首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To observe the effects of microparticles derived from bone marrow mesenchymal stem cells (MSC-MPs) on angiogenesis and cardiac function in a rat myocardial infarction model. METHODS: MSCs were obtained from Sprague-Dawley rats. MSCs were treated under serum-free condition in hypoxia for 72 h, and the microparticles were isolated from the supernatants. The phenotypic profile of MSC-MPs was determined by bead-based flow cytometry and the morphology was observed under a transmission electron microscope. The rat myocardial infarction model was established. The cardiac function was evaluated by echocardiography after the intramyocardial injection of MSC-MPs. The myocardial infarct size was observed by Masson staining. The blood vessel density in the peri-infarcted area was measured using immunohistochemical staining for von Willebrand factor and α-smooth muscle actin. The expression of vascular endothelial growth factor (VEGF) was analyzed by real-time PCR. RESULTS: Apoptotic MSCs released a large quantity of microparticles which were phenotypically similar to the parent MSCs and 100~1 000 nm in diameter. The cardiac functions of myocardial infarction rat model were improved at 7 d and 28 d after intramyocardial injection of MSC-MPs compared with control group. The myocardial infarct size was reduced and angiogenesis was promoted significantly in the infarcted heart injected with MSC-MPs 28 d after treatment. MSC-MPs treatment also increased the expression level of VEGF within 7 d.CONCLUSION: MSC-MPs protect cardiac tissue from ischemic injury and improve cardiac function by promoting angiogenesis after myocardial infarction.  相似文献   

2.
GAO Li  HU Cheng-hu  JIN Yan 《园艺学报》2013,29(4):707-712
AIM:To investigate the different functions of bone marrow mesenchymal stem cells (BMMSCs) in age-related osteoporosis. METHODS:The senescence-accelerated mice (SAMP6) were used in the experiment. The BMMSCs were isolated from femora and tibiae by flushing. Flow cytometric analysis was performed with MSCs-related monoclonal antibodies. The expression of differentiation genes was tested by real-time RT-PCR. RESULTS:In the progress of age-related osteoporosis, BMMSCs exhibited a decrease in osteogenesis and an increase in adipogenesis. Transforming growth factor β(TGF-β) signaling was significantly changed along with aging in SAMP6 mice. CONCLUSION:The functional changes of BMMSCs may play an important role in senile osteoporosis. The alteration of TGF-β-related gene expression may be the molecular mechanism of dysfunction in BMMSCs.  相似文献   

3.
AIM: To construct a eukaryotic expression vector containing pancreatic duodenal homebox-1 (PDX-1) and to elevate the expression efficiency of exogenous gene in rat bone marrow mesenchymal stem cells (MSCs). METHODS: Recombinant vector containing PDX-1 was constructed. Flow cytometry was used to identify the cell cycle of bone marrow mesenchymal stem cells (MSCs) cultured in vitro. Recombinant vector containing PDX-1 was transfected into bone marrow MSCs using superfect in medium. After being selected by G418, RT-PCR and Western blotting were used to investigate the expression of PDX-1 in MSCs. RESULTS: Restricted enzyme analysis and sequencing showed that PDX-1 gene segment was consistent with that in GenBank. Flow cytometry showed that there were about 85.9% cells at the cell cycle of G0/G1. The whole cells transfected emitted green fluorescence under flow cytometry. The efficiency of transfection was above 40%. RT-PCR and Western blotting demonstrated that there was expression of PDX-1 in transfected bone marrow MSCs. CONCLUSION: Recombinant vector containing PDX-1 was constructed successfully. Superfect mediated expression of exogenous gene in bone marrow MSCs in a high efficiency, and bone marrow MSCs containing exogenous gene are an ideal cells for gene therapy.  相似文献   

4.
AIM: To explore whether strontium ranelate (Sr) promotes differentiation of rat bone marrow mesenchymal stem cells (BMSCs) to osteoblasts by increasing the expression of bone morphogenetic protein 2 (BMP-2). METHODS: Rat BMSCs were isolated, purified and cultured, then were induced to differentiate into osteoblasts. The cells were treated with different concentrations of Sr or noggin (an inhibitor of BMP-2) according to the experimental purposes. The activity of alkaline phosphatase (ALP) was measured by colorimetry. Mineralized nodules were measured by alizarin red staining. The expression of BMP-2 was detected by Western blotting. RESULTS: Treatment with Sr at concentrations of 0.1 mmol/L to 7 mmol/L for 7 d obviously increased the activity of ALP,and Sr at concentration of 3 mmol/L produced the maximum effect. Exposure of the cells to Sr at concentration of 3 mmol/L for 21 d significantly increased mineralized nodules. Exposure of the cells to Sr at concentrations of 0.1 mmol/L to 7 mmol/L for 7 d markedly increased the expression of BMP-2. Preconditioning with noggin at concentration of 100 μg/L for 2 h not only inhibited Sr-induced expression of BMP-2, but also antagonized the increase in the activity of ALP and mineralization induced by Sr in BMSCs. CONCLUSION: Up-regulation of the expression of BMP-2 may be one of the mechanisms by which Sr promotes differentiation of rat BMSCs to osteoblasts.  相似文献   

5.
AIM: To study the effect of meglumine cyclic adenylate (MCA) on the differentiation of bone marrow mesenchymal stem cells (BMSCs) into cardiomyocytes in vitro. METHODS: The whole bone marrow adherent culture method was used to isolate, culture and amplify the BMSCs. The surface markers of BMSCs were determined by flow cytometry analysis. MCA at concentrations of 10-2 mol/L, 10-3 mol/L, 10-4 mol/L, 10-5 mol/L, 10-6 mol/L and 10-7 mol/L was added to the culture medium containing the second generation of BMSCs.5-Azacytidine(5-Aza) was used as a positive control. The cell viability was measured by MTT method.The cAMP content in BMSCs was detected by ELISA. The mRNA expression of GATA-4, Cx43 and β-MHC in MCA group and MCA+H89 (a PKA inhibitor) group was measured by SYBR-RT-PCR. The differentiation effects of MCA and 5-Aza were compared by flow cytometry. RESULTS: Most of the BMSCs expressed CD44 and CD71, and did not express CD45. MCA inhibited the viability of BMSCs in a time-and dose-dependent manner, and MCA atthe concentration of 10-2 mol/L showed particularly remarkable effect. MCA significantly increased intracellular cAMP level in BMSCs in a concentration-dependent manner. The mRNA expression of GATA-4, β-MHC and Cx43 in MCA group were significantly higher than that in blank group (P<0.05), and the highest effect was under the condition of MCA induction at the concentration of 10-3 mol/L for 3 days. The mRNA expression of GATA-4, β-MHC and Cx43 in MCA group was higher than that in 5-Aza group and H89+MCA group (both P<0.05). Differentiation rate in MCA group was slightly higher than that in 5-Aza group (20.24%±1.02% vs 18.39%±0.58%, P<0.05). CONCLUSION: MCA stimulates BMSCs to increase intracellular cAMP production and inhibits the viability of BMSCs, thus promoting the mRNA expression of GATA-4, β-MHC and Cx43 through the cAMP/PKA signaling pathway.  相似文献   

6.
AIM:To study the effect of small interfering RNA (siRNA) on the expression of beta 2-microglo-bulin (β2M) in pre-differentiated bone marrow mesenchymal stem cells (BMSCs). METHODS:The β2M siRNA was transfected into the pre-differentiated BMSCs with Lipofectamine 2000. BMSCs were divided into transfection group, blank control group and negative control group. The expression of β2M at mRNA and protein levels was determined by real-time qPCR, Western blotting and laser confocal microscopy. The productions of aggrecan and type II collagen in pre-differentiated BMSCs were determined by toluidine blue staining and type Ⅱ collagen immunofluorescence. RESULTS:The results of real-time qPCR, Western blotting and laser confocal microscopy showed that siRNA successfully inhibited the expression of β2M at mRNA and protein levels in the pre-differentiated BMSCs. The results of toluidine blue and type Ⅱ collagen immunofluorescence staining showed that siRNA does not affect the productions of aggrecan and type Ⅱ collagen in the pre-differentiated BMSCs. CONCLUSION:siRNA targeting β2M reduces the expression of β2M in the pre-differentiated BMSCs and does not affect the chondrocyte characteristics of pre-differentiated BMSCs.  相似文献   

7.
LI Jia-ying  FENG Lie 《园艺学报》2014,30(6):1088-1092
AIM:To investigate whether trichostatin A (TSA), a new revulsant,can induce mouse mesenchymal stem cells to differentiate into insulin-secreting cells and to explore the appropriate concentration of TSA. METHODS:The mesenchymal stem cell line from C57BL/6 mice was cultured in vitro and divided into 5 groups before treated with different concentrations of TSA, (group A: DMSO; group B~E: treated with 25 nmol/L, 50 nmol/L, 100 nmol/L and 200 nmol/L of TSA, respectively). After exposed to different cultured media for 10 d during the 2 stages, the cells were detected by the following methods: the insulin-secreting cells in each group were identified by dithizone staining and the results were calculated with immunohistochemical half quantitative analysis. The insulin secreted by insulin-secreting cells in each group was identified by immunofluorescence, and the mean fluorescence intensity of insulin was compared. The content of insulin in each group was quantified by ELISA. The appropriate concentration of TSA was determined according to the above results. RESULTS:TSA treatment for 10 d promoted the mouse bone marrow mesenchymal stem cells to differentiate into insulin-secreting cells which produced insulin. The immunohistochemistry and immunofluorescence imaging analysis of insulin-secreting cells showed that the insulin staining positive area, positive ratio, total density of insulin expression and mean fluorescence intensity of insulin in group B were significantly higher than those in the other TSA-treated groups. When the concentrations of TSA gradually increased, the content of insulin reduced accordingly. The content of insulin in group B was significantly higher than that in the other TSA-treated groups. CONCLUSION:TSA treatment for 10 d promotes bone marrow mesenchymal stem cells from C57BL/6 mice to differentiate into insulin-secreting cells and the appropriate concentration of TSA is 25 nmol/L.  相似文献   

8.
AIM: To explore the effect of xanthosine (Xs) on proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs). METHODS: Xs was directly added to the culture system and the effects of Xs on proliferation and differentiation of BMSCs were observed. RESULTS: In the presence of Xs, the growth rate of the 10th passage cells was almost similar to that of the 4th passage cells and no downtrend was observed. However, in control group (without Xs), the growth rate of the 10th passage cells was obviously declined. The BMSCs promoted by Xs still kept up a vigorous capability of differentiation into hepatocytes. CONCLUSION: As an inhibitor of asymmetric cell kinetics, Xs can promote the conversion of BMSCs from asymmetric cell kinetics to symmetric cell kinetics, and keeps synchronously the ability of differentiation from BMSCs into hepatocytes as well. It is helpful for enhancing the proliferation efficiency of BMSCs in vitro, and will have extensive application of clinical practice.  相似文献   

9.
10.
AIM:To investigate the effect of inhibiting the release of exosomes on the biological characteristics of bone marrow mesenchymal stem cells (BM-MSCs) and the underlying mechanisms. METHODS:The exosome releasing-deficient mouse model was constructed by knockout of Rab27a using TALEN technique. The BM-MSCs were isolated and cultured. The exosomes were extracted from the culture medium using total exosome isolation kit and quantified by nanoparticle tracking analysis (NTA). The size and morphology of the exosomes were observed under transmission electron microscope. To evaluate the proliferation ability of BM-MSCs, the BM-MSCs were labeled with 5-ethynyl-2'-deoxyuridine (EdU) and the expression level of proliferating cell nuclear antigen (PCNA) was determined by Western blot. Moreover, hypoxia tolerance of BM-MSCs in vitro was evaluated via TUNEL staining and MTS assay. RESULTS:The count of exosomes released by BM-MSCs isolated from Rab27a knockout mice was significantly reduced. Inhibition of exosome release resulted in decreases in the viability of the BM-MSCs and their resistance to hypoxia. CONCLUSION:Inhibition of exosome release from the BM-MSCs results in significantly decreased proliferation ability and resistance to hypoxia.  相似文献   

11.
AIM: To evaluate the effects of bone marrow-derived mesenchymal stem cells (MSCs) on engraftment of hematopoietic stem/progenitor cells in sensitized mice. METHODS: Mouse bone marrow-derived MSCs were cultured by adherent culture method. MSCs combined with or without hematopoietic stem/progenitor cells were implanted into the sensitized mouse model, which was established by allogeneic splenocyte transfusion, and were divided into 6 groups: MSC intervention groups, including sensitized mice with MSCs on day 11, sensitized mice with MSCs on day 0 and sensitized-mice with MSCs both on day 11 and day 0; control groups, including sensitized mice without MSC intervention, non-sensitized mice without MSC intervention and non-sensitized mice without MSCs or transplantation of hematopoietic stem/progenitor cells. The survivors were assessed after transplantation and hematopoietic recovery was monitored weekly including hematological change, immune function reconstruction, bone marrow cell recovery, chimera analysis and graft-versus-host disease development. RESULTS: Compared with different control groups, MSC intervention did not prolong the survival rates of the sensitized model mice after lethal irradiation. CONCLUSION: Under the experimental conditions, MSC combined with C57BL/6 bone marrow hematopoietic stem/progenitor cells fail to promote the growth of engraftment in C57BL/6 allogeneic splenocyte-sensitized BALB/c mice in vivo.  相似文献   

12.
AIM: To study the function of proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs) for bone loss in the pathogenesis of osteoporosis (OP) in ovariectomized rats. METHODS: Animal model of OP was established by ovariectomy (OVX,bilateral ovarian resection) in 10-week-old healthy female Sprague-Dawley (SD) rats.BMSCs were isolated, cultured and purified by the combination of density gradient centrifugation, adhesion separation and limited dilution method, and cultured in vitro to the 3rd~4th passage in all experiments. The BMSCs phenotype appraisal was studied by flow cytometry. Colony-forming assay was applied to detect the BMSCs proliferation ability. The MTT method was used to analyze the growth curves of BMSCs. After adipogenic induction (ADI), lipid drops were observed by oil red O staining to compare the adipogenic potential between the 2 kinds of BMSCs. After osteogenic induction (OSI), calcium nodules were observed by alizarin red staining (ARS). The mRNA expression levels of BMSCs osteogenesis-related proteins, for instance, Runx2, osteocalcin (OCN) and osteopontin (OPN) were measured by RT-PCR. RESULTS: Compared with sham group, the colony-forming ability of BMSCs in OVX group became decreased, the proliferation capacity was declined, the osteogenic potential was decreased, and the adipogenic potential was increased(P<0.05). CONCLUSION: In ovariectomized OP rats, the proliferation and osteogenesis of BMSCs decrease, and the adipogenesis of BMSCs increases, which may cause rapid bone loss and play an important role in the pathogenesis of OP.  相似文献   

13.
AIM: To approach the gap junction distribution and communication function of cardiomyocyte-like cells derived from rat bone marrow mesenchymal stem cells (MSCs) in vitro.METHODS: MSCs were isolated by extraction of bone marrow specimens,gradient centrifugation and the adherence of culture plates.MSCs were culture in vitro,treated with 5-azacytidine and incubated for 24 h.The induced MSCs,which had been incubated for 2,3 and 4 weeks,were divided into group Ⅰ,Ⅱ and Ⅲ.In addition,the normal cardiomyocyte cells were used as control group.The distribution of connexin 43(Cx43) and the mean fluorescence redistribution rate were detected in every group with the laser scanning confocal microscope.RESULTS: Cx43 protein grain density in induced MSCs was increased with the lasting of incubation by quantitive analysis of Cx43 distribution.After 4 weeks,the Cx43 protein density in induced MSCs was nonsignificant deviation with control group (63.87±12.43,64.87±12.15,P>0.05).The diversify tendency of the mean fluorescence redistribution rate was approximation with the result of Cx43 in every group.The results showed that groupⅠ was 19.59%±6.08%,groupⅡ was 37.17%±3.84%,groupⅢ was 46.82%±2.69%,and control group was 49.71%±5.53%.CONCLUSION: MSCs can be differentiated to cardiomyocyte-like cells,which have been induced and incubated for 4 weeks in vitro.The communicational function of those MSCs is similar to the normal cardiomyocyte cells.  相似文献   

14.
AIM: To observe amelioration of motor function in a Duchenne muscular dystrophy (DMD) mouse model (dko mice) after transplantation of bone marrow mesenchymal stem cells (MSCs). METHODS: Passage fifth MSCs cultured in vitro were transplanted into dko mice by tail vein, motor functions of experimental mice and matched control mice, including traction, rotating rods, rotated wheel, upside down, turning over and walking (all were recorded by Sony digital camera) were tested 15 weeks after transplantation. The fluorescent expression of dystrophin and utrophin in gastrocnemius muscle tissue of dko mice was detected by SABC-Cy3, and average optical density of positive fibers was calculated. RESULTS: MSCs grew in colony over passage third, and there was low immunologic reaction by vein transplantation. There was dystrophin and utrophin fluorescent expression in sarcolemma of dko mice 15 weeks after transplantation, but no any fluorescent expression in controls. There was significant difference in fluorescent average optical density of positive fibers between two groups (P<0.05). Amelioration of motor functions in dko mice was found 15 weeks after MSCs transplantation compared with the control mice (P<0.05). CONCLUSION: Transplantation of MSCs ameliorates the positive and passive motor functions of dko mice.  相似文献   

15.
AIM:To investigate the effect of human β-nerve growth factor (β-NGF) gene-modified bone marrow-derived mesenchymal stem cells (MSCs) transplantation on the rotational behavior improvement in a rat model of Parkinson disease (PD). METHODS:The rat model of PD was established successfully and the animals were divided into 4 groups:β-NGF-MSCs group (transplanted with 5×105 β-NGF-engineered MSCs), MSCs group (transplanted with 5×105 MSCs), DMEM/F12 group (5 μL transplantation medium was injected in the right striatum of the rats) and PD model group (without transplantation). The rotational scores were assessed 2 weeks, 4 weeks and 6 weeks after transplantation. At different time points after transplantation, the rats were tested for apomorphine (APO)-induced rotational behavior and the brains of the PD model rats were examined by fluorescence microscopy and immunohistochemical staining. RESULTS:Transplantation of human β-NGF gene-modified MSCs effectively improved the behavioral performance in the rats. At the 2nd, 4th and 6th weeks after cell transplantation, the rotational frequencies after injection of APO decreased significantly in β-NGF-MSCs group compared with MSCs group and PD group (P<0.05). Both β-NGF gene-modified MSCs and MSCs survived in the brains of PD model rats, had good compatibility with the host cells, and showed no signs of destroying the host and the glial cicatrisation. The β-NGF gene-modified MSCs expressed β-NGF stablely in the brains of PD model rats, and showed obvious improvement of the rotational behavior in the PD model rats induced by APO compared with MSCs group. CONCLUSION:The behavior of the rats with PD is significantly improved by transplanting β-NGF-modified MSCs in right striatum, and β-NGF gene therapy has potential clinical value.  相似文献   

16.
AIM:To investigate the role of cysteine-rich 61 (Cyr61/CNN1) in proliferation and migration of bone marrow mesenchymal stem cells (BMSCs). METHODS:The lentiviral vector carrying CCN1 (Lenti-GFP-CCN1) was constructed and then transfected into the rat BMSCs. The cells were divided into non-transfection group, transfection group (transfected with Lenti-GFP-CCN1) and negative control group (Lenti-GFP). The fluorescence intensity of the transfected BMSCs was observed under inverted fluorescence microscope. The effects of CCN1 on the proliferation and migration of BMSCs were detected by MTT assay and scratch wound healing assay. RESULTS:The proliferation of BMSCs transfected with Lenti-GFP CCN1 had no significant difference compared with negative control group and control group. The width/thickness ratio of migrated BMSCs in wound healing was significantly higher in Lenti-GFP-CCN1 group than that in negative control group and control group (P<0.05). CONCLUSION:Exogenous CCN1 promotes the migration of BMSCs.  相似文献   

17.
AIM:To estimate the neural differentiation efficiency of bone marrow mesenchymal stem cells (MSCs) derived from amyloid precursor protein (APP) transgenic mice and to investigate the correlation with Notch1 signaling and the autophagy activity during the differentiation. METHODS:The MSCs were divided into APP group (MSCs from APP transgenic mice) and WT group (MSCs from wild-type mice). MSCs were treated with β-mercaptoethanol as an inducer for differentiating into neurons. The levels of Aβ40 and Aβ42 were measured using enzyme-linked immunosorbent assay kits. The expression of neural cell-specific markers, neuron-specific enolase (NSE) and microtubule-associated protein 2 (MAP-2), was measured by immunocytochemistry and Western blotting. The expression levels of Notch1, Notch intracellular domain (NICD), Hes5, LC3 and p62 (a selective substrate of autophagy) were also detected by Western blotting. RESULTS:The neural differentiation capacity and the Aβ expression level of the MSCs in APP group were higher than those in WT group, and stronger inhibition of Notch1 signaling pathway in the MSCs from APP group was observed. However, the process of autophagy, which is essential for the survival and function of the neural cells, was impaired in the neural differentiated counterpart of the MSCs in APP group. CONCLUSION:Over-expression of APP might contribute to the high neural differentiation capacity of MSCs by inhibiting Notch1 signaling pathway in vitro. However, autophagy is impaired in the differentiated MSCs from APP transgenic mice.  相似文献   

18.
AIM:To investigate the cytological basis and differentiating conditions of human bone marrow mesenchymal stem cells(hMSCs) differentiated into cells of the endothelial lineage in vitro.METHODS:hMSCs were isolated by density gradient centrifugation and fractionated on a 1 073 g/L Percoll.The combination of VEGF165 and various matrix proteins including fibronectin (FN) and typeⅠ collagen (Col) was used to induce hMSCs in vitro.Cells were characterized by immunohistochemistry,cytochemistry,FACS and ultrastructure to identify and detect the differentiated population and markers.RESULTS:hMSCs was positive for KDR.PAS reaction was positive and ultrastructure of hMSCs showed glycogen-pool in ectoplasm.Glycogen reducing or disappear suggested that stem cells have occurred differentiation.Induction of hMSCs resulted in the increase of KDR,β1 integrin and CD34.CONCLUSION:hMSCs were induced to a transit population (TP) that differentiated toward the endothelial progenitor cells (EPC),but not a really EPC.hMSCs pedigree diagram of differentiation was hMSCs→TP→EPC→endothelial cells (ECs).  相似文献   

19.
AIM: To investigate the mechanisms for catalpol-induced osteogenic differentiation of SD rat bone marrow mesenchymal stem cells (BMSCs) in vitro. METHODS: The cells were divided into control group, osteoinduction group and catalpol group. The activity of alkaline phosphatase (ALP) was measured at 7 d, 14 d and 21 d after catapol treatment, meanwhile ALP positive cell numbers and calcium nodes were counted at 14 d and 21 d after catapol treatment,respectively. The mRNA expression of Runx2, osteocalcin, Wnt3a, β-catenin, Wnt5a and Wnt11 was detected at 7 d, 14 d and 21 d after catapol treatment by real-time PCR. RESULTS: Catalpol at 2.0 mg/L increased ALP activity and ALP positive cell numbers significantly(P<0.05), meanwhile, it also increased calcium nodes numbers in cultured BMSCs (P<0.05). Compared with control group, catalpol increased the mRNA expression of Runx2 significantly at 14 d, but not at the 7 d and 21 d. Catapol also promoted the mRNA expression of osteocalcin significantly from 7 d to 21 d. Compared with control group, the mRNA expression of Wnt3a and β-catenin in catalpol group was increased at 14 d and 21 d. In addition, the mRNA expression of Wnt5a and Wnt11 in catalpol group was higher than that in control group at 14 d, but that was decreased at 21 d. CONCLUSION: Catalpol induces differentiation of BMSCs into osteoblast by increasing the mRNA expression of Runx2, and promotes the differentiation and mature of these osteoblasts by increasing ALP secretion, osteocalcin mRNA expression and calcium deposition. The activation of Wnt signaling pathway may be involved in this pro-osteogenic differentiation process.  相似文献   

20.
AIM: This study was performed to investigate the feasibility and efficiency of exogenous mesenchymal stem cells (MSCs) transplantation on post-infarction ventricular remodeling and heart function in rats and compare the effects between adult rat MSCs and neonate rat MSCs transplantation. METHODS: 1-2 hours after left coronary artery ligation, MSCs cultured in ex vivo, marked with BrdU, were injected directly into the border of infarcts in exogenous rats. 6 weeks after transplantation, rat heart function, ventricular remodeling and pathological results were measured. RESULTS: MSCs transplantation decreased LV end-diastolic diameter and end-systolic diameter, limited LV chamber dilatation and reduced collagen content significantly. The numbers of blood vessels and cardiomyocytes were increased. BrdU-labelled MSCs with oval nucleus were widely distributed. There were no significant difference between adult rat MSCs and neonate rat MSCs transplanted groups. CONCLUSION: MSCs can survive and home in exogenous host infarct hearts without addition of any immunosuppressant. MSCs transplantation has benificial effects on remodeling processes and contributes to improvement of cardiac function, which may be related with the reduction of the amount of the collagen, promotion of myogenesis and angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号