首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM:To investigate the effects of siRNA targeting integrin-linked kinase (ILK) on the expression of glycogen synthase kinase 3β (GSK-3β) and β-catenin during epithelial-mesenchymal transition (EMT) in human kidney proximal tubular epithelial cell line HKC induced by high glucose. METHODS:HKC cells were divided into 4 groups:normal glucose (NG) group, high glucose (HG) group, HG+HK (a vector containing the non-specific siRNA designed as negative control) group and HG+ILK siRNA group. The inverted fluorescence microscope was used to examine the expression of green fluorescent protein (GFP). The expression of ILK at mRNA and protein levels was detected by RT-PCR and Western blotting. The expression of p-GSK-3β and β-catenin was observed by immunocytochemical staining. The protein expression of total GSK-3β, p-GSK-3β, nuclear β-catenin, total β-catenin, E-cadherin and α-smooth muscle actin (α-SMA) was measured by Western blotting. RESULTS:GFP was observed in HKC cells, indicating that the transfection was successful. Both the protein and mRNA of ILK were down-regulated in HG+ILK siRNA group compared with HG group and HG+HK group, but still higher than those in NG group. Silencing of ILK down-regulated the expression of p-GSK-3β and nuclear β-catenin. No difference of total GSK-3β or total β-catenin was observed among the 4 groups. CONCLUSION:These data support a functional role of ILK, GSK-3β and β-catenin in tubular EMT induced by high glucose. ILK may promote tubular EMT by regulating the activity of GSK-3β and β-catenin, the downstream effectors of the Wnt/β-catenin pathway.  相似文献   

2.
AIM: To investigate the mechanism of juglone on epithelial-mesenchymal transition in prostate cancer cells. METHODS: Human prostate cancer LNCaP cells were divided into control group (without juglone), 12.5 μmol/L juglone group and 25 μmol/L juglone group. LNCaP cells in the latter 2 groups were treated with juglone for 24 h. The invasion ability of the LNCaP cells was detected by Transwell assay. The protein expression of E-cadherin, vimentin, Snail and β-catenin was determined by Western blot. The LNCaP cells were treated with LiCl and juglone in combination for 24 h, and the protein expression of Snail and E-cadherin was detected by Western blot.RESULTS: The results of Trans-well invasion assay showed that the invasion ability in juglone groups was significantly decreased (P<0.01). The protein expression of E-cadherin in the LNCaP cells treated with juglone was increased, and the expression levels of vimentin and β-catenin were reduced (P<0.01). Treatment with LiCl significantly attenuated the inhibitory effect of juglone on Snail expression and subsequent down-regulation of E-cadherin expression. CONCLUSION: Juglone inhibits the epithelial-mesenchymal transition by inhibiting the Wnt/β-catenin/Snail signaling pathway in the LNCaP cells.  相似文献   

3.
AIM: To study the effect of SCUBE2 on epithelial-mesenchymal transition (EMT) in colorectal cancer cells and its mechanism. METHODS: The expression of SCUBE2 in human colorectal cancer cell line HCT116 and normal colonic cell line FHC was detected by real-time PCR and Western blot. HCT116 cells were transfected with GV144-SCUBE2 to over-express SCUBE2, and then the cell viability, migration, and apoptosis were determined by MTT assay, Transwell assay and flow cytometry, respectively. The expression of EMT markers (E-cadherin, vimentin, and Snail), β-catenin, c-Myc and cyclin D1 in the HCT116 cells was analyzed by real-time PCR or Western blot after transfection with GV144-SCUBE2 for 6 h, followed by the stimulation of 10 μg/L recombinant TGF-β1 protein for 48 h. Additionally, the EMT process of HCT116 cells, which were stimulated by TGF-β1, over-expressed SCUBE2, and treated with Wnt/β-catenin pathway activator lithium chloride (LiCl) or inhibitor XAV93920, was analyzed by Western blot. RESULTS: Compared with FHC cells, the expression of SCUBE2 in the HCT116 cells was significantly decreased. The viability and migration ability of the HCT116 cells were suppressed by SCUBE2 over-expression, but the apoptosis was not markedly changed. Elevated expression of SCUBE2 increased E-cadherin expression, and decreased the expression of vimentin, Snail, β-catenin, c-Myc and cyclin D1 induced by TGF-β1. Treatment with LiCl blocked but treatment with XAV93920 enhanced the effects of SCUBE2 on EMT. CONCLUSION: Over-expression of SCUBE2 may inhibit the cell growth and migration, and suppress EMT through Wnt/β-catenin signaling pathway.  相似文献   

4.
AIM: To investigate the effect of small interference RNA(siRNA)-mediated silencing of nestin gene on the invasion and migration of human esophageal cancer ECA109 cells and the possible mechanism. METHODS: The esophageal cell line ECA109 was transfected with siRNA targeting nestin and the cell invasion and migration abilities were observed. The expression of nestin, MMP2, MMP9, VEGF, and total and nuclear β-catenin proteins in the transfec-ted cells were determined by real-time PCR and Western blot. RESULTS: Compared with control group, the expression of nestin at mRNA and protein levels was significantly down-regulated in the ECA109 cells transfected with nestin-siRNA, so was the expression of MMP2, MMP9, VEGF, and total and nuclear β-catenin proteins. The levels of invasion and migration capacities of ECA109 cells transfected with nestin-siRNA were lower than those in the cells transfected with control-siRNA. CONCLUSION: Knockdown of nestin expression significantly inhibits the invasion and migration of the esophageal cancer cells, which may act via suppressing β-catenin translocation to the nucleus and influencing the expression of MMP2, MMP9 and VEGF.  相似文献   

5.
AIM:To investigate the effect of retinoic acid receptor gamma (RARG) on the viability and migration ability of gastric cancer cells. METHODS:The expression of RARG in gastric cancer and normal gastric tissues and its correlation with the overall survival rate of gastric cancer patients were analyzed by bioinformatics. The expression of RARG was promoted and inhibited by over-expression plasmid transfection and RNA interference technique in gastric can-cer cells in vitro, respectively. MTT and Transwell assays were used to detect the effect of RARG on the viability and migration ability of gastric cancer cells. The effect of RARG on regulating the Wnt/β-catenin signaling pathway was evaluated by Western blot and TOP/FOP dual-luciferase reporter assay. The protein interaction of RARG and β-catenin was determined by co-immunoprecipitation and immunofluorescence co-localization assay. RESULTS:Over-expression of RARG enhanced the viability and migration ability of gastric cancer SGC7901 cells (P<0.05). Knockdown of RARG attenuated the viability and migration ability of gastric cancer MGC-803 cells (P<0.05). At the same time, RARG over-expression increased the protein expression levels of β-catenin, c-Myc, cyclin D1, Twist and Snail (P<0.05), and the activity of TOP/FOP dual-luciferase reporter gene (P<0.05). In addition, RARG interacted with β-catenin protein in the gastric cancer cells. CONCLUSION:RARG promotes the viability and migration ability of gastric cancer cells via activating the Wnt/β-catenin signaling pathway, thus playing an important role in the development of gastric cancer.  相似文献   

6.
AIM: To investigate the effects of hepatitis B virus X-interacting protein(HBXIP) in hepatic cancer cells on the cell migration and expression of β-catenin. METHODS: Transwell assay was used to assess the cell migration. Gelatin zymography was used to observe the activity of matrix metalloproteinase 9 (MMP-9). The expression of MMP-9, glycogen synthase kinase 3β(GSK-3β), p-GSK3β, β-catenin and p-β-catenin in HepG2 cells was determined by Western blotting. RESULTS: HepG2 cells which stably overexpressed HBXIP (HepG2-HBXIP) exhibited higher migration ability than the control cells. The results of the gelatin zymography assay showed that HBXIP overexpression increased the activity of MMP-9 in HepG2 cells. The results of Western blotting indicated that HBXIP increased the expression of MMP-9 and β-catenin, inhibited the phosphorylation of β-catenin and promoted the phosphorylation of GSK-3β (Ser9). CONCLUSION: HBXIP regulates the GSK-3β/β-catenin signaling pathway, resulting in a significant improvement of hepatocellular carcinoma cell migration.  相似文献   

7.
AIM: To study the effect of paired-related homeobox 2 (PRRX2) gene on the viability and migration ability of gastric cancer cells, and to analyze the underlying mechanism of regulating Wnt/β-catenin signaling pathway.METHODS: The expression of PRRX2 in gastric cancer and normal gastric tissue and the correlation between PRRX2 expression in gastric cancer tissues with the overall survival rate of gastric cancer patients were analyzed by bioinformatics. The small interfering RNA (siRNA) and over-expressed plasmids of PRRX2 were transfected into gastric cancer cells MGC-803 and SGC-7901, respectively. MTT assay and Transwell assay were used to detect the viability and migration ability of gastric cancer cells. Western blot and TOPflash/FOPflash dual-luciferase reporter gene assay were used to detect the activity of Wnt/β-catenin signaling pathway. Co-immunoprecipitation was used to detected the interaction between PRRX2 and β-catenin proteins.RESULTS: Knockdown of PRRX2 attenuated the viability and migration ability of gastric cancer cell line MGC-803 (P<0.05). Over-expression of PRRX2 enhanced the viability and migration ability of SGC-7901 cells (P<0.05), increased the protein levels of β-catenin, c-Myc and cyclin D1 (P<0.05) and the activity of TOPflash/FOPflash dual-luciferase reporter gene (P<0.05). PRRX2 interacted with β-catenin protein in gastric cancer cells.CONCLUSION: PRRX2 promotes the viability and migration ability of gastric cancer cells, which may be related to Wnt/β-catenin signaling pathway.  相似文献   

8.
AIM: To investigate the effect of CD97 gene silencing by small interfering RNA(siRNA) on migration and invasion of gastric carcinoma cell lines. METHODS: Gastric carcinoma cell lines AGS and MGC803 were used in the study. Four pairs of siRNA were designed according to the sequence of CD97 gene and synthesized chemically. The siRNAs were transfected into the gastric carcinoma cell lines. Forty-eight hours after transfection, the total RNA was extracted and the mRNA expression of CD97 was detected by real-time RT-PCR so as to screen the most effective siRNA. The protein level of CD97 was also measured by fluorescence-activated cell sorting (FACS) 72 h after Transfection. The abilities of migration and invasion were evaluated by Transwell test. The viability of the cells was measured by MTT method. RESULTS: Real-time RT-PCR and FACS revealed that CD97-siRNA notably down-regulated CD97 expression at both mRNA and protein levels. The mRNA level decreased by (89.34±9.95)% and (95.42±1.93)% in AGS and MGC803 cells,respectively. The protein levels of CD97EGF and CD97stalk in AGS cells decreased by (19.29±3.45)% and (30.11±5.93)%,respectively. The protein levels of CD97EGF and CD97stalk in MGC803 cells decreased by (26.25±5.73)% and (16.22±3.23)%,respectively. No change of the cell viability after siRNA transfection was observed. The cell number of migration and invasion in AGS cells was decreased by (67.63±12.03)% and (68.02±15.63)%,respectively. The cell number of migration and invasion in MGC803 cells was decreased by (14.92±2.03)% and (22.09±5.43)%,respectively. CONCLUSION: The siRNA effectively inhibits CD97 expression and restrains the migration and invasion capacities of gastric carcinoma cell lines, suggesting that CD97 plays an important role in the metastasis of gastric cancer.  相似文献   

9.
AIM: To investigate the mechanism and the effect of glycogen synthase kinase 3β (GSK-3β) inhibitor (2’Z,3'E)-6-bromoindirubin-3'-oxime (BIO) on the protein expression of β-catenin and Bcl-2, and proliferation and apoptosis in colon carcinoma SW480 cells.METHODS: The immunohistochemical staining and Western blotting were performed to detect the protein expression of β-catenin, cyclin D1 and Bcl-2. The cell cycle distribution and apoptotic rate were detected by flow cytometry. The morphologic features of SW480 cells before and 24 h after BIO exposure at different concentrations were observed under microscope with HE staining.RESULTS: Compared with the untreated SW480 cells, the protein expression of β-catenin significantly increased and some β-catenin positive nuclear staining positive cells appeared in BIO treated cells. and The cells exposed to BIO showed that the cyclin D1 protein and the cells in S stage and G2/M stage moderately increased, the protein level of Bcl-2 moderately decreased, and the cell apoptosis rate was significantly lower than those in control cells. Furthermore, the morphological changes of the SW480 cells were observed 24 h after BIO treatment. CONCLUSION: Our results indicate that GSK-3β inhibitor BIO participates in the cellular processes of promoting proliferation and inhibiting apoptosis in colon carcinoma cells. The mechanisms are mainly associated with activating the β-catenin pathway and regulating the balance of Bcl-2 pathway, and the up-regulation of β-catenin is most likely the possible factor for SW480 cell regression.  相似文献   

10.
AIM: To study the role of β-catenin in the apoptosis of pancreatic acinar cells induced by cae-rulein. METHODS: Rat pancreatic acinar AR42J cells were treated with caerulein. The expression of β-catenin at mRNA and protein levels in the AR42J cells was determined by real-time PCR and Western blot. The β-catenin over-expression vector was transfected into AR42J cells. After treatment with caerulein, the over-expression effect was evaluated by real-time PCR and Western blot. The changes of cell viability were measured by MTT assay. The leakage rates of lactate dehydrogenase (LDH) and amylase (AMY) were measured by binitrophenyl hydrazine method and iodine starch colorimetry, respectively. The apoptosis was analyzed by flow cytometry. The protein levels of endoplasmic reticulum stress protein CHOP and cleaved caspase-12 in the AR42J cells were determined by Western blot. RESULTS: The expression of β-catenin at mRNA and protein levels in the AR42J cells was decreased after treatment with caerulein (P<0.05). The expression of β-catenin in the AR42J cells was significantly increased by transfection with β-catenin over-expression vector. The viability of AR42J cells after treatment with caerulein was reduced, while the leakage rates of LDH and AMY, the apoptotic rate and the protein levels of CHOP and cleaved caspase-12 in the cells were increased (P<0.05). Over-expression of β-catenin enhanced the viability of AR42J cells after treatment with caerulein, reduced the leakage rates of LDH and AMY, and decreased the apoptotic rate and the protein levels of CHOP and cleaved caspase-12 in the AR42J cells. CONCLUSION: β-Catenin significantly inhibits the apoptosis of pancreatic acinar cells induced by caerulein. The mechanism is related to the reduction of endoplasmic reticulum stress.  相似文献   

11.
AIM: To investigate the molecular mechanism and downstream signaling pathway by which AKT1 inhibition regulates breast cancer cell migration. METHODS: RNA interference was used to knockdown the expression of AKT1. Western blot assay was performed to examine the expression of AKT1 total protein, β-catenin total protein and β-catenin nuclear protein. Immunofluorescence was used to examine the cellular localization of β-catenin. Transwell assay was used to investigate whether β-catenin nuclear accumulation as an alternative pathway was responsible for breast cancer metastasis induced by AKT1 inhibition. RESULTS: The total protein expression of AKT1 was decreased in MCF-7 and MDA-MB-231 cells treated with AKT1 siRNA. A significant increase in the protein expression of β-catenin was observed in MCF-7 cells and MDA-MB-231 cells treated with AKT1 siRNA. Immunofluorescence staining showed that MCF-7 cells and MDA-MB-231 cells displayed strong β-catenin staining in the cytoplasm and nucleus after knockdown of AKT1 expression. The ability of tumor cell migration increased dramatically after treated with AKT1 specific siRNA in the breast cancer MCF-7 cells and MDA-MB-231 cells in Transwell assay. XAV-939 reversed breast cancer cell migration induced by knockdown of AKT1 expression. CONCLUSION: β-catenin nuclear accumulation contributes to AKT1 inhibition-mediated breast cancer cell migration.  相似文献   

12.
AIM:To investigate the inhibitory effect of microRNA-9(miR-9) on epithelial-mesenchymal transition (EMT) in the gastric cancer SGC-7901 cells and its mechanism.METHODS:The gastric cancer cell line SGC-7901 was transfected with miR-9 mimics or negative control mimic (NCM),as miR-9 or NCM group,respectively.The SGC-7901 cells without transfection were used as control group.The expression level of miR-9 in each group was detected by RT-qPCR.The migration and invasion abilities of the SGC-7901 cells in the 3 groups were detected by Transwell assay.The protein expression of N-cadherin,E-cadherin,α-catenin and neuropilin-1(NRP1) was determined by Western blot.Antagonistic effect of NRP1 over-expression on miR-9 inhibition of EMT was detected by Western blot.The relationship between miR-9 and NRP1 was analyzed by dual luciferase assay.RESULTS:The expression level of miR-9 in miR-9 group was significantly up-regulated,which was 538 times higher than that in control group (P<0.05).The number of migratory cells in miR-9 group was significantly lower than that in control group (P<0.05).Compared with control group,the protein expression of N-cadherin and NRP1 in miR-9 group was significantly decreased,while the protein expression of E-cadherin and α-catenin protein was significantly increased.Over-expression of NRP1 resulted in the increase in the protein expression of N-cadherin in the gastric cancer cells of miR-9 group,and the decrease in the protein expression of E-cadherin and α-catenin significantly.The result of dual luciferase assay showed that NRP1 was a downstream target gene of miR-9(P<0.05).CONCLUSION:miR-9 may inhibit the expression of EMT-related proteins through the downstream target gene NRP1,thus inhibiting the EMT of gastric cancer SGC-7901 cells.  相似文献   

13.
AIM: To investigate the effect of Eph receptor A2 (EphA2) on drug resistance of colorectal carcinoma cells and its possible mechanisms. METHODS: Real-time PCR and Western blot were used to detect the expression of EphA2 at mRNA and protein levels in LoVo and LoVo/5-FU cells. EphA2 siRNA was transfected to down-regulate the EphA2 expression in LoVo/5-FU cells, and the drug sensitivity was calculated by CCK-8 assay. Meanwhile, cell migration and invasion were measured by wound healing assay and Transwell assay, and the protein levels of E-cadherin, β-catenin, N-cadherin, vimentin, Notch and Snail were determined by Western blot. RESULTS: The expression of EphA2 at both mRNA and protein levels was significantly up-regulated in LoVo/5-FU cells (P<0.05). Knockdown of EphA2 suppressed the cell viability, and migration and invasion abilities, but promoted drug sensitivity of LoVo/5-FU cells. Up-regulation of E-cadherin and β-catenin, and down-regulation of N-cadherin and vimentin were observed, indicating that the epithelial-mesenchymal transition (EMT) process was suppressed. Knockdown of EphA2 decreased the expression levels of Notch and Snail. CONCLUSION: Down-regulation of EphA2 partly reverses drug resistance of LoVo/5-FU cells. The mechanism may be related to suppressing cell growth, migration, invasion and EMT process via Notch/Snail signaling pathway.  相似文献   

14.
15.
SUN Jie  FU Li-fang 《园艺学报》2017,33(8):1428-1435
AIM: To explore the expression of Dickkopf-1 (DKK1) in human gastric carcinoma cells, and the influences of DKK1 gene silencing on cell invasion. METHODS: The levels of DKK1 in the human gastric mucosa cell line GES-1 and gastric carcinoma cell lines MKN-45 and SGC-7901 were detected by real-time PCR and Western blot. DKK1 gene was silenced by RNA interference, which was verified by real-time PCR, Western blot and ELISA. The cell invasion ability was determined by Transwell assay, and the cell proliferation was inhibited by mitomycin C. The levels of E-cadherin, N-cadherin, vimentin and β-catenin were determined by real-time PCR and Western blot. RESULTS: The expression of DKK1 was significantly higher in MKN-45 cells and SGC-7901 cells than that in GES-1 cells, indicating that DKK1 expression was obviously increased in gastric carcinoma cells. After successful silencing of DKK1 gene in the MKN-45 cells and SGC-7901 cells, the cell invasion ability was markedly decreased in a time-dependent pattern with increased expression of E-cadherin and decreased expression of N-cadherin and vimentin, indicating that DKK1 silencing dramatically inhibited gastric carcinoma cell invasion and epithelial-mesenchymal transition (EMT). The introduction of exogenous recombinant DKK1 (rDKK1) demonstrated the promoting effect of DKK1 on gastric carcinoma cell invasion and EMT. In addition, the inhibitory effects of DKK1 silencing on gastric carcinoma cell invasion and EMT were fulfilled by down-regulating β-catenin. CONCLUSION: The expression of DKK1 is significantly increased in human gastric carcinoma cells. Silencing of DKK1 markedly inhibits gastric carcinoma cell invasion and EMT by down-regulating β-catenin.  相似文献   

16.
AIM: To investigate the effects of human bone morphogenetic protein 2 (BMP2) and BMP9 on the proliferation, apoptosis and migration of human gastric carcinoma cell line MNK-45. METHODS: Immunocytochemical staining, MTT assay, wound-healing test, Transwells migration test, Hoechst 33258 staining and flow cytometry (FCM) were used to determine the infection of AdBMP2 and AdBMP9 on the proliferation, apoptosis and migration of MNK-45 cells. The expression of GSK-3β (including p-GSK-3β and total GSK-3β) and β-catenin in MNK-45 cells was also detected by Western blotting. RESULTS: The proliferation of MNK-45 cells was inhibited from the third day on and in a time-dependent manner after infected with AdBMP2 and AdBMP9. The results of Hoechst 33258 staining and FCM proved that apoptosis rates in BMP2 group and BMP9 group were higher than that in GFP group. Both wound-healing test and Transwell experiment indicated that up-regulating the expression of BMP2 and BMP9 inhibited the migration of MNK-45 cells. The phosphorylation levels of GSK-3β in BMP2 group and BMP9 group were higher than that in GFP group. However, no significant change of β-catenin among groups was observed. CONCLUSION: Up-regulation of BMP2 and BMP9 expression inhibits the proliferation of MNK-45 cells.  相似文献   

17.
AIM: To investigate the effect of enhancer of zeste homolog 2 (EZH2) regulating Wnt/β-catenin signaling pathway on the apoptosis of brain glioma cell lines. METHODS: The expression level of EZH2 in glioma cell lines U87, H4 and U251 and normal human astrocytes (NHA) was detected by RT-qPCR and Western blot. The EZH2 siRNA and siRNA control were transfected into the H4 cells. The cell viability was measured by MTT assay. The apoptosis was analyzed by flow cytometry. Caspase-3 activity was detected by spectrophotometry. The expression levels of the key protein β-catenin of the Wnt/β-catenin signaling pathway and the downstream target molecule c-Myc were determined by Western blot. After the H4 cells transfected with EZH2 siRNA were treated with an activator of Wnt/β-catenin signaling pathway, the apoptosis rate was measured by flow cytometry, and the expression of β-catenin and c-Myc was determined by Western blot. RESULTS: The mRNA and protein expression levels of EZH2 in the glioma cell lines U87, H4 and U251 were significantly higher than those in NHA (P<0.05). The expression of EZH2 at mRNA and protein levels in the H4 cells was higher than that in U87 cells and U251 cells (P<0.05). EZH2 siRNA obviously inhibited the expression of EZH2 at mRNA and protein levels in the H4 cells. Knockdown of EZH2 expression decreased the viability of H4 cells, the apoptotic rate was significantly increased, and the activity of caspase-3 was significantly increased in the cells (P<0.05). Knockdown of EZH2 expression also inhibited the expression of β-catenin and c-Myc. The activator of Wnt/β-catenin signaling pathway reduced the apoptosis rate of H4 cells induced by down-regulation of EZH2, and reduced the activity of caspase-3 in the cells. CONCLUSION: EZH2 is over-expressed in glioma cells. Down-regulation of EZH2 expression induces apoptosis of glioma cells by inhibiting the activation of Wnt/β-catenin signaling pathway.  相似文献   

18.
AIM: To investigate the mechanism of microRNA-138-5p (miR-138-5p) inhibiting the proliferation, migration and invasion abilities of lung cancer cells.METHODS: The lung cancer A549 and H460 cells were transfected with miR-NC (control group) or miR-138-5p (experimental group). The bioinformatic analysis was performed to predict the target genes of miR-138-5p.The expression levels of miR-138-5p, forkhead box protein C1 (FOXC1) mRNA and vimentin mRNA were detected by RT-qPCR. The protein expression of FOXC1, vimentin, E-cadherin, N-cadherin and β-catenin was determined by Western blot. MTS method and colony formation assay were used to detect cell viability and proliferation ability. Wound healing assay and Transwell assay were used to detect cell migration and invasion ability.RESULTS: Over-expression of miR-138-5p significantly reduced the expression of FOXC1 and vimentin at mRNA and protein levels (P<0.05). The expression of E-cadherin and β-catenin were up-regulated and the expression of N-cadherin was down-regulated. The proliferation, migration and invasion abilities of the lung cancer cells were inhibited by the over-expression of miR-138-5p.CONCLUSION: miR-138-5p inhibits the proliferation, migration and invasion abilities of lung cancer cells by targeting FOXC1 and vimentin. It may be a potential target for lung cancer gene therapy.  相似文献   

19.
AIM: To investigate the effect of microRNA-708-5p(miR-708-5p) on the migration of human mesenchymal stem cells(hMSCs). METHODS: The expression of miR-708-5p was determined by miRNA arrays and real-time PCR. By transfection of miR-708-5p mimic or inhibitor, the up-regulation or down-regulation of miR-708-5p expression in hMSCs was evaluated. The cell scratch and Transwell tests were used to detect the migration capability of hMSCs. The effects of transmembrane protein 88(TMEM88), a miR-708-5p target gene, on β-catenin expression and migration of hMSCs were detected. RESULTS: The expression of miR-708-5p was down-regulated in the old hMSCs compared with the young hMSCs. Up-regulation of miR-708-5p resulted in increasing migration of hMSCs. Conversely, down-regulation of miR-708-5p resulted in decreasing cell migration. The expression of TMEM88 was up-regulated in the old hMSCs compared with the young hMSCs, while the expression of β-catenin was down-regulated. Directly repression of TMEM88 expression increased the β-catenin expression and migration of hMSCs. The regulation of miR-708-5p on hMSCs was attenuated by inhibiting the expression of miR-708-5p and TMEM88 together. CONCLUSION: miR-708-5p increases β-catenin expression and Wnt/β-catenin activity by repressing TMEM88, thus enhancing the migration of hMSCs.  相似文献   

20.
AIM: To study the effect of histone deacetylase 1 (HDAC1) on the apoptosis of breast cancer cells.METHODS: The expression of HDAC1 at mRNA and protein levels in normal mammary epithelial cell line MCF-10A and breast cancer cell lines BT549, MCF-7 and MDA-MB-231 was measured by RT-qPCR and Western blot. HDAC1 siRNA was transfected into MDA-MB-231 cells, and then RT-qPCR and Western blot were used to determine the expression level of HDAC1. The cell viability was measured by MTT assay, and apoptosis was analyzed by flow cytometry. The protein levels of β-catenin, c-Myc, cyclin D1 and cleaved caspase-3 were determined by Western blot. Breast cancer cells with HDAC1 knockdown were treated with Wnt/β-catenin signaling pathway activator, and then the cell viability and apoptosis were measured.RESULTS: The expression of HDAC1 at mRNA and protein levels in BT549, MCF-7 and MDA-MB-231 cells was significantly higher than that in normal mammary epithelial cell line MCF-10A, and the highest expression level of HDAC1 was observed in MDA-MB-231 cells (P<0.05). HDAC1 siRNA reduced the expression of HDAC1 at mRNA and protein levels in the breast cancer cells. The viability of MDA-MB-231 cells was decreased after knockdown of HDAC1 expression, the apoptotic rate was increased, the protein level of cleaved caspase-3 in the cells was elevated, and the protein levels of β-catenin, c-Myc and cyclin D1 were decreased (P<0.05). Wnt/β-catenin signaling pathway activator reversed HDAC1 knockdown-induced apoptosis and decrease in viability of MDA-MB-231 cells, and reduced the protein level of cleaved caspase-3.CONCLUSION: Knockdown of HDAC1 expression induces apoptosis of breast cancer cells by inhibiting the activation of Wnt/β-catenin signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号