首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Plant growth, morphology and nutritive value under shade can differ between temperate grasses. Therefore, the aim of this study was to quantify the dry matter (DM) production, sward morphology, crude protein (CP%), organic matter digestibility (OMD) and macro-nutrient concentrations (P, K, Mg, Ca and S) in a grazed cocksfoot (Dactylis glomerata L.) pasture under 10-year-old Pinus radiata D. Don forest. Four levels of light intensity were compared: full sunlight (100% photosynthetic photon flux density-PPFD), open + wooden slats (∼43% PPFD), trees (∼58% PPFD) and tree + slats (∼24% PPFD). The mean total DM production was 8.2 t DM ha−1 yr−1 in the open and 3.8 t DM ha−1 yr−1 in the trees + slats treatment. The changes in cocksfoot leaf area index (LAI) were related to variations in morphological aspects of the sward such as canopy height and tiller population. CP% increased as PPFD declined with mean values of 18.6% in open and 22.5% in the trees + slats treatment. In contrast, the intensity of fluctuating shade had little effect on OMD with a mean value of 79 ± 3.2%. The mean annual macro-nutrient concentrations in leaves increased as the PPFD level declined mainly between the open and the trees + slats treatments. It therefore appears that heavily shaded dominant temperate pastures in silvopastoral systems limit animal production per hectare through lower DM production rates and per animal through reduced pre-grazing pasture mass of lower bulk density from the etiolated pasture.  相似文献   

2.
Net light-saturated photosynthetic rate (Amax) of field grown cocksfoot (Dactylis glomerata L.) leaves in a radiata pine (Pinus radiata D. Don) silvopastoral system (Canterbury, New Zealand) was measured at different times under severe shade (85–95 μmol m–2 s–1 photosynthetic photon flux density, PPFD) and in full sunlight (1900 μmol m–2 s–1 PPFD). The aim was to integrate individual functions for Amax against air temperature (2 to 37 oC), water status, expressed as pre-dawn leaf water potential (ψlp) (-0.01 to −1.6 MPa), herbage nitrogen (N) (1.5 to 5.9%), regrowth duration (20 to 60 days) and time under shade (1 to 180 min) into a multiplicative model. The highest Amax value obtained was 27.4 μmol CO2 m–2 s–1 in non-limiting conditions with full sunlight. This value was defined as standardised dimensionless Amaxs = 1 for comparison of factor effects. The canopy temperature of the cocksfoot sward was up to 7.4 oC cooler than air temperature for plants under shade. Therefore, canopy temperature was used to predict Amax. The only interaction was between time under severe shade (5% of the open PPFD) and water stress (ψlp = −0.4 to −1.3 MPa) and this was included in the model. Validation of this model indicated 78% of the variation in Amax could be accounted for using these five factors by the addition of the interaction function. This model could be used to assist the prediction of pasture growth in silvopastoral systems through incorporation into a canopy photosynthesis model. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Photosynthetic responses to a series of 1-min lightflecks (1,000μmol m−2 s−1) superimposed on a background with different duration (1, 5, and 10 min) and intensity (25 and 50μmol m−2 s−1) of low background photosynthetic photon flux density (PPFD) were measured in the leaves ofFagus crenata grown in a gap and understory of aFagus crenata forest in the Naeba Mountains. The two background PPFD intensities most frequently occurred in understory and gap sites respectively. The maximum net photosynthetic rate (P Nmax) and maximum stomatal conductance (g smax) were higher in the gap seedlings than in the understory seedlings. However, when the background PPFD was 25μmol m−2s−1, the net photosynthetic rate (P 25) and stomatal conductance (g s25) were almost the same between the gap and understory. When the background PPFD duration was 1-min, the net photosynthetic rate (P N ) at the end of each lightfleck increased progressively. When the background PPFD duration was 5- and 10-min, the increase inP N at the end of each lightfleck was less. This indicates that background PPFD duration is important to photosynthetic responses to lightflecks. The higher ratios ofP 25/P Nmax andg s25/g smax in the understory seedlings indicate that the understory seedlings can maintain relatively lower levels of biochemical and stomatal limitations than the gap seedlings under low light conditions. The ratios ofP N /P Nmax at the end of each lightfleck (IS) and light utilization efficiency of single lightflecks (LUE s) that showed the influence of lightflecks on carbon gain were higher in the understory seedlings than in the gap seedlings when the background PPFD was 25μmol m−2 s−1. This means that understory seedling are capable of utilizing fluctuating light more efficiently under low light conditions than the gap seedlings although the net carbon gain of single lightflecks (CG s) in the understory seedlings was not higher than that in the gap seedlings. There were no significant differences inIS andLUE s between understory seedlings at a background PPFD of 25μmol m−2 s−1 and gap seedlings at a background PPFD of 50μmol m−2 s−1. However,CG s in gap seedlings was higher than in understory seedlings. These results provide more evidence thatF. crenata acclimate to a natural light environment in respect to relative induction state at low background PPFD and can capture the fluctuating light at the same efficiency in both the gap and understory seedlings under natural light environments. This study was funded by the research project, Evaluation of Total CO2 Budget in Forest Ecosystems, coordinated by the Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

4.
We analyzed the growth and photosynthetic behavior of Gallesia integrifolia (‘pau-d’alho’) and Schinus terebinthifolius (‘aroeirinha’) under shade, seeking to obtain ecophysiological information for introducing seedlings of those species in previously established cacao agroforestry systems. Considering that light intensity under the shade of cacao trees varied between 5 and 10% daylight, 5 months old seedlings were exposed to four irradiance levels (25, 17, 10 and 5% daylight) for 92 days. With shade increase both species displayed trends of decrease leaf mass per unit leaf area, leaf area per plant (LA), relative growth rate (RGR) and net assimilation rate (NAR), and increase leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (P nmax) in 25 and 5% daylight were 12.8 and 8.0 μmol CO2 m−2 s−1 for G. integrifolia and 17.9 and 7.4 μmol CO2 m−2 s−1, respectively, for S. terebinthifolius. Based on the measurements of photosynthetic photon flux density and estimated values of photosynthetic saturated irradiance (Is) we concluded that, in all shaded conditions, the leaves of both species were under sub optimal light conditions to reach P nmax. In spite of the lowest P nmax values, RGR and NAR were significantly higher for G. integrifolia in all irradiance levels. Differences in growth rates can be explained by the higher values of LA, LAR and leaf mass ratio (LMR), as well as by the lower values of Is, photosynthetic compensation irradiance and dark respiration rates observed for G. integrifolia. Even though seedlings of G. integrifolia presented higher capacity to adapt under conditions of dense shade, we concluded that both species were under stress conditions induced by shade in light environments below 25% daylight. On a practical point of view it is possible to conclude that seedlings of both species should be introduced in light gaps, formed after the fall of big trees, or in places in which cacao trees are cultivated using large plant spacing.  相似文献   

5.
本文研究了大叶桃花心木(Swietenia macrophylla King)一年生幼苗在经过夜温处理后的光响应曲线和在饱和光强下的CO2反应曲线.结果表明:在大气CO2浓度下,叶片的最佳光合作用温度在25-31℃之间,而在饱和CO2浓度下为31-35℃.在25℃以下光合速率开始降低,主要是由于羧化效率的降低,而当温度超过31℃时,光合速率下降,是因为羧化效率的降低和呼吸速率的增加.CO2浓度对光合的促进作用在低温下受到抑制,这意味着未来在CO2浓度增高的情况下,高浓度的CO2对热带常绿植物光合的促进在冬天低温情况下表现不十分明显.图4参23.  相似文献   

6.
The integrated relationship in a simple mechanistic model between the critical environmental factors controlling leaf photosynthesis of understory species would be a useful tool to optimize the management of the silvopastoral systems. Individual effect of leaf temperature, water stress and light environment over net maximum photosynthetic rate (Pmax) was evaluated on Festuca pallescens leaves grown in a silvopastoral system of two Pinus ponderosa canopy covers (350 and 500 trees ha−1) and natural grassland. The aim was to integrate individual functions for Pmax against these environmental factors into a multiplicative model. We measured pre-dawn water potential (ψ pd), leaf temperature and net photosynthetic rate (Pn), stomatal conductance (gs) and intercellular CO2 concentration (Ci) as a function of photosynthetic photon flux density (PPFD). The highest Pmax under non-limiting conditions was 20.4 μmol CO2 m−2 s−1 and was defined as standardized dimensionless Pmax s  = 1 for comparison of environmental factors. The leaf temperature function showed an optimum range between 20.2 and 21.8°C where Pmax s  = 1. Then, Pmax s declined by an average 1 μmol CO2 m−2 s−1 C−1 from the optimum to 4.7 and 38.5°C. Pmax s decreased at a rate of 9.49 μmol CO2 m−2 s−1 MPa−1 as water potential reaches −1.9 MPa and showed a lower slope as water potential decreased down to −4.3 MPa. The light environment was estimated from hemispherical photograph analysis. Pmax s was 20% higher in leaves of open control plants than under the maximum tree canopy cover. The simple multiplicative model accounted for 0.82 of the variation in Pmax. Such a simple mechanistic model is the first step towards a more effective decision support tool.  相似文献   

7.
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) and 500 μmol·m−2·s−1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 μmol·m−2·s−1 PPFD were slower than those at 200 μmol·m−2·s−1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity. Biograph: ZHOU Yong-bin (1970-), female, associate professor of Shenyang Agricultural University, Shenyang 110161, P.R. China. Responsible editor: Song Funan  相似文献   

8.
Muehlewbeckia complera was introduced to China in 2002 as indoor-hanging ornamental foliage plant. The experiment of the shade tolerance for this species was carried out in different light intensities (0.14–946.00 μmol·m−2·s−1). After 40 days in experimental areas, leaf photosynthentic characteristics indexes ofM. complera in different photosynthesis active radiation (PAR) were measured with LI-COR6400 apparatus, such as the light compensation point, light saturation point, and maximum net photosynthesis rate, at the same time, the increments of total leaf area and leaf amount were measured. The results showed that the optimum light intensity range forM. complera was from 9.26 μmol·m−2·s−1 to 569.00 μmol·m−2·s−1 (463–28150 lx, relative humidity (RH) for 46–60%, temperature at 16–22°C). Under this condition, leaf photosynthetic efficiency was tiptop. AlthoughM. complera belonged to the moderate sun-adaptation plant species, the plant growth was inhibited when PAR increased to the level of 569.000 μmol·m−2·s−1 or above.M. complera could sprout new leaves in photosynthesis active radiation of 0.16–19.22 μmol·m−2·s−1 (8–961 lx), or 10 μmol·m−2·s−1 for above 6 h. Foundation item: This study was supported by the Research Foundation of Northeast Forestry University. Biography: YUE Hua (1962-), female, Associate professor in Northeast Forestry University, Harbin 150040, P. R. China. Responsible editor: Zhu Hong  相似文献   

9.
Allometric equations predict tree seedling biomass from non-destructively measured variables such as stem diameter (D), height (H) and seedling silhouette area (A), measured by digital imaging. This study investigates whether one general allometric equation can predict biomass of radiata pine (Pinus radiata D.Don) seedlings grown under three levels of photosynthetic photon flux density (PPFD). It also identifies which commonly used variables (A, D 2 H or D 2) were the best for predicting seedling biomass under these conditions. Radiata pine seedlings were grown with constant daytime (12 h d−1) PPFD = 500, 250 or 125 μmol m−2 s−1 for 11 weeks. Seedlings were randomly selected every 10 d for measurement. Analysis of covariance tested whether the relationship between seedling biomass and A, D 2 H or D 2 varied for each PPFD level. PPFD levels influenced the relationship between biomass and A, D 2 H or D 2. As a result, “full” allometric models which varied with PPFD levels were more accurate and precise at predicting biomass than “reduced” models which did not vary with PPFD level, although a “reduced” model using D 2 also performed well.  相似文献   

10.
The relative effects of irradiance and soil water on alley-cropped herbage are poorly understood. Our objective was to determine effects of irrigation on herbage productivity when tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] was grown in two sites, a meadow and a loblolly pine (Pinus taeda L.) alley (620 trees ha−1), near Booneville, Arkansas. Three tall fescue entries were space planted in the meadow and pine alley with or without irrigation. Herbage mass and nutritive value were determined at 8-week intervals for 2 years. Mean daily PAR was 33.9 (2004) and 37.5 mol m−2 d−1 (2005) in the meadow, while the pine alley received 5.6 mol m−2 d−1 (17% of the meadow) in 2004 and 4.3 mol m−2 d−1 (11% of meadow) in 2005. Effect of tall fescue entry tended to be small relative to site and irrigation. Irrigation compensated for evapotranspiration in the meadow, but not in the pine alley when summer rainfall was about normal (2004) or low (2005). Nevertheless, site (PAR) had a greater effect on herbage specific leaf weight, leaf elongation rate, tillers plant−1, mass tiller−1, and total nonstructural carbohydrate concentration than soil water. Irrigation might have had greater impact on herbage productivity if more water had been applied or if canopy cover had been less extreme. Silvicultural practices should be imposed to improve penetration of solar irradiance to the alley crop.  相似文献   

11.
A combined model of stomatal conductance and photosynthesis was developed for Festuca pallescens (St. Ives) Parodi, a forage species in Patagonia. Curves showing the relationship between photosynthesis and photosynthetic photon flux density (PPFD) were constructed for plants grown under differing levels of water availability, relative humidity (RH) and air temperature (T). Stomatal conductance (gs) was related to these variables and pre-dawn leaf water potential (ψpd) using an empirical multiplicative submodel. Parameters of the photosynthesis-PPFD curves were related to the average gs values for each curve to introduce stomatal limitation on photosynthesis. Considering the simplicity of the models, estimated stomatal conductance and photosynthesis agree satisfactorily with independent measured values in the field and in the glasshouse, particularly in the range of low and medium values of both variables (R2 = 0.84 and 0.87 for gs and photosynthesis models, respectively). Photosynthesis–PPFD curves were also determined under field conditions for plants growing under shade and in the open, in a silvopastoral trial in northwestern Patagonia. No significant differences in the photosynthetic light response curves were found between these locations, but slight increases in maximum assimilation rate and quantum yield (light use efficiency) were found for leaves grown under shade. This study of environmental influences on photosynthesis in F. pallescens may help to predict its capacity to grow under trees in silvopastoral systems. In addition, this simple model may be easily parameterised for other species to predict photosynthetic responses under different environmental conditions.  相似文献   

12.
Efforts in Europe to convert Norway spruce (Picea abies) plantations to broadleaf or mixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaf-level photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches. However, we observed interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 μmol photons m−2 s−1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g−1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m−2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.  相似文献   

13.
The canopy structure and interception of photosynthetic photon flux density (PPFD) in a 10-year-old Kandelia candel (L.) Druce stand were investigated before and after artificial defoliation. Leaf and wood areas for different layers were measured through area–weight relationships of subsamples. PPFD was measured at specified heights before and after leaf clipping. The leaf area index (LAI) and wood area index (WAI) were 4.501m2m–2 and 1.412m2m–2, respectively. There was a strong linear relationship between the cumulative wood area © and leaf area (F) densities from the top down to a given depth of the canopy, C = aF (r 2 = 0.950), with a proportional constant a of 0.096 ± 0.008 (mean ± SE). The PPFD relative to that above the canopy (relative PPFD; I R) at a given depth of the canopy was assumed to be given by the equation I R = e–(KCC+KFF ) = eKF , where the apparent light extinction coefficient K (= K F + aK C , where K F and K C are respectively the light extinction coefficient of leaves and woody organs) was calculated to be 0.502 ± 0.041 (mean ± SE) m–2m2 before leaf clipping. After leaf clipping, I RC = eKCC is satisfied. As a result, the value of K C was estimated to be 0.785 ± 0.046 (mean ± SE) m–2m2. The light extinction coefficient of leaves K F was calculated to be 0.427m–2m2 using the indirect method, K F = KaK C, and 0.432 ± 0.026 (mean ± SE) m–2m2 using the direct method, I R/I RC = eKFF . Of the total PPFD intercepted by the canopy, the fraction K F/K due to leaves alone was estimated to be 85.0%–86.1% and the rest was contributed by woody organs.  相似文献   

14.
The above-ground biomass and production, below-ground biomass, nutrient (NPK) accumulation, fine roots and foliar characteristics of a 8-year-old silver birch (Betula pendula) natural stand, growing on abandoned agricultural land in Estonia, were investigated. Total above-ground biomass and current annual production after eight growing seasons was 31.2 and 11.9 t DM ha−1, respectively. The production of stems accounted for 62.4% and below-ground biomass accounted for 19.2% of the total biomass of the stand. Carbon sequestration in tree biomass reaches roughly 17.5 t C ha−1 during the first 8 years. The biomass of the fine roots (d < 2 mm) was 1.7 ± 0.2 t DM ha−1 and 76.2% of it was located in the 20 cm topsoil layer. The leaf area index (LAI) of the birch stand was estimated as 3.7 m2 m−2 and specific leaf area (SLA) 15.0 ± 0.1 m2 kg−1. The impact of the crown layer on SLA was significant as the leaves are markedly thicker in the upper part of the crown compared with the lower part. The short-root specific area (SRA) in the 30 cm topsoil was 182.9 ± 9.5 m2 kg−1, specific root length (SRL), root tissue density (RTD) and the number of short-root tips (>95% ectomycorrhizal) per dry mass unit of short roots were 145.3 ± 8.6 m g−1, 58.6 ± 3.0 kg m−3 and 103.7 ± 5.5 tips mg−1, respectively. In August the amount of nitrogen, phosphorus and potassium, accumulated in above ground biomass, was 192.6, 25.0 and 56.6 kg ha−1, respectively. The annual flux of N and P retranslocation from the leaves to the other tree parts was 57.2 and 3.7 kg ha−1 yr−1 (55 and 27%), respectively, of which 29.1 kg ha−1 N and 2.8 kg ha−1 P were accumulated in the above-ground part of the stand.  相似文献   

15.
《Southern Forests》2013,75(3):167-174
Euterpe edulis Mart. (Arecaceae) is a threatened palm tree of the Brazilian Atlantic Rainforest understory with fundamental importance for the restoration of degraded forest environments. We assessed the leaf gas exchange, growth and survival of E. edulis seedlings transplanted at three different forest sites (S1, S2 and S3) in the same area in which cocoa trees had been cultivated in a rustic agroforestry system. Measurement was carried out during the first year after seedling transplantation. The sites were characterised according to canopy openness (CO) and total daily photosynthetic photon flux density (PPFD). Average CO and PPFD values were 13.3%, 8.0% and 6.7%, and 3.34, 2.79 and 0.62 mol m?2 d?1 for S1, S2 and S3, respectively. A progressive decline in seedling survival was observed in all sites throughout the experiment. At 387 d after planting, survival at S1, S2 and S3 was 57%, 44% and 37%, respectively. The gross light-saturated photosynthetic rate (Amax), leaf area and plant biomass were significantly higher (P < 0.05) in S1 and S2 when compared with S3. The values of dark respiration rate (R d) and photosynthetic compensation irradiance (I c) were sufficiently low for a positive carbon balance. Notwithstanding, the interpretation of results of microclimate variables together with leaf gas exchange and growth variables indicated that seedlings at all sites were in a suboptimal condition to achieve Amax, which is probably the main cause of the dramatic decline in the seedlings’ survival throughout the first year after transplantation. From a practical point of view, if the values of CO and PFD are lower than 10% and 3 mol m?2 d?1, respectively, it is suggested that the transplanting of E. edulis seedlings to the understory of abandoned agroforestry systems be accompanied by cultural practices, such as the thinning and pruning of tree tops.  相似文献   

16.
Using the PMS pressure chamber and isotope mass spectrometer (MAT-252), the leaf juice of Acacia mangium was obtained, and the carbon isotope discrimination (D) representing the most recently fixed carbon in the juice was determined. At the same time, the water-use efficiency of A. mangium was estimated. The results indicated that the carbon isotope ratio in the air of forest canopy (δ a), 10 m high a bove ground averaged − 7.57 ± 1.41 ‰ in cloudy days, and − 8.54±0.67‰ in sunny days, respectively. The diurnal change of the carbon isotope ratio in the photosynthetic products of the leaf juice (δ p) was of saddle type in cloudy days, but dropped down from morning to later afternoon in sunny days. A strong negative correlation between δ p and leaf-to-air vapor pressure deficit (D) was observed in sunny days, but a slight change in δ p was found in cloudy days. The δ p also decreased with decreasing leaf water potential (Ψ), reflecting that water stress could cause the decrease of δ p. The carbon isotope discrimination of the leaf juice was positively correlated with the ratio between intercellular (P i) and atmospheric (P a) partial pressure of CO2. For A. mangium, the isotope effect on diffusion of atmospheric CO2 via stomata was denoted by a = 4.6‰, and that in net C3 diffusion with respect to P i was indicated by b = 28.2‰. The results were in reasonable accord with the theoretically diffusive and biochemical fractionation of carbon isotope. It was defined that carbon isotope discrimination of photosynthetic products in A. mangium leaf juice was in proportion to that from photosynthetic products in dry material. The water-use efficiency estimated by the carbon isotope discrimination in leaf juice, fit well with that measured by gas exchange system (R 2 = 0.86, p < 0.0001). The application of leaf juice in measuring the stable carbon isotope discrimination would reduce the effects of fluctuating environmental factors during the synthesis of dry matter, and improve the ecophysiological studies on carbon and water balance when scaling from the plant to canopy in the fields. __________ Translated from Chinese Journal of Ecology, 2008, 27(4): 497–503 [译自: 生态学杂志]  相似文献   

17.
[目的]采用4种模型对干旱处理下毛竹叶片光响应曲线进行拟合比较,分析各模型的优缺点,以选出适合毛竹光响应曲线拟合的最佳模型,并量化干旱处理对毛竹光合光响应的影响。[方法]主要采用Li-6400便携式光合仪测定干旱处理下毛竹的光响应曲线,并通过4种模型对其进行拟合。[结果]研究表明:(1)在干旱和对照处理下各模型的决定系数R~2均大于0.995,说明拟合精度较高。综合各参数可以看出,直角双曲线修正模型拟合效果最佳,相对误差RE平均值为0.07,而指数模型参数拟合效果最差,RE平均值为0.767;(2)通过直角双曲线修正模型拟合各光合参数,在干旱环境下,暗呼吸速率R_d、光补偿点LCP和水分利用效率WUE较高,分别为对照环境的1.57倍、1.66倍和1.06倍,而净光合速率P_(nmax)、光饱和点LSP和表观量子效率AQY分别比对照环境降低3.6%、17.6%和4.8%。[结论]从整体拟合效果来看,这4种模型拟合顺序为:直角双曲线修正模型直角双曲线模型非直角双曲线模型指数模型。通过在干旱和对照间毛竹各光合参数的比较发现,毛竹对干旱环境有一定的适应能力。  相似文献   

18.
In order to offer a scientific basis for cultivation and management of forests, effects of light radiation intensity on photosynthetic characteristics and water use efficiency of Platycladus orientalis and Pinus tabulaeformis were studied under different soil moisture contents. By adopting artificial control methods to soil moisture, and under simulated photosynthetic radiation (SPR), the net photosynthetic rate (P N), transpiration rate (T r), water use efficiency (WUE) and intercellular CO2 concentration (C i) of Platycladus orientalis and Pinus tabulaeformis in the semi-arid region of the Loess Plateau, were studied. Results are as follows: within the photon range of 0–2,200 μmol/(m2·s), P N, T r and WUE were enhanced with an increase in SPR in both species. P N and WUE of Platycladus orientalis and Pinus tabulaeformis, however, declined with continued increase in SPR. P N, T r, WUE and light saturation point (LSP) of Platycladus orientalis were higher than those of Pinus tabulaeformis, while light compensation point (LCP) of Platycladus orientalis was lower than that of Pinus tabulaeformis at the same soil moisture content. The efficiency of light energy utilization of Platycladus orientalis was higher than that of Pinus tabulaeformis; P N, T r and C i of Platycladus orientalis and Pinus tabulaeformis were enhanced by increasing soil moisture content, whereas WUE declined. At soil moistures of 7.90%, 13.00% and 19.99%, LSP of Platycladus orientalis was 1,275, 1,450 and 1,675 μmol/(m2·s) respectively, and LCP was 42, 25 and 13 μmol/(m2·s) respectively, with corresponding maximal net CO2 photosynthetic rates (P max) of 3.04, 4.06 and 5.53 μmol/(m2·s). At soil moistures of 7.83%, 13.04% and 20.15%, the LSP of Pinus tabulaeformis was 1,100, 1,325 and 1,500 μmol/(m2·s) respectively, and LCP was 60, 30 and 23 μmol/(m2·s), with P max of 1.08, 3.35 and 4.36 μmol/(m2·s) respectively. __________ Translated from Science of Soil and Water Conservation, 2006, 4(3): 108–113 [译自: 中国水土保持科学]  相似文献   

19.
Responses of leaf conductance (g L) to variation in environmental and plant hydraulic factors were examined on intact and detached shoots of little-leaf linden (Tilia cordata Mill.) with respect to branch position in the crown. Using detached shoots, we manipulated leaf water supply and light availability in order to separate the effects of insufficient hydraulic supply and low irradiance. The intact upper-crown leaves demonstrated 2.0–2.2 times higher (P < 0.001) daily maxima of g L compared to the lower-crown leaves growing in the shadow of upper branches. Mean soil-to-leaf conductance (G T) was 1.9 times higher (P < 0.001) for the upper-crown foliage compared to that of the lower crown. The total hydraulic resistance was distributed: soil to distal shoots—41–51%, 25-cm distal shoots—10–15% and leaves—39–44%. In lower branches, g L was constrained by both low light availability and limited water supply; in upper branches, only by irradiance. Artificial reduction of hydraulic constraints raised bulk leaf water potential (Ψ L) and made g L less sensitive to changes in both atmospheric and plant factors. Stomatal responses to leaf-to-air vapour pressure difference (VPD) were significantly modified by leaf water status: high Ψ L seemingly inverted the g L versus VPD relationship. Enhanced water supply increased g L and transpiration rate (E) in the lower-crown foliage, but not in the upper-crown foliage. The results support the idea that leaves in the lower canopy are hydraulically more constrained than those in the upper canopy.  相似文献   

20.
In order to quantify the effects of thinning on biochemical photosynthesis parameters and changes in leaf nitrogen contents associated with the process of crown reclosure, the maximum rate of carboxylation (V cmax), the leaf nitrogen concentration per unit area (N a), and the photosynthetic photon flux density (PPFD) were measured at four crown heights in both thinned (1500 trees ha−1) and unthinned control (3000 trees ha−1) stands of ten-year-old Chamaecyparis obtusa (36°3′N, 140°7′E) trees during four consecutive growing seasons after thinning. Thinning increased V cmax in the lower and middle crowns in the first year after thinning, and leaves in the lower crown of the thinned stand maintained high V cmax for four years, whereas they abscised in the second year in the control stand. Significant increases in V cmax were detected even in the upper crowns of trees in the thinned stand in the second year. Thinning did not affect N a at any of the crown positions in the first year, but significantly increased N a in the middle crowns from the second year after thinning. Thus, the redistribution of nitrogen between leaves, driven by increases in light and nutrient availability due to the 50% thinning, appears to have enhanced photosynthetic rates in the thinned stand. Thinning also significantly affected the slope of the linear relationship between N a and V cmax initially after thinning, but its effect on this relationship was negligible after the second year. These quantitative results may be used to simplify the estimation of the likely effects of management practices on carbon fixation in forest canopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号