首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autotrophic picoplankton dominate primary production over large oceanic regions but are believed to contribute relatively little to carbon export from surface layers. Using analyses of data from the equatorial Pacific Ocean and Arabian Sea, we show that the relative direct and indirect contribution of picoplankton to export is proportional to their total net primary production, despite their small size. We suggest that all primary producers, not just the large cells, can contribute to export from the surface layer of the ocean at rates proportional to their production rates.  相似文献   

2.
The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.  相似文献   

3.
Boyd PW  Mackie D 《Science (New York, N.Y.)》2008,319(5860):159; author reply 159
Cassar et al. (Reports, 24 August 2007, p. 1067) proposed that aerosol-iron input enhances Southern Ocean export production. Their conclusion critically depends upon aerosol-iron modeling simulations not validated with iron-deposition data and dust dissolution rates based on Northern Hemisphere atmospheric chemical conditions (low pH). This diminishes the relevance of their findings and demonstrates that applying such models to this region is premature.  相似文献   

4.
Mesoscale eddies may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-core cyclonic eddy off Hawaii. Eddy primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic coupling and inefficient organic export may be general characteristics of community perturbation responses in the warm waters of the Pacific Ocean.  相似文献   

5.
Primary productivity in the Southern Ocean is approximately 3.5 gigatons of carbon per year, which accounts for nearly 15 percent of the global total. The presence of high concentrations of nitrate in Antarctic waters suggests that it might be possible to increase primary production significantly and thereby alleviate the net accumulation of atmospheric carbon dioxide. An analysis of the food web for these waters implies that the Southern Ocean may be remarkably inefficient as a carbon sink. This inefficiency is caused by the large flux of carbon respired to the atmosphere by air-breathing birds and mammals, dominant predators in the unusually simple food web of Antarctic waters. These top predators may transfer into the atmosphere as much as 20 to 25 percent of photosynthetically fixed carbon.  相似文献   

6.
Autonomous floats profiling in high-nitrate low-silicate waters of the Southern Ocean observed carbon biomass variability and carbon exported to depths of 100 m during the 2002 Southern Ocean Iron Experiment (SOFeX) to detect the effects of iron fertilization of surface water there. Control and "in-patch" measurements documented a greater than fourfold enhancement of carbon biomass in the iron-amended waters. Carbon export through 100 m increased two- to sixfold as the patch subducted below a front. The molar ratio of iron added to carbon exported ranged between 10(4) and 10(5). The biomass buildup and export were much higher than expected for iron-amended low-silicate waters.  相似文献   

7.
Reduction of tropical cloudiness by soot   总被引:10,自引:0,他引:10  
Measurements and models show that enhanced aerosol concentrations can augment cloud albedo not only by increasing total droplet cross-sectional area, but also by reducing precipitation and thereby increasing cloud water content and cloud coverage. Aerosol pollution is expected to exert a net cooling influence on the global climate through these conventional mechanisms. Here, we demonstrate an opposite mechanism through which aerosols can reduce cloud cover and thus significantly offset aerosol-induced radiative cooling at the top of the atmosphere on a regional scale. In model simulations, the daytime clearing of trade cumulus is hastened and intensified by solar heating in dark haze (as found over much of the northern Indian Ocean during the northeast monsoon).  相似文献   

8.
Aerosol concentrations were measured during a 54-hour circum-navigation of the earth at altitudes between 238 and 162 millibars and concurrently by a separate flight at lower altitudes over the Pacific Ocean. The aerosol concentrations were found to be symmetrically distributed about the earth. Concurrent meteorological measurements indicate that tropospheric aerosols enter the stratosphere in the vicinity of jet streams and that surface aerosols are carried aloft over the intertropical convergence and Antarctic polar front.  相似文献   

9.
Phytoplankton and cloudiness in the Southern Ocean   总被引:1,自引:0,他引:1  
The effect of ocean biological productivity on marine clouds is explored over a large phytoplankton bloom in the Southern Ocean with the use of remotely sensed data. Cloud droplet number concentration over the bloom was twice what it was away from the bloom, and cloud effective radius was reduced by 30%. The resulting change in the short-wave radiative flux at the top of the atmosphere was -15 watts per square meter, comparable to the aerosol indirect effect over highly polluted regions. This observed impact of phytoplankton on clouds is attributed to changes in the size distribution and chemical composition of cloud condensation nuclei. We propose that secondary organic aerosol, formed from the oxidation of phytoplankton-produced isoprene, can affect chemical composition of marine cloud condensation nuclei and influence cloud droplet number. Model simulations support this hypothesis, indicating that 100% of the observed changes in cloud properties can be attributed to the isoprene secondary organic aerosol.  相似文献   

10.
Effects on the global temperature of large increases in carbon dioxide and aerosol densities in the atmosphere of Earth have been computed. It is found that, although the addition of carbon dioxide in the atmosphere does increase the surface temperature, the rate of temperature increase diminishes with increasing carbon dioxide in the atmosphere. For aerosols, however, the net effect of increase in density is to reduce the surface temperature of Earth. Because of the exponential dependence of the backscattering, the rate of temperature decrease is augmented with increasing aerosol content. An increase by only a factor of 4 in global aerosol background concentration may be sufficient to reduce the surface temperature by as much as 3.5 degrees K. If sustained over a period of several years, such a temperature decrease over the whole globe is believed to be sufficient to trigger an ice age.  相似文献   

11.
The relation between the accumulation of barite (BaSO(4)) microcrystals in suspended matter from the mesopelagic depth region (100 to 600 meters) and the type of production in the euphotic layer (new versus recycled) was studied for different Southern Ocean environments. Considerable subsurface barite accumulated in waters characterized by maintained new production and limited grazing pressure during the growth season. On the other hand, little if any barite accumulated in areas where relatively large amounts of photosynthetically fixed carbon were transferred to the microheterotrophic community and where recycled production became predominant.  相似文献   

12.
Aerosol effect on cloud droplet size monitored from satellite   总被引:5,自引:0,他引:5  
Aerosol concentration and cloud droplet radii derived from space-borne measurements are used to explore the effect of aerosols on cloud microphysics. Cloud droplet size is found to be largest (14 micrometers) over remote tropical oceans and smallest (6 micrometers) over highly polluted continental areas. Small droplets are also present in clouds downwind of continents. By using estimates of droplet radii coupled with aerosol load, a statistical mean relationship is derived. The cloud droplet size appears to be better correlated with an aerosol index that is representative of the aerosol column number under some assumptions than with the aerosol optical thickness. This study reveals that the effect of aerosols on cloud microphysics is significant and occurs on a global scale.  相似文献   

13.
An unresolved issue in ocean and climate sciences is whether changes to the surface ocean input of the micronutrient iron can alter the flux of carbon to the deep ocean. During the Southern Ocean Iron Experiment, we measured an increase in the flux of particulate carbon from the surface mixed layer, as well as changes in particle cycling below the iron-fertilized patch. The flux of carbon was similar in magnitude to that of natural blooms in the Southern Ocean and thus small relative to global carbon budgets and proposed geoengineering plans to sequester atmospheric carbon dioxide in the deep sea.  相似文献   

14.
Andreae MO 《Science (New York, N.Y.)》1983,220(4602):1148-1151
During a cruise from Hamburg to Montevideo, aerosol samples representing air masses from Europe, the Sahara, tropical Africa, South America, and open oceanic regions were collected. They showed significant amounts of soot carbon over large areas of the remote Atlantic, often similar to concentrations in rural continental areas. Back-trajectories and the ratios of soot carbon to total fine (less than 1.7 micrometers in diameter) carbon and of excess fine potassium (the portion not attributable to soil dust or sea salt) to soot carbon indicate that biomass burning in tropical regions is an important source of soot carbon to the world atmosphere. The ratio of excess potassium to soot carbon in the fine fraction of aerosols is proposed as an indicator of the relative contributions of biomass and fossil-fuel burning to soot carbon aerosols. The ratio of soot carbon to fine carbon suggests that most of the particulate organic carbon over the Atlantic is of continental origin.  相似文献   

15.
Recent measurements demonstrate that the "background" stratospheric aerosol layer is persistently variable rather than constant, even in the absence of major volcanic eruptions. Several independent data sets show that stratospheric aerosols have increased in abundance since 2000. Near-global satellite aerosol data imply a negative radiative forcing due to stratospheric aerosol changes over this period of about -0.1 watt per square meter, reducing the recent global warming that would otherwise have occurred. Observations from earlier periods are limited but suggest an additional negative radiative forcing of about -0.1 watt per square meter from 1960 to 1990. Climate model projections neglecting these changes would continue to overestimate the radiative forcing and global warming in coming decades if these aerosols remain present at current values or increase.  相似文献   

16.
Tropospheric aerosols affect the radiative forcing of Earth's climate, but their variable concentrations complicate an understanding of their global influence. Model-based estimates of aerosol distributions helped reveal spatial patterns indicative of the presence of tropospheric aerosols in the satellite-observed clear-sky solar radiation budget over the world's oceans. The results show that, although geographical signatures due to both natural and anthropogenic aerosols are manifest in the satellite observations, the naturally occurring sea-salt is the leading aerosol contributor to the global-mean clear-sky radiation balance over oceans.  相似文献   

17.
The Redfield ratio [carbon:nitrogen:phosphorus (C:N:P)] of particle flux to the deep ocean is a key factor in marine biogeochemical cycling. Changes in oceanic carbon sequestration have been linked to variations in the Redfield ratio on geological time scales, but this ratio generally is assumed to be constant with time in the modern ocean. However, deep-water Redfield ratios in the northern hemisphere show evidence for temporal trends over the past five decades. The North Atlantic Ocean exhibits a rising N:P ratio, which may be related to increased deposition of atmospheric nitrous oxides from anthropogenic N emissions. In the North Pacific Ocean, increasing C:N and C:P ratios are accompanied by rising remineralization rates, which suggests intensified export production. Stronger export of carbon in this region may be due to enhanced bioavailability of aeolian iron. These findings imply that the biological part of the marine carbon cycle currently is not in steady state.  相似文献   

18.
我国水产品需求预测研究   总被引:1,自引:0,他引:1  
我国水产品总需求包括城乡居民直接消费需求、加工水产品消费需求、净出口贸易需求以及在以上过程中的损耗减重。首先,基于统计年鉴数据,根据水产品供给来源和需求方式关系特征,分离出了我国水产品需求中的损耗减重部分量值及其在水产品总需求中的比例(损耗减重比例)。通过对水产品总需求中的城乡居民直接消费量、加工水产品需求量、贸易量以及损耗减重比例的时间序列数据建立灰色系统预测模型或线性预测模型或组合使用以上两模型,对其各自分别进行了中长期预测,进而得到了我国水产品总需求量的预测结果。由结果可知,"十二五"末我国水产品总需求量将达6 618.41万吨,预计到2030年,我国水产品总需求量将超过9千万吨,但不会高于一亿吨,为当前水平的2~3倍。研究亮点:目前着眼于指导水产品生产的我国水产总需求中长期预测研究还比较匮乏。将水产品总需求构成进行分解,分离出了水产品在各过程中的损耗减重量,通过综合使用灰色系统模型和线性模型预测方法,对需求的各部分分别进行了预测,进而得到了我国水产品总需求量。  相似文献   

19.
Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of -0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. are discussed.  相似文献   

20.
Surface waters of the subtropical Sargasso Sea contain dissolved inorganic phosphate (DIP) concentrations of 0.2 to 1.0 nanomolar, which are sufficiently low to result in phosphorus control of primary production. The DIP concentrations in this area (which receives high inputs of iron-rich dust from arid regions of North Africa) are one to two orders of magnitude lower than surface levels in the North Pacific (where eolian iron inputs are much lower and water column denitrification is much more substantial). These data indicate a severe relative phosphorus depletion in the Atlantic. We hypothesize that nitrogen versus phosphorus limitation of primary production in the present-day ocean may be closely linked to iron supply through control of dinitrogen (N2) fixation, an iron-intensive metabolic process. Although the oceanic phosphorus inventory may set the upper limit for the total amount of organic matter produced in the ocean over geological time scales, at any instant in geological time, oceanic primary production may fall below this limit because of a persistent insufficient iron supply. By controlling N2 fixation, iron may control not only nitrogen versus phosphorus limitation but also carbon fixation and export stoichiometry and hence biological sequestration of atmospheric carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号