首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
Habitat fragmentation is considered one of the major conservation issues of recent decades. We tested predictions of landscape patterns in a 352,253-ha managed forest area in southeast British Columbia. We did this by focussing on forest fragmentation concerns among old-growth, harvest, and wildfire patches in 44 delineated landscapes using patch indices as measures of landscape pattern. We found no significant association between amount of harvesting and 15 old-growth patch indices. Comparisons among patch types revealed that amounts and spatial patterns of harvest patches differed little from amounts and spatial patterns of old-growth patches in control landscapes. Variability indices revealed similar variability between harvest patches and old-growth patches, and more variability between harvest patches and wildfire patches. Little of the evidence gathered in this study supported predictions of fragmentation of old-growth spatial patterns, or predicted differences between harvest spatial patterns and more naturally occurring spatial patterns. We suggest these results could be due to the relatively small amounts of harvesting and old-growth forest in these landscapes, and therefore habitat amount may be a more important factor than spatial configuration of patches in these landscapes.  相似文献   

2.
How should we measure landscape connectivity?   总被引:9,自引:0,他引:9  
The methods for measuring landscape connectivity have never been compared or tested for their responses to habitat fragmentation. We simulated movement, mortality and boundary reactions across a wide range of landscape structures to analyze the response of landscape connectivity measures to habitat fragmentation. Landscape connectivity was measured as either dispersal success or search time, based on immigration into all habitat patches in the landscape. Both measures indicated higher connectivity in more fragmented landscapes, a potential for problematic conclusions for conservation plans. We introduce cell immigration as a new measure for landscape connectivity. Cell immigration is the rate of immigration into equal-sized habitat cells in the landscape. It includes both within- and between-patch movement, and shows a negative response to habitat fragmentation. This complies with intuition and existing theoretical work. This method for measuring connectivity is highly robust to reductions in sample size (i.e., number of habitat cells included in the estimate), and we hypothesize that it therefore should be amenable to use in empirical studies. The connectivity measures were weakly correlated to each other and are therefore generally not comparable. We also tested immigration into a single patch as an index of connectivity by comparing it to cell immigration over the landscape. This is essentially a comparison between patch-scale and landscape-scale measurement, and revealed some potential for patch immigration to predict connectivity at the landscape scale. However, this relationship depends on the size of the single patch, the dispersal characteristics of the species, and the amount of habitat in the landscape. We conclude that the response of connectivity measures to habitat fragmentation should be understood before deriving conclusions for conservation management.  相似文献   

3.
Land-use change is forcing many animal populations to inhabit forest patches in which different processes can threaten their survival. Some threatening processes are mainly related to forest patch characteristics, but others depend principally on the landscape spatial context. Thus, the impact of both patch and landscape spatial attributes needs to be assessed to have a better understanding of the habitat spatial attributes that constraint the maintenance of populations in fragmented landscapes. Here, we evaluated the relative effect of three patch-scale (i.e., patch size, shape, and isolation) and five landscape-scale metrics (i.e., forest cover, fragmentation, edge density, mean inter-patch isolation distance, and matrix permeability) on population composition and structure of black howler monkeys (Alouatta pigra) in the Lacandona rainforest, Mexico. We measured the landscape-scale metrics at two spatial scales: within 100 and 500 ha landscapes. Our findings revealed that howler monkeys were more strongly affected by local-scale metrics. Smaller and more isolated forest patches showed a lower number of individuals but at higher densities. Population density also tended to be positively associated to matrices with higher proportion of secondary forests and arboreal crops (i.e. with greater permeability), most probably because these matrices can offer supplementary foods. The immature-to-female ratio also increased with matrix permeability, shape complexity, and edge density; habitat characteristics that can increase landscape connectivity and sources availability. The prevention of habitat loss and isolation, and the increment of matrix permeability are therefore needed for the conservation of this endangered Neotropical mammal.  相似文献   

4.
Habitat fragmentation is expected to disrupt dispersal, and thus we explored how patch metrics of landscape structure, such as percolation thresholds used to define landscape connectivity, corresponded with dispersal success on neutral landscapes. We simulated dispersal as either a purely random process (random direction and random step lengths) or as an area-limited random walk (random direction, but movement limited to an adjacent cell at each dispersal step) and quantified dispersal success for 1000 individuals on random and fractal landscape maps across a range of habitat abundance and fragmentation. Dispersal success increased with the number of cells a disperser could search (m), but poor dispersers (m<5) searching via area-limited dispersal on fractal landscapes were more successful at locating suitable habitat than random dispersers on either random or fractal landscapes. Dispersal success was enhanced on fractal landscapes relative to random ones because of the greater spatial contagion of habitat. Dispersal success decreased proportionate to habitat loss for poor dispersers (m=1) on random landscapes, but exhibited an abrupt threshold at low levels of habitat abundance (p<0.1) for area-limited dispersers (m<10) on fractal landscapes. Conventional metrics of patch structure, including percolation, did not exhibit threshold behavior in the region of the dispersal threshold. A lacunarity analysis of the gap structure of landscape patterns, however, revealed a strong threshold in the variability of gap sizes at low levels of habitat abundance (p<0.1) in fractal landscapes, the same region in which abrupt declines in dispersal success were observed. The interpatch distances or gaps across which dispersers must move in search of suitable habitat should influence dispersal success, and our results suggest that there is a critical gap-size structure to fractal landscapes that interferes with the ability of dispersers to locate suitable habitat when habitat is rare. We suggest that the gap structure of landscapes is a more important determinant of dispersal than patch structure, although both are ultimately required to predict the ecological consequences of habitat fragmentation.  相似文献   

5.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

6.
Increasing land ownership fragmentation in the United States is causing concerns with respect to its ecological implications for forested landscapes. This is especially relevant given that human influence is one of the most significant driving forces affecting the forest landscape. A method for generating realistic land ownership maps is needed to evaluate the effects of ownership fragmentation on forest landscapes in combination with other natural processes captured in forest process models. Ownership patterns from human activities usually generate landscape boundary shapes different from those arising from natural processes. Spatial characteristics among ownership types – e.g., private, public ownership – may also differ. To address these issues, we developed the Fragmented Land Ownership Spatial Simulator (FLOSS) to generate ownership patterns that reflect the Public Land Survey System (PLSS) shapes and various patch size distributions among different types of ownership (e.g., private, public). To evaluate FLOSS performance, we compared the simulated patterns with various ownership fragmentation levels to the actual ownership patterns in the Missouri Ozarks by using selected landscape indices. FLOSS generated landscapes with spatial characteristics similar to actual landscapes, suggesting that it can simulate different levels of ownership fragmentation. This will allow FLOSS to serve as a feasible tool for evaluating forest management applications by spatially allocating various management scenarios in a realistic way. The potentials and limitations of FLOSS application are discussed.  相似文献   

7.
Acknowledgment that the matrix matters in conserving wildlife in human-modified landscapes is increasing. However, the complex interactions of habitat loss, habitat fragmentation, habitat condition and land use have confounded attempts to disentangle the relative importance of properties of the landscape mosaic, including the matrix. To this end, we controlled for the amount of remnant forest habitat and the level of fragmentation to examine mammal species richness in human-modified landscapes of varying levels of matrix development intensity and patch attributes. We postulated seven alternative models of various patch habitat, landscape and matrix influences on mammal species richness and then tested these models using generalized linear mixed-effects models within an information theoretic framework. Matrix attributes were the most important determinants of terrestrial mammal species richness; matrix development intensity had a strong negative effect and vegetation structural complexity of the matrix had a strong positive effect. Distance to the nearest remnant forest habitat was relatively unimportant. Matrix habitat attributes are potentially a more important indicator of isolation of remnant forest patches than measures of distance to the nearest patch. We conclude that a structurally complex matrix within a human-modified landscape can provide supplementary habitat resources and increase the probability of movement across the landscape, thereby increasing mammal species richness in modified landscapes.  相似文献   

8.
Studies on the distribution of mammalian carnivores in fragmented landscapes have focused mainly on structural aspects such as patch and landscape features; similarly, habitat connectivity is usually associated with landscape structure. The influence of food resources on carnivore patch use and the important effect on habitat connectivity have been overlooked. The aim of this study is to evaluate the relative importance of food resources on patch use patterns and to test if food availability can overcome structural constraints on patch use. We carried out a patch-use survey of two carnivores: the beech marten (Martes foina) and the badger (Meles meles) in a sample of 39 woodland patches in a fragmented landscape in central Italy. We used the logistic model to investigate the relative effects on carnivore distribution of patch, patch neighbourhood and landscape scale variables as well as the relative abundance of food resources. Our results show how carnivore movements in fragmented landscapes are determined not only by patch/landscape structure but also by the relative abundance of food resources. The important take-home message of our research is that, within certain structural limits (e.g. within certain limits of patch isolation), by modifying the relative amount of resources and their distribution, it is possible to increase suitability in smaller/relatively isolated patches. Conversely, however, there are certain thresholds above which an increase in resources will not achieve high probability of presence. Our findings have important and generalizable consequences for highly fragmented landscapes in areas where it may not be possible to increase patch sizes and/or reduce isolation so, for instance, forest regimes that will increase resource availability could be implemented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The landscape matrix is suggested to influence the effect of habitat fragmentation on species richness, but the generality of this prediction has not been tested. Here, we used data from 10 independent studies on butterfly species richness, where the matrix surrounding grassland patches was dominated by either forest or arable land to test if matrix land use influenced the response of species richness to patch area and connectivity. To account for the possibility that some of the observed species use the matrix as their main or complementary habitat, we analysed the effects on total species richness and on the richness of grassland specialist and non-specialist (generalists and specialists on other habitat types) butterflies separately. Specialists and non-specialists were defined separately for each dataset. Total species richness and the richness of grassland specialist butterflies were positively related to patch area and forest cover in the matrix, and negatively to patch isolation. The strength of the species-area relationship was modified by matrix land use and had a slope that decreased with increasing forest cover in the matrix. Potential mechanisms for the weaker effect of grassland fragmentation in forest-dominated landscapes are (1) that the forest matrix is more heterogeneous and contains more resources, (2) that small grassland patches in a matrix dominated by arable land suffer more from negative edge effects or (3) that the arable matrix constitutes a stronger barrier to dispersal between populations. Regardless of the mechanisms, our results show that there are general effects of matrix land use across landscapes and regions, and that landscape management that increases matrix quality can be a complement to habitat restoration and re-creation in fragmented landscapes.  相似文献   

10.
Landscape structural characteristics, such as patch size, edge length, and configuration, are altered markedly when management regimes are imposed on primeval landscapes. The ecological consequences of clearcutting patterns were explored by using a model of the dispersed patch or checkerboard system currently practiced on federal forest lands in the western United States. Thresholds in landscape structure were observed on a gradient of percentages of landscape cutover. Probability of disturbance,e.g., wildfire and windthrow, and biotic components,e.g., species diversity and game populations, are highly sensitive to these structural changes. Altering the spatial configuration and size of clearcuts provides an opportunity to create alternative landscapes that differ significantly in their ecological characteristics. Both ecosystem and heterogeneous landscape perspectives are critical in resource management.  相似文献   

11.
Landscape composition and configuration, often termed as habitat loss and fragmentation, are predicted to reduce species population viability, partly due to the restriction of movement in the landscape. Unfortunately, measuring the effects of habitat loss and fragmentation on functional connectivity is challenging because these variables are confounded, and often the motivation for movement by target species is unknown. Our objective was to determine the independent effects of landscape connectivity from the perspective of a mature forest specialist—the northern flying squirrel (Glaucomys sabrinus). To standardize movement motivation, we translocated 119 squirrels, at varying distances (0.18–3.8 km) from their home range across landscapes representing gradients in both habitat loss and fragmentation. We measured the physical connectedness of mature forest using an index of connectivity (landscape coincidence probability). Patches were considered connected if they were within the mean gliding distance of a flying squirrel. Homing success increased in landscapes with a higher connectivity index. However, homing time was not strongly predicted by habitat amount, connectivity index, or mean nearest neighbour and was best explained as a simple function of sex and distance translocated. Our study shows support for the independent effects of landscape configuration on animal movement at a spatial scale that encompasses several home ranges. We conclude that connectivity of mature forest should be considered for the conservation of some mature forest specialists, even in forest mosaics where the distinction between habitat and movement corridors are less distinct.  相似文献   

12.
Woody invasive plants are an increasing component of the New England flora. Their success and geographic spread are mediated in part by landscape characteristics. We tested whether woody invasive plant richness was higher in landscapes with many forest edges relative to other forest types and explained land use/land cover and forest fragmentation patterns using socioeconomic and physical variables. Our models demonstrated that woody invasive plant richness was higher in landscapes with more edge forest relative to patch, perforated, and especially core forest types. Using spatially-explicit, hierarchical Bayesian, compositional data models we showed that infrastructure and physical factors, including road length and elevation range, and time-lagged socioeconomic factors, primarily population, help to explain development and forest fragmentation patterns. Our social–ecological approach identified landscape patterns driven by human development and linked them to increased woody plant invasions. Identifying these landscape patterns will aid ongoing efforts to use current distribution patterns to better predict where invasive species may occur in unsampled regions under current and future conditions.  相似文献   

13.
14.
In fragmented landscapes, the likelihood that a species occupies a particular habitat patch is thought to be a function of both patch area and patch isolation. Ecologically scaled landscape indices (ESLIs) combine a species’ ecological profile, i.e., area requirements and dispersal ability, with indices of patch area and connectivity. Since their introduction, ESLIs for area have been modified to incorporate patch quality. ESLIs for connectivity have been modified to incorporate niche breadth, which may influence a species’ ease in crossing the non-habitat matrix between patches. We evaluated the ability of 4 ESLIs, the original and modified indices of area and connectivity, to explain patterns in patch occupancy of 5 forest rodents. Occupancy of eastern gray squirrels (Sciurus carolinensis), North American red squirrels (Tamiasciurus hudsconicus), fox squirrels (Sciurus niger), white-footed mice (Peromyscus leucopus), and eastern chipmunks (Tamias striatus) was modeled at 471 sites in 35 landscapes sampled from the upper Wabash River basin in Indiana. Models containing ESLIs received support for gray squirrels, red squirrels, and chipmunks. Modified ESLIs were important in models for red squirrels. However, none of the models demonstrated high predictive ability. Incorporating habitat quality and using surrogate measures of dispersal can have important effects on model results. Additionally, different responses of species to area, isolation, and habitat quality suggest that generalizing patterns of metapopulation dynamics was not justified, even across closely related species.  相似文献   

15.
Forest bird species exhibit noticeable seasonal behavioral changes that might lead to contrasting effects of landscape pattern upon species abundance and performance. We assessed if the effect of patch and habitat attributes on the landscape use of thorn-tailed rayaditos (Aphrastura spinicauda), a forest bird in a relict patchy forest in northern Chile, varied temporally in association with changes in the behavior of individuals linked to breeding vs. non-breeding conditions. We also assessed the relationship between nest success and patch and habitat attributes, as nest success might be associated to the density rayaditos during the breeding season. We found that density of rayaditos was affected by patch size and functional connectivity but not by habitat structure and that the magnitude of the effect of patch size was greater during the non-breeding season, thus supporting the existence of a temporally variable effect of landscape pattern. Similarly, the nest success of rayaditos was positively affected by functional connectivity and negatively by structural connectivity. We hypothesize that these results emerged from the interaction among territorial behavior, resource limitation and predation risk. Despite the variable intensity of the effect of patch size upon density, however, this landscape attribute, in addition to connectivity, is essential for the persistence of rayaditos at this relict patchy forest landscapes.  相似文献   

16.
Although many empirical and theoretical studies have elucidated the effects of habitat fragmentation on the third trophic level, little attention has been paid to the impacts of this driver on more generalist groups of non-hymenopteran parasitoids. Here, we used the highly-diverse group of tachinid flies as an alternative model to test the effects of landscape fragmentation on insect parasitoids. Our aims were: (i) to evaluate the relative importance of habitat area and connectivity losses and their potential interaction on tachinid diversity, (ii) to test whether the effects of habitat fragmentation changes seasonally, and (iii) to further assess the effect of habitat diversity on tachinid diversity and whether different parasitoid-host associations modify the species richness response to fragmentation. In 2012 a pan-trap sampling was conducted in 18 semi-natural grasslands embedded in intensive agricultural landscapes along statistically orthogonal gradients of habitat area, connectivity and habitat diversity. We found an interaction between habitat area and connectivity indicating that tachinid abundance and species richness were more negatively affected by habitat loss in landscapes with low rather than with relatively large habitat connectivity. Although tachinid communities exhibited large within-year species turnover, we found that the effects of landscape fragmentation did not change seasonally. We found that habitat diversity and host association did not affect tachinid species diversity. Our results have important implications for biodiversity conservation as any attempts to mitigate the negative effects of habitat loss need to take the general level of habitat connectivity in the landscape into account.  相似文献   

17.
We examined the effects of matrix structure and movement responses of organisms on the relationships between 7 patch isolation metrics and patch immigration. Our analysis was based on simulating movement behaviour of two generic disperser types (specialist and generalist) across mosaic landscapes containing three landcover types: habitat, hospitable matrix and inhospitable matrix. Movement, mortality and boundary crossing probabilities of simulated individuals were linked to the landcover and boundary types in the landscapes. The results indicated that area-based isolation metrics generally predict patch immigration more reliably than distance-based isolation metrics. Relationships between patch isolation metrics and patch immigration varied between the two generic disperser types and were affected by matrix composition or matrix fragmentation. Patch immigration was always affected by matrix composition but not by matrix fragmentation. Our results do not encourage the generic use of patch isolation metrics as a substitute for patch immigration, in particular in metapopulation models where generic use may result in wrong projections of the survival probability of metapopulations. However, our examination of the factors affecting the predictive potential of patch isolation metrics should facilitate interpretation and comparison of existing patch isolation studies. Future patch isolation studies should include information about landscape structure and the dispersal distance and dispersal behaviour of the organism of interest.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

18.

Context

The application of regional-level airborne lidar (light detection and ranging) data to characterize habitat patches and model habitat connectivity over large landscapes has not been well explored. Maintaining a connected network of habitat in the presence of anthropogenic disturbances is essential for regional-level conservation planning and the maintenance of biodiversity values.

Objectives

We quantified variation in connectivity following simulated changes in land cover and contrasted outcomes when different conservation priorities were emphasized.

Methods

First, we defined habitat patches using vegetation structural attributes identified via lidar. Second, habitat networks were constructed for different forest types and assessed using network connectivity metrics. And finally, land cover change scenarios were simulated using a series of habitat patch removals, representing the impact of implementing different spatial prioritization schemes.

Results

Networks for different forest structure types produced very different patch distributions. Conservation scenarios based on different schemes led to contrasting changes during land cover change simulations: the scheme prioritizing only habitat area resulted in immediate near-term losses in connectivity, whereas the scheme considering both habitat area and their spatial configurations maintained the overall connectivity most effectively. Adding climate constraints did not diminish or improve overall connectivity.

Conclusions

Both habitat area and habitat configuration should be considered in dynamic modeling of habitat connectivity under changing landscapes. This research provides a framework for integrating forest structure and cover attributes obtained from remote sensing data into network connectivity modeling, and may serve as a prototype for multi-criteria forest management and conservation planning.
  相似文献   

19.
We evaluated changes in the Atlantic Forest landscape over the last 40 years based on changes in boundaries and mosaics, including the hypothetical landscape resulting from the application of Brazilian laws for forest protection. Mosaics were identified as sets of land-use patches with a similar pattern of boundaries. Landscapes of different years, therefore, can be distinguished by differences in mosaics. We developed a technique to identify boundaries between patches from land-use maps using ArcGis® and to build the patch x boundary matrix required for mosaic identification by means of a factorial and cluster analysis. The mosaics were characterized by some key uses as well as by their boundaries with other land uses. The mosaics were scored for forest conservation according to five issues: landscape permeability, cover, availability, quality, and fragmentation of forest. The values were based on land use and boundary patterns. Although Brazilian laws regarding forest protection have promoted conservation and the hypothetical legal landscape has presented the highest forest habitat availability, this expansion perpetuates a boundary pattern that complicates conservation and management, thus increasing the pressure on forest patches and favoring the further fragmentation of protected forest patches. These conclusions cannot be reached by simply recording changes in land uses.  相似文献   

20.
Habitat loss and fragmentation of natural and semi-natural habitats are considered as major threats to plant species richness. Recently several studies have pinpointed the need to analyse past landscape patterns to understand effects of fragmentation, as the response to landscape change may be slow in many organisms, plants in particular. We compared species richness in continuously grazed and abandoned grasslands in different commonplace rural landscapes in Sweden, and analysed effects of isolation and area in three time-steps (100 and 50 years ago and today). Old cadastral maps and aerial photographs were used to analyse past and present landscape patterns in 25 sites. Two plant diversity measures were investigated; total species richness and species density. During the last 100 years grassland area and connectivity have been reduced by about 90%. Present-day habitat area was positively related to total species richness in both habitats. There was also a relationship to habitat area 50 years ago for continuously grazed grasslands. Only present management was related to species density: continuously grazed grasslands had the highest species density. There were no relationships between grassland connectivity, present or past, and any diversity measure. We conclude that landscape history is not directly important for present-day plant diversity patterns in ordinary landscapes, although past grassland management is a prerequisite for the grassland habitats that can be found there today. It is important that studies are conducted, not only in very diverse landscapes, but also in managed landscapes in order to assess the effects of fragmentation on species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号