首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Since its detection in 1998, the exotic aphid pest, Essigella californica Essig (Hemiptera: Aphididae) has caused extensive defoliation in commercial Pinus radiata plantations throughout Australia. A total of one hundred and twenty plots encompassing thirty tree ages, and three thinning treatments were established in September 2006 in southern New South Wales, Australia to assess crown health and tree growth. Assessments were carried out annually during 2006-2009 to quantify the relationship between natural aphid-induced defoliation and growth loss at the individual tree level. Over the course of the four years, particularly in 2006, trees were subjected to moisture stress, as indicated by average annual rainfalls that were below the long-term average. In general, the diameter growth of individual trees appeared unaffected by crown damage severity across most tree ages, indicating that the productivity in Green Hills was limited by the interactive effects of climatic and biotic stressors (both cause premature loss of foliage). Furthermore, the results from this four-year experiment demonstrated that both moisture stress and aphid-induced defoliation constrained the growth response to thinning. However, thinning may have assisted damaged trees to maintain growth rates similar to trees with little or no damage. Understanding the impact of disturbances such as insect pest outbreaks on growth yield models is critical for optimal modelling of long-term plantation growth and management. Our results highlight the difficulty in quantifying the effect of aphid-induced defoliation when combined with chronic moisture stress.  相似文献   

2.
Plant responses to defoliation are complex. We established a field experiment in a nine-month-old Eucalyptus globulus Labill. plantation to examine the effects of pattern (upper crown versus lower crown removal), frequency (single, double or triple defoliation within a 12-month period) and severity (25 versus 38% of leaf area removed) of defoliation and the effect of soil nitrogen (N) on photosynthetic processes and stem growth. The photosynthetic responses observed following defoliation could be attributed to changes in source:sink ratios. Light-saturated CO(2) uptake (A(max)) increased with increasing severity and frequency of defoliation irrespective of defoliation pattern. Seedlings defoliated in autumn did not exhibit increases in A(max) until the following spring, whereas there was no such delay in photosynthetic responses associated with spring defoliation. Application of N before defoliation allowed trees to compensate for the effect of defoliation on stem diameter growth, which could not be explained simply in terms of increases in A(max). The observed increases in stem diameter increment following N fertilization of defoliated trees suggested increases in leaf area development, and there were changes in the leaf area:leaf dry mass ratio that may have increased light absorption by the crown. Nitrogen fertilization also increased partitioning of dry mass to branches at the expense of main stems, suggesting that N supply was important in rebuilding crowns following a defoliation event.  相似文献   

3.
In 1996, the pine looper (Bupalus piniaria) (L.) defoliated 7000 ha of Scots pine (Pinus sylvestris L.) forest at Hökensås, in southern Sweden. To study tree mortality, foliage recovery and top-kill, plots were laid out in stands with varying levels of defoliation in autumn 1997. Tree mortality peaked 2 yrs after defoliation, and amounted to 25% in stands suffering from 90–100% defoliation. Suppressed trees suffered higher mortality than intermediate and dominant trees. In stands suffering <90% defoliation, tree mortality did not exceed 8%. Foliage recovery in moderately and severely defoliated stands was not complete at the end of the 4 yr study period, whereas slightly defoliated stands had regained full foliage in 1998. Top-kill was most frequent in severely defoliated stands, and 50% of all trees in these stands suffered from top-kill at the end of the study period in spring 2001.  相似文献   

4.

Tree mortality and growth losses following insect defoliation are poorly documented in Scandinavia. In 1990-1991, Diprion pini (L.) caused extensive defoliation to Scots pine in Lauhanvuori national park and surrounding areas in south-western Finland. Most trees lost all their foliage in 1990. In 1991, the outbreak area was sprayed with diflubenzuron (Dimilin®), except in the national park, where trees were severely defoliated again. No further defoliation occurred in 1992. In spring 1993, sprayed trees had ca 30% foliage, whereas unsprayed trees on average carried less than 10% of full foliage. The latter trees were susceptible to attack by Tomicus piniperda (L.), whereas the former largely escaped beetle attack. Beetle attacks peaked in 1993, and depletion of suitable host trees probably terminated the beetle outbreak in the area. Two years of severe defoliation resulted in substantial tree mortality and growth losses. In spring 1997, these unsprayed stands had suffered a ca. 50% loss in basal area which was mainly because of mortality, and about half of the dead trees had been attacked by T. piniperda. Surviving trees had ca 50% of full foliage, and radial growth had still not recovered. Basal area growth was reduced by 40-70%, depending on the amount of foliage left after the second year of defoliation. In contrast, tree mortality and beetle attack in the sprayed stands were negligible, and these trees had recovered full foliage and radial growth by spring 1997. Thus, one year of total defoliation resulted in an estimated loss in basal area growth of approximately 30% during ca. 5 yrs. In conclusion, the spraying operation was economically justified, as it prevented substantial tree mortality and reduced growth losses.  相似文献   

5.
Siebold's beech (Fagus crenata) was manually defoliated for two successive years. The beech caterpillar (Quadricalcarifera punctatella) was used in a bioassay to determine insect performance. Survival and body size were low on foliage from defoliated trees. Reduced foliar nitrogen and increased tannin content were probably the main causes of the low insect performance. Leaves were less tough on defoliated trees than in controls. Two sucessive years of manual defoliation caused stronger induced resistance than one year defoliation. The quality, as well as the quality of the foliage, decreased the year following manual defoliation; total weight of leaves on a tree was less than one half of that before treatment. Severe defoliation may cause a decrease of leaves the following year and starvation may limit populations. Delayed induced resistance of beech trees is proposed as a possible cause of the cyclical population dynamics ofQ. punctatella. The delayed induced response also affected folivorous insects other thanQ. punctatella.  相似文献   

6.
In 1989, the first recorded outbreak of hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) occurred in New Brunswick, Canada. Data were collected from ten plots established in an area infested from 1992–1994, to assess impacts of hemlock looper. Ocular and branch sample assessments of current defoliation and ocular assessments of total defoliation (all age classes of foliage) were conducted for balsam fir (Abies balsamea [L.] Mill.), white spruce (Picea glauca [Moench] Voss), and black spruce (Picea mariana (Mill.) B.S.P.). Stand response was assessed and related to cumulative defoliation. Ocular assessments were found to accurately estimate defoliation, which was significantly related to tree mortality. Ninety-two percent of balsam fir trees that had cumulative defoliation >90% died. Mortality of balsam fir was significantly (p < 0.05) related to tree size, in both lightly and severely defoliated plots; trees with DBH <11 cm sustained 22–48% higher mortality than larger trees. Mortality of balsam fir, in terms of both percent stems/ha and m3/ha merchantable volume, increased exponentially in relation to three estimates of cumulative (summed) plot mean defoliation. The strongest relationships (r2 = 0.75–0.79) were between mortality and the ocular defoliation assessment for 1990–1993 foliage. Tree mortality caused by the looper outbreak ranged from 4–14% stems/ha in lightly defoliated and from 32–100% in severely defoliated plots; merchantable volume killed was 3–14 m3/ha and 51–119 m3/ha, respectively. Relationships between mortality and defoliation were similar when defoliation was assessed for 1987–1993 and 1990–1993 foliage age classes.  相似文献   

7.
We examined the effects of fertilization and gypsy moth defoliation on condensed tannin concentration (%CT) of hybrid poplar (Populus x canadensis cv 'Eugeneii') fine roots in the summers of 1997 and 1998. This factorial experiment included two defoliation treatments (defoliated and a foliated control) and fertilization treatments (100 kg nitrogen (N) ha(-1) and an unfertilized control). Gypsy moth (Lymantria dispar L.) populations were experimentally increased to obtain defoliation in the summers of 1996, 1997 and 1998; fertilization subplots were supplemented with NH4NO3 (100 kg N ha(-1)) in the spring of each year. Despite the severity of defoliation, the effects were small, and significant on only two sampling dates: in May 1997, when fine root %CT was 23% lower in the defoliated trees, and in November 1997, when trees in the defoliated unfertilized plots had 35% higher root %CT than trees in all other plots. Defoliation effects on root %CT did not follow the same seasonal pattern as defoliation effects on root starch content, N uptake capacity or leaf %CT. Regulation of root condensed tannin concentration appeared to be partially uncoupled from these traits. The small transient effects on root defense reflect the resilience of this early successional tree to severe early season defoliation.  相似文献   

8.
Han Q 《Tree physiology》2011,31(9):976-984
Hydraulic limitations associated with increasing tree height result in reduced foliar stomatal conductance (g(s)) and light-saturated photosynthesis (A(max)). However, it is unclear whether the decline in A(max) is attributable to height-related modifications in foliar nitrogen concentration (N), to mesophyll conductance (g(m)) or to biochemical capacity for photosynthesis (maximum rate of carboxylation, V(cmax)). Simultaneous measurements of gas exchange and chlorophyll fluorescence were made to determine g(m) and V(cmax) in four height classes of Pinus densiflora Sieb. & Zucc. trees. As the average height of growing trees increased from 3.1 to 13.7 m, g(m) decreased from 0.250 to 0.107 mol m(-2) s(-1), and the CO(2) concentration from the intercellular space (C(i)) to the site of carboxylation (C(c)) decreased by an average of 74 μmol mol(-1). Furthermore, V(cmax) estimated from C(c) increased from 68.4 to 112.0 μmol m(-2) s(-1) with the increase in height, but did not change when it was calculated based on C(i). In contrast, A(max) decreased from 14.17 to 10.73 μmol m(-2) s(-1). Leaf dry mass per unit area (LMA) increased significantly with tree height as well as N on both a dry mass and an area basis. All of these parameters were significantly correlated with tree height. In addition, g(m) was closely correlated with LMA and g(s), indicating that increased diffusive resistance for CO(2) may be the inevitable consequence of morphological adaptation. Foliar N per unit area was positively correlated with V(cmax) based on C(c) but negatively with A(max), suggesting that enhancement of photosynthetic capacity is achieved by allocating more N to foliage in order to minimize the declines in A(max). Increases in the N cost associated with carbon gain because of the limited water available to taller trees lead to a trade-off between water use efficiency and photosynthetic nitrogen use efficiency. In conclusion, the height-related decrease in photosynthetic performance appears to result mainly from diffusive resistances rather than biochemical limitations.  相似文献   

9.
Increased climatic variability, including extended periods of drought stress, may compromise on the health of forest ecosystems. The effects of defoliating pests on plantations may also impact on forest productivity. Interactions between climate signals and pest activity are poorly understood. In this study, we examined the combined effects of reduced water availability and defoliation on maximum photosynthetic rate (A(sat)), stomatal conductance (g(s)), plant water status and growth of Eucalyptus globulus Labill. Field-grown plants were subjected to two water-availability regimes, rain-fed (W-) and irrigated (W+). In the summer of the second year of growth, leaves from 75% of crown length removed from trees in both watering treatments and physiological responses within the canopies were examined. We hypothesized that defoliation would result in improved plant water status providing a mechanistic insight into leaf- and canopy-scale gas-exchange responses. Defoliated trees in the W+ treatment exhibited higher A(sat) and g(s) compared with non-defoliated trees, but these responses were not observed in the W- treatment. In contrast, at the whole-plant scale, maximum rates of transpiration (E(max)) and canopy conductance (G(Cmax)) and soil-to-leaf hydraulic conductance (K(P)) increased in both treatments following defoliation. As a result, plant water status was unaffected by defoliation and trees in the defoliated treatments exhibited homeostasis in this respect. Whole-plant soil-to-leaf hydraulic conductance was strongly correlated with leaf scale g(s) and A(sat) following the defoliation, providing a mechanistic insight into compensatory up-regulation of photosynthesis. Above-ground height and diameter growth were unaffected by defoliation in both water availability treatments, suggesting that plants use a range of responses to compensate for the impacts of defoliation.  相似文献   

10.
Branches of nine-year-old loblolly pine trees grown in a 2 x 2 factorial combination of fertilization and irrigation were exposed for 11 months to ambient, ambient + 175, or ambient + 350 micro mol mol(-1) CO(2). Rates of light-saturated net photosynthesis (A(max)), maximum stomatal conductance to water vapor (g(max)), and foliar nitrogen concentration (% dry mass) were assessed monthly from April 1993 until September 1993 on 1992 foliage (one-year-old) and from July 1993 to March 1994 on 1993 foliage (current-year). Rates of A(max) of foliage in the ambient + 175 CO(2) treatment and ambient + 350 were 32-47 and 83-91% greater, respectively, than that of foliage in the ambient CO(2) treatment. There was a statistically significant interaction between CO(2) treatment and fertilization or irrigation treatment on A(max) on only one measurement date for each age class of foliage. Light-saturated stomatal conductance to water vapor (g(max)) was significantly affected by CO(2) treatment on only four measurement dates. Light-saturated g(max) in winter was only 42% of summer g(max) even though soil water during winter was near field capacity and evaporative demand was low. Fertilization increased foliar N concentration by 30% over the study period when averaged across CO(2) treatments. During the study period, the ambient + 350 CO(2) treatment decreased average foliar N concentration of one-year-old foliage in the control, irrigated, fertilized and irrigated + fertilized plots by 5, 6.4, 9.6 and 11%, respectively, compared with one-year-old foliage in the corresponding ambient CO(2) treatments. The percent increase in A(max) due to CO(2) enrichment was similar in all irrigation and fertilization treatments and the effect persisted throughout the 11-month study period for both one-year-old and current-year foliage.  相似文献   

11.
Effects of four N sources and two defoliation treatments on growth and nitrogenase activity of Gliricidia sepium (Jacq.) Walp seedlings were studied in a greenhouse. All nutrients were supplied in irrigation water to the sterile growing medium. The N sources were: (1) 100 mg l(-1) of N supplied as NO(3) (-) (high-NO(3) (-)), (2) 50 mg l(-1) of N supplied as NO(3) (-) and inoculation with Rhizobium spp. medium-NO(3) (-)), (3)100 mg l(-1) of N supplied as NH(4)NO(3), and (4) inoculation with Rhizobium spp without mineral N (N(2)). At 35 weeks after sowing, mean total biomass was 130.5, 50.5, 22.9 and 17.4 g seedling(-1) in the NH(4)NO(3), N(2), medium-NO(3) (-) and high-NO(3) (-) treatments, respectively. The root/shoot ratio was high in all of the N treatments (1.73-2.77) because the seedlings had big taproots. The medium-NO(3) (-) treatment completely inhibited nodulation, whereas seedlings in the N(2) treatment were profusely nodulated. At 32 weeks after sowing, groups of seedlings in the N(2) and high-NO(3) (-) treatments were subjected to 50 or 100% defoliation. Closed-chamber acetylene reduction assays of intact root systems were conducted to compare nitrogenase activity at 7, 14 and 28 days after defoliation (DAD). At 7 and 14 DAD, nitrogenase activity of completely and partially defoliated seedlings was about 10 and 60%, respectively, of that of undefoliated controls. At 28 DAD, nitrogenase activity of completely defoliated seedlings was twice the predefoliation value, whereas nitrogenase activity of partially defoliated seedlings was only 87% of the predefoliation value. Recovery of nitrogenase activity was strongly correlated with foliage regrowth in the completely defoliated seedlings, but not in the partially defoliated seedlings. Abundant belowground C and N reserves in the large taproot probably contributed to the rapid recovery from defoliation. Accumulation of belowground biomass may also improve defoliation tolerance of mature trees.  相似文献   

12.
Herbivory caused by leaf-eating insects continues to be a severe risk to forest trees and forest stands. Besides quantifying the extent of defoliation, the quantification of the trees’ response to the loss of biomass is a challenge to plant ecologists and foresters alike, and an important precondition for the application of appropriate silvicultural measures. While many defoliation studies target small trees as model systems, little is known about the effect of defoliation on larger trees. In the present study, we investigated the effects of 45% removal of leaf area on growth, biomass allocation and carbohydrates of 13 m tall, four-year-old, plantation Eucalyptus globulus Labill. in southern Tasmania. Responses were measured in three crown zones (lower, middle, upper) over a period of 11 months. Height increment was unaffected by defoliation, but diameter increment was significantly reduced 155 days after treatment. Defoliation treatment had no effect on stem volume and biomass partitioning compared with the control treatment. Trees responded to defoliation by decreased branch senescence in the lower crown, greater leaf area development in the mid crown and increased specific leaf area. Defoliation reduced concentration of soluble sugars (SS) in foliage by 22% and the pools of SS in the coarse roots by 34%. Decrease in root SS was only observed in 10-15 mm diameter class and the rootball. We concluded that this four-year-old E. globulus stands with a closed canopy was able to tolerate a single, partial artificial defoliation event, which is similarly observed with younger trees.  相似文献   

13.
Increased photosynthetic rates following partial defoliation may arise from changes in leaf biochemistry, water relations or nutrient status. Twelve-month-old field-grown Eucalyptus globulus Labill. seedlings were pruned from below to reduce the green crown depth by 50 (D50) or 70% (D70). Photosynthetic responses to light and CO2 concentration were examined before and one, three and five weeks after partial defoliation. One week after defoliation, photosynthetic rates were greater in seedlings in the D50 (21 micromol m(-2) s(-1)) and D70 (23 micromol m(-2) s(-1)) treatments than in control seedlings (15 micromol m(-2) s(-1)); however, there was little difference in photosynthetic rates between partially defoliated seedlings and control seedlings after 5 weeks. An analysis of the sensitivity of photosynthesis to biochemical parameters revealed that the transient increase in photosynthetic rate in response to partial defoliation was largely a function of the maximum rate of carboxylation (85-87%) and the maximum rate of RuBP regeneration (55-60%) rather than stomatal conductance (12-13%). Nitrogen increased in leaves following partial defoliation (increases of 0.6 and 1.2 g m(-2) for D50 and D70, respectively), but was accumulated in a non-photosynthetic form (i.e., there was no increase in nitrogen concentration of Rubisco or chlorophyll). Increased photosynthetic rates immediately following partial defoliation were primarily a result of increased activity rather than amount of photosynthetic machinery. There was no evidence that phosphorus was responsible for the increase in photosynthetic rates after partial defoliation.  相似文献   

14.
Liu S  Teskey RO 《Tree physiology》1995,15(6):351-359
Branches of field-grown mature loblolly pine (Pinus taeda L.) trees were exposed for 2 years (1992 and 1993) to ambient or elevated CO(2) concentrations (ambient + 165 micro mol mol(-1) or ambient + 330 micro mol mol(-1) CO(2)). Exposure to elevated CO(2) concentrations enhanced rates of net photosynthesis (P(n)) by 53-111% compared to P(n) of foliage exposed to ambient CO(2). At the same CO(2) measurement concentration, the ratio of intercellular to atmospheric CO(2) concentration (C(i)/C(a)) and stomatal conductance to water vapor did not differ among foliage grown in an ambient or enriched CO(2) concentration. Analysis of the relationship between P(n) and C(i) indicated no significant change in carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase during growth in elevated CO(2) concentrations. Based on estimates derived from P(n)/C(i) curves, there were no apparent treatment differences in dark respiration, CO(2) compensation point or P(n) at the mean C(i). In 1992, foliage in the three CO(2) treatments yielded similar estimates of CO(2)-saturated P(n) (P(max)), whereas in 1993, estimates of P(max) were higher for branches grown in elevated CO(2) than in ambient CO(2). We conclude that field-grown loblolly pine trees do not exhibit downward acclimation of leaf-level photosynthesis in their long-term response to elevated CO(2) concentrations.  相似文献   

15.
Extrapolation of the effects of ozone on seedlings to large trees and forest stands is a common objective of current assessment activities, but few studies have examined whether seedlings are useful surrogates for understanding how mature trees respond to ozone. This two-year study utilized a replicated open-top chamber facility to test the effects of subambient, ambient and twice ambient ozone concentrations on light-saturated net photosynthesis (P(max)) and leaf conductance (g(l)) of leaves from mature trees and genetically related seedlings of northern red oak (Quercus rubra L.). Gas exchange measurements were collected four times during the 1992 and 1993 growing seasons. Both P(max) and g(l) of all foliage followed normal seasonal patterns of ontogeny, but mature tree foliage had greater P(max) and g(l) than seedling foliage at physiological maturity. At the end of the growing season, P(max) and g(l) of the mature tree foliage exposed to ambient ( approximately 80-100 ppm-h) and twice ambient ( approximately 150-190 ppm-h) exposures of ozone were reduced 25 and 50%, respectively, compared with the values for foliage in the subambient ozone treatment ( approximately 35 ppm-h). In seedling leaves, P(max) and g(l) were less affected by ozone exposure than in mature leaves. Extrapolations of the results of seedling exposure studies to foliar responses of mature forests without considering differences in foliar anatomy and stomatal response between juvenile and mature foliage may introduce large errors into projections of the response of mature trees to ozone.  相似文献   

16.
Whitehead D  Gower ST 《Tree physiology》2001,21(12-13):925-929
Measurements of the photosynthetic response to midsummer irradiance were made for 11 species representing the dominant trees, understory shrubs, herbaceous plants and moss species in an old black spruce (Picea mariana (Mill.) B.S.P.) boreal forest ecosystem. Maximum rates of photosynthesis per unit foliage area at saturating irradiance, A(max), were highest for aspen (Populus tremuloides Michx.), reaching 16 micromol m(-2) s(-1). For tamarack (Larix laricina (Du Roi) K. Kock) and P. mariana, Amax was only 2.6 and 1.8 micromol m(-2) s(-1), respectively. Values of A(max) for understory shrubs and herbaceous plants were clustered between 9 and 11 micromol m(-2) s(-1), whereas A(max) of feather moss (Pleurozium schreberi (Brid.) Mitt.) reached only 1.9 micromol m(-2) s(-1). No corrections were made for differences in shoot structure, but values of photosynthetic light-use efficiency were similar for most species (70-80 mmol CO2 mol(-1)); however, they were much lower for L. laricina and P. mariana (15 mmol CO2 mol(-1)) and much higher for P. schreberi (102 m;mol CO2 mol(-1)). There was a linear relationship between Amax and foliage nitrogen concentration on an area basis for the broad-leaved species in the canopy and understory, but the data for P. mariana, L. laricina and P. schreberi fell well below this line. We conclude that it is not possible to scale photosynthesis from leaves to the canopy in this ecosystem based on a single relationship between photosynthetic rate and foliage nitrogen concentration.  相似文献   

17.
BRITTON  R. J. 《Forestry》1988,61(2):165-175
Field experiments involving naturally occurring population levelsof larval European pine sawfly Neodiprion sertifer (Geoff. )and artificial defoliation in both field and glasshouse experimentswere used to investigate physiological effects of defoliationon lodgepole pine. Reductions in total projected leaf area,annual height and volume increments of 19, 33 and 32 per cent,respectively, were recorded on trees where larvae had consumedall mature foliage. Leader growth was up to 48 per cent lesson defoliated trees after two years reflecting a delayed growthimpact. Similar effects were found on trees which had been defoliatedby hand in a manner resembling sawfly feeding. Artificial defoliationof transplants also showed that this type of damage can haveserious consequences on below-ground growth, particularly offine roots. Root:shoot ratios were found to be 0.64 in undamagedplants and 1. 05 in defoliated plants. A high concentration(1300 ppm) of the insecticide fenitrothion, used to maintaincontrol treatments in the field, was found to have no significanteffects on the major growth parameters being assessed.  相似文献   

18.
Plantations of Eucalyptus globulus in southwestern Australia are defoliated by Eucalyptus weevil, Gonipterus scutellatus, and a complex of chrysomelid and scarab beetles, yet there is no information on the impact of beetle defoliation to tree growth in southwestern Australia. To address this shortcoming, we used insect exclusion trials, to compare growth of insecticide treated (and thus relatively undamaged) trees with untreated (and thus defoliated) trees to determine whether defoliation by G. scutellatus and other beetles reduced the growth and harvest volume of E. globulus trees. Our results showed some evidence of beetle defoliation reducing growth of E. globulus. Mean defoliation levels of the growing tip of untreated trees ranged from 18% to 33% across the duration of the study and were significantly greater than mean defoliation levels of 5–16% on insecticide treated trees. Seasonal peaks in defoliation of 30–80% to the growing tip of untreated trees were recorded between late spring and early autumn. The greatest impact of defoliation on tree growth was evident during the 2.5 year period of insect exclusion, when higher relative growth rates were recorded for insecticide treated trees, which were significantly different from relative growth rates of untreated trees at two of the four plantations. However, our results showed only a limited impact of beetle defoliation on the total volume at harvest. Initially small trees tended to suffer more severe defoliation than initially large trees. Effects of insect exclusion treatment on harvest volume were modified by the initial tree size and the relationship between the initial tree size and levels of defoliation.  相似文献   

19.
Responses of photosynthesis (A) to intercellular CO(2) concentration (C(i)) were measured in a fast- and a slow-growing clone of Pinus radiata D. Don cultivated in a greenhouse with a factorial combination of nitrogen and phosphorus supply. Stomatal limitations scaled with nitrogen and phosphorus supply as a fixed proportion of the light-saturated photosynthetic rate (18.5%) independent of clone. Photosynthetic rates at ambient CO(2) concentration were mainly in the V(cmax)-limited portion of the CO(2) response curve at low-nitrogen supply and at the transition between V(cmax) and J(max) at high-nitrogen supply. Nutrient limitations to photosynthesis were partitioned based on the ratio of foliage nitrogen to phosphorus expressed on a leaf area basis (N(a)/P(a)), by minimizing the mean square error of segmented linear models relating photosynthetic parameters (V(cmax), J(max), T(p)) to foliar nitrogen and phosphorus concentrations. A value of N(a)/P(a) equal to 23 (mole basis) was identified as the threshold separating nitrogen (N(a)/P(a) < or = 23) from phosphorus (N(a)/P(a) > 23) limitations independent of clones. On an area basis, there were significant positive linear relationships between the parameters, V(cmax), J(max), T(p) and N(a) and P(a), but only the relationships between T(p) and N(a) and P(a) differed significantly between clones. These findings suggest that, in genotypes with contrasting growth, the responses of V(cmax) and J(max) to nutrient limitation are equivalent. The relationships between the parameters V(cmax), J(max), T(p) and foliage nutrient concentration on a mass basis were unaffected by clone, because the slow-growing clone had a significantly greater leaf area to mass ratio than the fast-growing clone. These results may be useful in discriminating nitrogen-limited photosynthesis from phosphorus-limited photosynthesis.  相似文献   

20.
Both hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) and balsam fir sawfly (Neodiprion abietis (Harris)) undergo periodic outbreaks in eastern Canada and cause significant growth and mortality losses to forests. Tree growth and mortality are closely related to cumulative defoliation estimates, which integrate annual defoliation over multiple years. Our objective was to determine a method to estimate cumulative defoliation of balsam fir (Abies balsamea [L.] Mill) due to these insects in western Newfoundland, using aerial defoliation survey data, as an essential input to modeling impacts for Decision Support Systems. Interpretation of aerial defoliation survey data for hemlock looper and balsam fir sawfly is problematic because both insects feed upon multiple age classes of foliage. Current-year (2008) aerial defoliation survey data were compared with ground estimates of defoliation by age class from 45 plots (450 trees and 395 mid-crown branch samples), representing a range of defoliation severity classes for each insect. Cumulative defoliation was calculated using defoliation per foliage age class, weighted by relative foliage mass for a given age of foliage. Three significantly different severity classes were defined based on cumulative defoliation values derived from aerial defoliation survey: (i) 1-year moderate (30–70%) defoliation, (ii) 1-year severe (71–100%) defoliation with calculated cumulative defoliation values of 19 and 39%, respectively, for balsam fir sawfly, 21 and 34% respectively for hemlock looper; and (iii) 2–3 years of moderate–severe defoliation, with cumulative defoliation ranging between 59 and 64% for balsam fir sawfly and 49% for hemlock looper. Defoliation severity from aerial defoliation survey alone hence can be misleading if defoliation measurements are not converted to cumulative defoliation values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号