameterisation and model uncertainties. 相似文献
13.
Preliminary modelling of sediment production and delivery in the Xihanshui River basin, Gansu, China
This paper outlines an analysis of the spatial distribution of sediment production, delivery and yield in the Xihanshui River basin, South Gansu, China, using the modelling tools of SedNet (Prosser et al., 2001). This model can assess the delivery efficiency to downstream locations, as well as identifying locations with high rates of sediment production. Preliminary model experiments assist understanding of the spatial dynamics of these sediment processes and evaluation of the effectiveness of soil conservation practices since the mid-1980s. Three scenario years (dry, average and wet) from the 1983–2005 record are identified and modelled, and land use and management are represented in the model to reflect known changes since the 1980s. Results show hillslope erosion to be a dominant source of sediment supply, causing the latter to decrease ten-fold between 1984 and 1997/2000. Estimated bank erosion and floodplain deposition rates are sensitive to parameter values, but bank erosion appears less sensitive than hillslope supply to rainfall. The model can be used to assess net changes in floodplain storage; for default parameters, floodplain deposition rates are 25–200 times the rates of bank erosion depending on the climate scenario. Comparing simulation results with measured sediment yields at the three gauging stations indicates encouraging agreement in 2000. In 1984 (the wet year), the model under-predicts, suggesting that additional unmodelled sediment production processes, especially mass movement and gully erosion, may be important in wet years. Mass movement inventory data could close the gap between the high yields measured in the wet scenario year and the estimated yield due to hillslope erosion alone. In 1997 (the dry year), the model over-predicts; this suggests that the land use change parameters required to reflect the effects of conservation may not have been sufficient, implying that conservation has been generally effective, and that evidence of declining sediment yield is not simply a reflection of drier conditions. 相似文献
14.
Gully erosion modelling and landscape response in the Mbuluzi River catchment of Swaziland 总被引:2,自引:0,他引:2
In southern African countries soil erosion and the related problems, such as water quality issues or decreasing soil productivity, are the main topics affecting the inhabitants of both rural and urban areas. Therefore, the attention has been recently placed on those problems related to soil erosion. This can also be documented by an increasing number of studies carried out on erosion and by the development and application of erosion models. Nevertheless, gully erosion phenomena have been widely neglected in erosion modelling. This is because the development of erosion models was focused on those regions with an intense agriculture typical of developed countries on the one hand, and because of the spatial and temporal heterogeneity of gully erosion processes on the other hand. This study regards the identification of gully erosion forms and processes in the Mbuluzi River catchment (Kingdom of Swaziland) by using the Erosion Response Units (ERU) concept. The following modelling of gully erosion was done through the stable gully model [Catena 37 (1999) 401]. The input data were obtained through the application of remote sensing techniques (API method) and GIS-analyses. The example from Swaziland shows that the applied methods are able to identify areas affected by gully erosion. Furthermore, it is possible to estimate the amount of soil loss due to gully erosion, which, for example, is not taken into consideration by the USLE-type models. 相似文献
15.
基于小流域尺度的黔北喀斯特地区产流产沙特征 总被引:4,自引:3,他引:4
目前,中国西南喀斯特地区流域尺度产流产沙长期定位观测试验报道较少,且其相关机制的探讨不足。该文基于小流域尺度,分析典型喀斯特小流域产流产沙特征,定性、定量探讨喀斯特小流域产流产沙的主要影响因子。选取位于贵州北部的典型喀斯特小流域—遵义浒洋水小流域为研究区,采用小流域控制站定位观测法,在4年连续观测的基础上,分析浒洋水小流域月际、年际产流产沙特征,并重点分析了降雨对小流域产流产沙的影响。结果表明:受喀斯特地区特殊的"二元"侵蚀环境等因素影响,浒洋水小流域产流、产沙高峰不同期,产流高峰出现在10月,多年月均值为63.9万m3,而产沙高峰为6月,116.21t。显著性检验则表明,浒洋水小流域月际产流无显著差异(P0.05),但6月产沙则显著高于1、2、3及12月(P0.05),其他月份间产沙无显著差异(P0.05);受年度降雨的影响,2010-2013年,无论是产流还是产沙,2013年均显著高于其他年份(P0.05)。研究期间,小流域多年平均输沙模数为215.32 t/(km2·a),这一结果与贵州省公布的贵州喀斯特区土壤侵蚀模数279.47t/(km2·a)接近;该小流域降雨对产流产沙影响显著,降雨强度(I60)同产流产沙在0.05水平上显著相关,而降雨量同产流产沙则在0.01水平上显著相关。结果可为喀斯特地区的水土流失治理提供参考。 相似文献
16.
In this paper we use a combination of fallout nuclides and geochemistry to determine the contributions of sediment and sediment bound phosphorus (sed-P) from the major diffuse sources in the Bundella Creek catchment (8700 ha), NSW, Australia. Sources include surface erosion from cultivated, pasture and steep forested land as well as subsoil erosion from channels and gullies. We determine these contributions to the <10 μm fraction of deposited sediments. Concentrations of P were higher in the surface soils of each landuse than the underlying subsoils, and erosion from these contributed more to offsite sediment-P (60%) than did subsoil erosion at the individual landuse scale. At the catchment outlet, the amount of surface sediment eroded from cultivated lands was a factor of 84 higher than from pastures; the steep forested lands contributed 9 times more than pastures. Sed-P eroded from cultivated land was 42 times higher than from pasturelands; the forests were 8 times greater than from pastures. At the catchment outlet the largest contribution of sediment (70%) and sed-P (62%) was from subsoil erosion of gullies and channels within and between the different landuse areas. There was little contribution of sediment or sed-P at the catchment scale from surface erosion of pastures. Concentrations of P were highest in ‘storm event’ suspended sediment samples taken from the pasture and cultivated areas without gullies. In a suite of samples selected for their high P contents, fertiliser P was detected in two storm event suspended sediment samples and one deposited sediment sample, using the ratio of Nd/P. This suggests fertiliser P may be transported-off landsurfaces with sediments and contribute to offsite sediment-P concentrations in some situations. However, the fertiliser contributions were episodic and variable; and probably influenced by particle size selectivity as well as timing of fertiliser application with respect to size and occurrence of subsequent rainfall. 相似文献
17.
《Soil Use and Management》2018,34(3):388-403
Increased soil erosion, pressure on agricultural land, and climate change highlight the need for new management methods to mitigate soil loss. Management strategies should utilize comparable data sets of long‐term soil erosion monitoring across multiple environments. Adaptive soil erosion management in regions with intense precipitation requires an understanding of inter‐annual variability in sediment yield (SY ) at regional scales. Here, a novel approach is proposed for analysing regional SY . We aimed to (i) investigate factors controlling inter‐ and intra‐annual SY , (ii) combine seasonality and time compression analyses to explore SY variability and (iii) discuss management implications for different Mediterranean environments. Continuous SY measurements totalling 104 years for eight small catchments were used to describe SY variability, which ranged from 0 to 271 t/ha/year and 0 to 116 t/ha/month. Maximum SY occurs in spring to summer for catchments with oceanic climates, while semi‐arid or dry summer climates experience SY minimums. We identified three time compression patterns at each time scale. Time compression was most intense for catchments with minimum SY in spring to summer. Low time compression was linked to very high soil loss, low run‐off and sediment production thresholds, and high connectivity. Reforestation, grassland and terracing changed SY magnitudes and time compression, but failed to reduce SY for large storm events. Periods with a high probability of high SY were identified using a combination of intra‐annual SY variability, seasonality analysis, and time compression analysis. Focusing management practices on monthly flow events, which account for the majority of SY , will optimise returns in Mediterranean catchments. 相似文献
18.
Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment 总被引:4,自引:0,他引:4
This paper presents two new definitions of sediment and water flux connectivity (from source through slopes to channels/sinks) with examples of applications to sediment fluxes. The two indices of connectivity are operatively defined, one (IC) that can be calculated in a GIS environment and represents a connectivity assessment based on landscape's information, and another that can be evaluated in the field (FIC) through direct assessment. While IC represent a potential connectivity characteristic of the local landscape, since nothing is used to represent the characteristics of causative events, FIC depend on the intensities of the events that have occurred locally and that have left visible signs in the fields, slopes, etc.IC and FIC are based on recognized major components of hydrological connectivity, such as land use and topographic characteristics. The definitions are based on the fact that the material present at a certain location A reaches another location B with a probability that depends on two components: the amount of material present in A and the route from A to B. The distance to B is weighted by the local gradient and the type of land use that the flow encounters on its route to B, while the amount of material present in A depends on the catchment surface, slope gradient and type of land use of said catchment.Although IC and FIC are independent from each other, and are calculated using different equations and different inputs, they complement each other. In fact, their combined use improves IC's accuracy. Hence, connectivity classes can afterward be rated using IC alone.This procedure has been applied in a medium-size watershed in Tuscany (Italy) with the aim of evaluating connectivity, identifying connected sediment sources and verifying the effects of mitigation measures.The proposed indices can be used for monitoring changes in connectivity in areas with high geomorphological or human induced evolution rates. 相似文献
19.
Sediment transport from agricultural land into rivers and reservoirs is a problem within the Czech Republic. This problem was highly accelerated almost 50 years ago during the communist period. At that time strong collectivization was undertaken leading to destruction of traditional landscape patterns, surface outflow, erosion processes intensification and surface water quality deterioration. Thirteen years after political changes erosion problems remain.At the Department of Irrigation, Drainage and Landscape Engineering at the CTU Prague there has been continuous research undertaken in the field of erosion and sediment transport assessment. There are several modelling tools available for this purpose. One of them—USLE (Universal Soil Loss Equation) is commonly used in the Czech Republic for many years at a plot-scale but modern GIS (geographical information systems) tools in computer science allow using it at larger scales. Very important is the validation of this model for two-dimensional topography and GIS routines. Moreover USLE produces only local erosion amount values and has to be completed by another tool to get sediment amounts. For this purpose SDR (sediment delivery ratio) is usually used, applying a lumped approach—total erosion of every watershed is reduced by SDR and by pond’s trapping efficiency. Another available approach is using the Watem/SEDEM model that puts together RUSLE (Revised USLE) and a distributive approach to sediment transport modelling. This has already been used for estimating sediment amount in several catchments of the Czech Republic, but has to be validated as well.At the Dept. of Drainage, Irrigation and Landscape Engineering there are datasets of sediment amount from different reservoirs available and other reservoirs are to be measured soon. As the dataset of various watersheds is expanded, a methodology for sediment amount measurements is needed. The main objective of this paper is to propose a simple methodology to measure the sediment amount within reservoirs as well as to present a review of available methods. The application of the methodology at Vrchlice Catchments (97 km2) case study is presented. Total sediment amounts between 125 000140 000 m3 were measured in Vrchlice reservoir and values of 110 976 m3 (using USLE), resp. 105833 m3 (using Watem/SEDEM) were predicted by the erosion models. For catchments of this scale it is a sufficient validation. 相似文献
20.
A pragmatic approach to modelling soil and water conservation measures with a catchment scale erosion model 总被引:1,自引:0,他引:1
To reduce soil erosion, soil and water conservation (SWC) methods are often used. However, no method exists to model beforehand how implementing such measures will affect erosion at catchment scale. A method was developed to simulate the effects of SWC measures with catchment scale erosion models. The method was implemented by applying the LISEM model to an agricultural catchment on the slopes of Mt. Kenya. The method consisted of a field scale calibration based on P-factors, followed by application at catchment scale. This calibration included factors such as saturated conductivity, Manning's n, roughness and slope angle. It was found that using data on P-factors, such models can be calibrated to give acceptable predictions at pixel scale. However, P-factors were also found to vary with land use type and storm size. Besides, more data on the physical effectiveness of SWC measures are needed. At catchment scale, the effect of SWC was found to be different from that at pixel scale. Most SWC were simulated to be more effective at catchment scale, indicating additional infiltration during transport through the catchment to the outlet. However, slope corrections in case of terraces were found to be less effective at this scale. Nevertheless, a simulation for current land use with current SWC measures indicated that these SWC measures decrease runoff by 28% and erosion by 60%. 相似文献