首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To investigate the effects of the sera from the rats after limb ischemic preconditioning (LIPC) on human umbilical vein endothelial cells (HUVECs) injured by hydrogen peroxide (H2O2). METHODS: The HUVECs were divided into 5 groups: the cells in control group were cultured without any intervention; the cells in model group (M) were damaged by 1 mmol/L H2O2 for 2 h; the cells in early preconditioning serum (EPS) group, delayed preconditioning serum (DPS) group or sham limb ischemic preconditioning serum (SPS) group were treated with the corresponding serum at 5% for 12 h, respectively, and then treaed with H2O2 for 2 h. The viability of the HUVECs was analyzed by flow cytometry. The lactate dehydrogenase (LDH) in the culture media was detected. The cell adhesion molecules in the HUVECs were detected by real-time PCR. The mRNA and protein expression of heme oxygenase-1 (HO-1) was also determined. RESULTS: The viability of HUVECs incubated with 1 mmol/L H2O2 for 2 h significantly decreased compared with the control cells, which was accompanied with the augmentations of LDH in the medium and the cell adhesion molecules in cells, such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Preincubation with EPS and DPS derived from the rats subjected LIPC attenuated these injuries. Furthermore, pretreatment with EPS and DPS increased the expression of HO-1 at mRNA and protein levels. CONCLUSION: LIPC protects the HUVECs from H2O2-induced injury.  相似文献   

2.
AIM: To investigate the effect of acetyl-L-carnitine (ALC) on H2O2-induced oxidative damage in PC12 cells and its possible mechanism. METHODS: A moderate oxidative damage PC12 cell model was induced by exposure of the PC12 cells to H2O2. ALC at different concentrations (100, 200 and 400 μmol/L) was applied to the PC12 cells cultured in vitro, and CCK8 assay was used to detect the cell viability. The cells were divided into control group, H2O2 group, and low-ALC, medium-ALC and high-ALC groups. The apoptosis of the cells was analyzed by flow cytometry. The protein levels of Nrf2 and cleaved caspase-3 were determined by Western blot. The nuclear translocation of Nrf2 was observed by immunofluorescence staining. RESULTS: ALC at different concentrations (100, 200 and 400 μmol/L) significantly inhibited H2O2-induced PC12 cell apoptosis, and the medium concentration group had the best effect. Compared with H2O2 group, low, medium and high concentrations of ALC significantly increased the viability of the PC12 cells induced by H2O2, inhibit cell apoptosis (P<0.05), significantly down-regulated the protein level of cleaved caspase-3 (P<0.05), up-regulated the protein level of Nrf2 (P<0.05), and promoted the translocation of Nrf2 from the cytoplasm to the nucleus. CONCLUSION: Acetyl-L-carnitine attenuates H2O2-induced oxidative damage of PC12 cells, inhibits the apoptosis and increases the viability, which is related to the activation of Nrf2 signaling pathway.  相似文献   

3.
AIM: To study the protective effect of anti-aging Klotho protein on human umbilical vein endothelial cells (HUVECs) treated with high glucose (HG).METHODS: HUVECs were cultured in vitro, and divided into PBS control group, 5.5 mmol/L glucose group, 33.3 mmol/L glucose group, 0.1 μmol/L Klotho+33.3 mmol/L glucose group, 1 μmol/L Klotho+33.3 mmol/L glucose group, and 10 μmol/L Klotho+33.3 mmol/L glucose group. The viability of the HUVECs was measured by MTT assay. The content of malondialdehyde (MDA), and the activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) in cell culture supernatants were observed. The production of reactive oxygen species (ROS) in HUVECs was analyzed by flow cytometry. The levels of nitric oxide (NO), endothelin (ET-1), intercellular adhesion molecule-1 (ICAM-1) in HUVEC culture medium were detected by ELISA. The protein expression of nuclear factor-kappa B (NF-κB) in the HUVECs was determined by Western blot. RESULTS: Compared with PBS control group, 33.3 mmol/L glucose significantly decreased the HUVEC viability, increased ROS, LDH and MDA levels, reduced the activities of SOD and GSH, decreased the NO secretion, and induced the ET-1 and ICAM-1 secretion and the protein expression of NF-κB in HUVECs. When HUVECs were treated with Klotho protein at different concentrations combined with 33.3 mmol/L glucose, the cell viability was increased significantly, the ROS, LDH and MDA levels were decreased significantly, the antioxidant SOD and GSH activities were significantly increased, the secretion of NO was increased, but ET-1 and ICAM-1 releases and protein expression of NF-κB were significantly reduced.CONCLUSION: Anti-aging Klotho protein promotes the viability of HUVECs treated with HG, reduces the oxidative damage and ROS production, and restores the normal secretory function of HUVECs, thus playing a protective role in vascular endothelial cells through reducing the protein expression of NF-κB.  相似文献   

4.
AIM: To investigate the effects of crude extracts of Cordyceps gunnii (CGE), Lepista lentinus (LLE), Cordyceps sinensis (CSE) and Lentinus striguellus (LSE) on the proliferation of high glucose-treated human umbilical vein endothelial cells (HUVECs). METHODS: The cultured HUVECs were divided into normal control group (treated with M199 culture medium alone), high glucose group (treated with M199 culture medium containing 33 mmol/L glucose) and 4 crude extracts of edible-medicinal fungi (CGE, LLE, CSE and LSE) intervention groups (treated with the crude extract of edible-medicinal fungus at concentrations of 12.5, 25, 50, 100 mg/L in high glucose M199 culture medium). The cell proliferation was evaluated by MTT assay. The cell cycle and ROS level were measured by flow cytometry. RESULTS: Compared with normal control group, the MTT absorbance value and the percentage of G0/G1 stage of the HUVECs in high glucose group were significantly decreased (P<0.05), while the percentage of S+G2/M and ROS level were significantly increased (P<0.05). Compared with high glucose group, treatment with the crude extracts of Lepista lentinus and Lentinus striguellus decreased the cell absorbance value (P<0.05), and the inhibitory effect was enhanced in a dose-dependent manner. However, Cordyceps gunnii had no effect (P>0.05). The crude extracts of Cordyceps sinensis (12.5~50 mg/L) significantly enhanced the proliferative activity of HUVECs, decreased the percentage of G0/G1 stage of HUVECs, increased the percentage of S+G2/M of HUVECs, and reduced the intercellular ROS level (P<0.05). CONCLUSION: Only Cordyceps sinensis crude extract effectively protects the HUVECs in high glucose-induced injury, which might be due to promoting more cells to enter to the cell cycle and down-regulating oxidative stress.  相似文献   

5.
LIU Yu-hui  YOU Yu 《园艺学报》2011,27(10):1879-1884
AIM: To approach the mechanisms of homocysteine thiolactone (HTL)-induced damage in endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVECs) were incubated with HTL. The concentrations of soluble intercellular adhesion molecule (sICAM)-1 and TNF-α in the conditioned medium were measured by ELISA. The activity of NF-κB and the level of ROS were determined by fluorescence microscopy. Cell viability,activity of lactate dehydrogenase (LDH) and content of nitric oxide (NO) in the medium were also detected. RESULTS: Exposure of HUVECs to HTL at concentration of 1 mmol/L for 3 h potentiated the activity of NF-κB and increased the level of ROS. Incubation of HUVECs with HTL (1 mmol/ L for 24 h) markedly decreased the cell viability and NO content, and increased the level of LDH, sICAM-1 and TNF-α in the culture medium. Pretreatment with NAC, apocynin or PDTC markedly inhibited the increased activity of NF-κB and decreased the levels of ROS, TNF-α, sICAM-1, NO and LDH in a dose-dependent manner. CONCLUSION: The dysfunction of endothelial cells induced by homocysteine thiolactone in vitro may be related to the oxidative stress and the activation of NF-κB.  相似文献   

6.
WANG Li-ping  LI Li  YAO Ji-wen  LI Bo 《园艺学报》2016,32(7):1180-1188
AIM: To study the protective effect of procyanidin single active ingredient B2(PC-B2) on human endothelial progenitor cells(EPCs) stimulated with high glucose. METHODS: The human EPCs were isolated from peripheral blood of healthy people and identified. The EPCs were divided into control group(PBS treatment), hypertonic control group(25 mmol/L mannitol treatment), high glucose(30 mmol/L) group, and different concentrations(2, 10 and 50 mg/L) of PC-B2+30 mmol/L glucose groups. The viability of EPCs was detected by CCK-8 assay. The levels of LDH, MDA, SOD and GSH in the EPCs were detected. The changes of NO, ET-1, ICAM-1 and VCAM-1 in the EPCs cultured medium were measured by ELISA. The cell apoptotic rate and reactive oxygen species(ROS) in the EPCs were analyzed by flow cytometry. The expression of VEGF and VEGFR-2 in the EPCs were determined by Western blot. RESULTS: Compared with control group, the viability of human EPCs was decreased significantly in 30 mmol/L glucose group(P<0.05). The LDH leakage, MDA content and the releases of ET-1, ICAM-1 and VCAM-1 were induced significantly(P<0.05), but SOD and GSH activity and NO production were decreased significantly(P<0.05). The ROS and cell apoptotic rate were increased significantly(P<0.05). The expression of VEGF and VEGFR-2 in the EPCs were decreased(P<0.05). When human EPCs were treated with different concentrations of PC-B2 and 30 mmol/L glucose, the viability was obviously rebounded(P<0.05), the LDH leakage, MDA content and the releases of ET-1, ICAM-1 and VCAM-1 were decreased gradually(P<0.05), the SOD, GSH activity and NO production were increased significantly(P<0.05), the ROS and cell apoptotic rate were decreased significantly(P<0.05), and the expression of VEGF and VEGFR-2 in the EPCs was increased gradually(P<0.05).CONCLUSION: PC-B2 enhances the viability of human EPCs under high glucose condition, reduces high glucose-induced oxidative damage, restores the EPCs normal function, and reduces the releases of inflammatory cytokines and apoptosis, thus playing a protective effect on human EPCs through inducing the expression of VEGF and VEGFR-2.  相似文献   

7.
AIM: To investigate whether endoplasmic reticulum stress is involved in trimethylamine N-oxide (TMAO)-mediated oxidative stress in human umbilical vein endothelial cells (HUVECs). METHODS: The cell viability was examined by CCK-8 assay. The cells were stained by DCFH-DA, and the intracellular level of reactive oxygen species (ROS) was observed by phase-contrast microscopy and detected by flow cytometric analysis. The protein levels of phospho-IRE-1α, IRE-1α and GRP78/BiP were detected by Western blot. RESULTS: TMAO exerted no significant effect on the viability of HUVECs. For a long period (>24 h), even a low concentration (10 μmol/L) of TMAO increased the oxidative stress level in the HUVECs (P<0.05). TMAO increased the phosphorylation level of IRE-1α and significantly up-regulated the protein level of GRP78/BiP in HUVECs (P<0.01). Pretreatment with STF-083010, an inhibitor of IRE1α, for 1 h reduced TMAO-induced oxidative stress in HUVECs (P<0.05). CONCLUSION: Endoplasmic reticulum stress is involved in TMAO-induced oxidative stress in HUVECs.  相似文献   

8.
AIM To investigate the effects of carboxy terminus of heat shock protein 70-interacting protein (CHIP) on high glucose (HG)-induced vascular endothelial cell injury. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and treated with 5.5 mmol/L glucose (normal glucose, NG) or 25.5 mmol/L glucose (HG) for 24 h. Down-regulation of CHIP expression by RNA interference was conducted. Before the experiment, mannitol was used to eliminate the interference of osmotic pressure. Subsequently, the cells was divided into 4 groups: NG+siRNA NC group, NG+siRNA CHIP group, HG+siRNA NC group, and HG+siRNA CHIP group. Additionally, MTT assay and TUNEL staining were used to detect the viability and apoptosis. The level of endothelin-1 (ET-1) was measured by ELISA, and the level of reactive oxygen species (ROS) was detected by fluorescence probe dihydroethidium. The level of nitric oxide (NO), and the activity of superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) in the cells were detected by their respective kits. The mRNA expression of interleukin-8 (IL-8) and monocyte chemotactic protein 1 (MCP-1) was detected by RT-qPCR. The protein levels of CHIP, NADPH oxidase (NOX) 2, NOX4, p38, p65, p-p38, p-p65, Bax and Bcl-2 were determined by Western blot. RESULTS Compared with NG+siRNA NC group, the cell viability was decreased, the apoptosis rate, the mRNA expression of IL-8 and MCP-1, and the level of ROS were increased (P<0.05), the activity of SOD was decreased (P<0.05), while the levels of ET-1, NO and iNOS and the protein levels of p-p38, p-p65 and Bax were increased in HG+siRNA NC group (P<0.05). Compared with HG+siRNA NC group, the inflammatory response, the oxidative stress, the apoptosis rate, and the protein levels of p-p38, p-p65 and Bax were significantly increased in HG+siRNA CHIP group (P<0.05). CONCLUSION Down-regulation of CHIP expression aggravates HG-induced vascular endothelial cell injury.  相似文献   

9.
AIM:To evaluate the effect of inhibiting ubiquitin-specific protease 14(USPl4) activity on oxidative stress induced by H2O2 of H9c2 cells.METHODS:The H9c2 cells were incubated with H2O2 at 25 μmol/L for 2 h to establish the oxidative stress injury model.The cells were divided into control group,H2O2 group,IU1 group (25 μmol/L or 50 μmol/L) and IU1+H2O2 group.The H9c2 cells activity was measured by MTS assay.The level of intracellular reactive oxygen species (ROS) and cell survival rate were analyzed by flow cytometry assay.The changes of the mitogen-activated protein kinase (MAPK) family related proteins were detected by Western blot.RESULTS:Compared with control group,the cell activity and the viability rate in H2O2 group were decreased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were increased (P<0.05).Compared with H2O2 group,the cell activity and the viability rate of the H9c2 cells in IU1+H2O2 group were increased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were decreased (P<0.05).CONCLUSION:Inhibition of USPl4 activity reduces the oxidative stress injury of the H9c2 cells.The mechanism may be related to inhibition of the MAPK signaling and down-regulation of apoptosis related proteins.  相似文献   

10.
AIM: To investigate the effect of advanced glycation end products (AGEs) on autophagy in human umbilical endothelial cells (HUVECs) and to identify the role of autophagy in advanced glycation end product-induced cell apoptosis. METHODS: HUVECs were cultured and treated with AGEs or bovine serum albumin. The protein expression was detected by Western blotting. Autophagosomes were observed under electron microscope. The cell apoptotic rate was determined by flow cytometry. The cell viability was quantified by MTT assay. RESULTS: After treated with AGEs, the level of autophagy-associated protein LC3-Ⅱ in HUVECs was up-regulated, and the number of autophagosomes was increased. Compared with control group, the apoptotic rate of HUVECs increased and the viability of HUVECs was decreased in AGEs treatment group. Furthermore, pretreating the cells with an autophagy inhibitor 3-methyladenine aggravated these effects. The levels of phospho-protein kinase B(Akt) and phospho-mammalian target of rapamycin(mTOR) in HUVECs were also decreased by treatment with AGEs. Pretreatment with Akt activator insulin-like growth factor 1 (IGF-1) increased Akt phosphorylation and suppressed the AGE-induced LC3-Ⅱ expression. CONCLUSION: AGEs induce autophagy in HUVECs through PI3K/Akt/mTOR signal pathway. Autophagy plays a protective role in AGE-induced apoptosis in HUVECs.  相似文献   

11.
AIM:To investigate the effects of sinapine, an effective monomer of Chinese medicine, on hydrogen peroxide (H2O2)-induced adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).METHODS:The undifferentiated rat BMSCs were identified and screened by flow cytometry. The adipogenic differentiation of BMSCs was induced by H2O2, and the toxicity of sinapine on BMSCs was tested by CCK-8 assay. After the modeling method and the concentration range of sinapine were determined, the lipid droplets in the cells were detected by Oil Red O semi-quantitative assay, and the optimal drug concentration was selected. Finally, Oil Red O assay was observed 24 h after drug intervention, and the expression of adipogenic differentiation-related proteins, adipocyte protein 2 (aP2), peroxisome proliferator-activated receptor γ (PPARγ) and glucose transporter 4 (Glut4), at mRNA and protein levels in the BMSCs was determined by qPCR and Western blot.RESULTS:Treatment with H2O2 at 200 μmol/L for 1 h induced BMSCs to differentiate into adipocytes. Below the concentration of 40 μmol/L, sinapine had no toxicity to BMSCs. The best inhibitory concentration of sinapine on adipogenic differentiation was at 15 μmol/L. The number of lipid droplets in sinapine (15 μmol/L) group was significantly lower than that in model group. In sinapine group, the expression of aP2, PPARγ and Glut4 at mRNA and protein levels was lower than that in model group (P<0.01).CONCLUSION:Sinapine inhibits H2O2-induced adipogenic differentiation of rat BMSCs. The mechanism may be related to the PPARγ/AMPK signaling pathway.  相似文献   

12.
AIM: To clone and express the hemolysin gene hlyX of Leptospira interrogans serovar Lai and to investigate the effect of the expression product on the permeability of human umbilical vein endothelial cells (HUVECs).METHODS: The recombinant plasmid pET-hlyX was constructed by inserting the hlyX gene into prokaryotic expression vector pET32a(+), and transformed into E.coli BL21(DH3) to express the fusion protein Trx-HlyX with a His-tag.The fusion protein was purified using HisTrap affinity columns.The permeability of the monolayer HUVECs was measured by enzyme-linked immunosorbent assay for biotin-labeled albumin.Flow cytometry and Hoechst 33258 staining were applied to measure the apoptotic rate of HUVECs after incubation with Trx-HlyX.RESULTS: The recombinant plasmid pET-HlyX was successfully constructed and the fusion protein Trx-HlyX was highly expressed.Compared with the control cells, the purified recombinant protein Trx-HlyX significantly increased the permeability of transfected cells and promoted apoptosis of HUVECs (P<0.05).CONCLUSION: The recombinant plasmid pET-hlyX highly expresses the fusion protein Trx-HlyX.Purified protein Trx-HlyX influences the permeability and has cytotoxicity on HUVECs.  相似文献   

13.
AIM: To investigate the damage in human umbilical vein endothelial cells (HUVECs) induced by recombinant soluble human CD40 ligand (rshCD40L). METHODS: The cultured HUVECs were treated with rshCD40L for 12 h. The survival activity of the HUVECs was observed by MTS assay. The expression of E-selectin, intercellular adhesion molecule (ICAM)-1, tissue factor (TF) and tissue factor pathway inhibitor (TFPI) was measured by ELISA. The activity of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) were detected by the methods of thibabituric acid (TBA). RESULTS: Compared with normal group, different concentrations of rshCD40L (0.5, 1, 2, 3 mg/L) had no obvious effect on the survival activity of the HUVECs (P>0.05). rshCD40L at concentration of 0.5 mg/L promoted the secretion of E-selectin, sICAM-1, TF and TFPI in the HUVECs (P<0.01). rshCD40L at concentration of 0.5 mg/L also increased MDA content and reduced the activity of SOD in the HUVECs (P<0.05). CONCLUSION: 0.5~3mg/L rshCD40L has no obvious effect on endothelial cell survival, but already causes endothelial dysfunction by increasing endothelial inflammation and exogenous coagulation reaction, inducing lipid peroxides injury and reducing antioxidant capacity.  相似文献   

14.
AIM:To observe the effects of angiopoietin 4 (Ang-4) on lipopolysaccharide (LPS)-induced injury of human umbilical vein endothelial cells (HUVECs). METHODS:The EnVision immunohistochemical method was used to identify the HUVECs. After pre-treated with different doses of Ang-4 for 0.5 h, HUVECs was exposed to LPS at concentration of 10 mg/L for 24 h. The cell viability was evaluated by MTT assay. The content of tumor necrosis factor-alpha (TNF-α) in the supernatant and the concentrations of intracellular and supernatant von Willebrand factor (vWF) were detected by ELISA. The mRNA levels of Toll-like receptor 4 (TLR4), NF-κB p65 and TNF-α were determined by real-time PCR. RESULTS:Factor Ⅷ in the cytoplasm was positive in the HUVECs.Compared with normal group, LPS reduced the cell viability (P<0.01), and significantly increased the secretion of TNF-α and vWF (P<0.01). The mRNA expression of TLR4, NF-κB p65 and TNF-α also increased (P<0.01). Ang-4 at concentration of 100 μg/L enhanced the cell viability (P<0.01), reduced the content of vWF and TNF-α, and inhibited the LPS-induced increases in the mRNA levels of TLR4, NF-κB p65 and TNF-α (P<0.01). CONCLUSION: Ang-4 antagonizes LPS-induced damage in HUVECs by inhibiting TLR4-NF-κB p65-TNF-α signaling pathways.  相似文献   

15.
LI Qi-hua  WEI Jin-ru 《园艺学报》2010,26(12):2461-2464
AIM: To investigate the effects of glycated serum albumin (GSA) on the expression of monocyte chemoattratant protein-1 (MCP-1) in endothelial cells.METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured with GSA at different concentrations in the presence or absence of glycosylation-product inhibitor aminoguanidine (AG) and anti-oxidant N-acetylcysteine (NAC). The expression of MCP-1 was evaluated by the methods of immunocytochemistry and sandwich ELISA.Malondialdehyde(MDA) content and superoxide dismutase(SOD) activity were determined by the technique of thiobarbituric acid(TBA) and xanthine oxidase(XOD),respectively. RESULTS: GSA stimulated HUVECs to produce and release MCP-1. After HUVECs were treated with 50 mg/L GSA, the expression of MCP-1 at 4 h, 8 h and 12 h was 1.3, 1.9 and 2.8 folds higher than that in control group (P<0.01), respectiuely.The significant difference among the experiment groups (P<0.01) was observed, indicating that GSA took effect in a concentration-dependent manner. The release of MCP-1 in cultured supernatants in the experiment groups with 3 different concentrations of GSA was 1.6, 2.4 and 3.0 folds as much as that in control group (P<0.01), and the significant difference among the experiment groups (P<0.01) was also observed. GSA decreased the activity of SOD (P<0.05) and increased the content of MDA (P<0.01). AG and NAC obviously inhibited the upregulation of MCP-1 expression in HUVECs by GSA (P<0.01). NAC also inhibited the effect of GSA on SOD activity and MDA content in HUVECs (P<0.05). CONCLUSION: GSA stimulates the expression of MCP-1 by inducing oxidative stress in endothelial cells.  相似文献   

16.
AIM: To investigate the effect of ecdysterone (EDS) on H9c2 cardiomyocytes after oxidative stress. METHODS: H9c2 cells were cultured in vitro and divided into control group, high dose (2 μmol/L) of EDS group, middle dose (1.5 μmol/L) of EDS group, low dose (1 μmol/L) of EDS group, and H2O2 group. H9c2 cardiomyocytes in H2O2 group and high, middle and low doses of EDS groups were exposed to H2O2 for 6 h to establish the model of oxidative stress. The viability of the H9c2 cells was detected by CCK-8 assay. The apoptosis of H9c2 cells was analyzed by flow cytometry. The levels of lactate dehydogenase (LDH) and creatine kinase-MB (CK-MB) in the culture medium, and the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the H9c2 cells were measured by colorimetry. The generation of reactive oxygen species (ROS) and the mitochondrial membrane potential were evaluated by flow cytometry and confocal laser scanning microscopy. The protein levels of Bax, Bcl-2 and cleaved caspase-3 in the H9c2 cells were determined by Western blot. RESULTS: Ecdysterone at the selected concentrations had no effect on the viability of H9c2 cells. Compared with control group, the levels of LDH, CK-MB, ROS and MDA, and the apoptotic rates of the H9c2 cells were significantly increased after treated with H2O2, but were decreased by EDS treatment in a dose-dependent manner. The levels of SOD and mitochondrial membrane potential of the H9c2 cells in H2O2 group were reduced significantly compared with control group, but high, middle and low doses of EDS treatments up-regulated the levels of SOD and mitochondrial membrane potential in H2O2-treated H9c2 cells. The protein levels of Bax and cleaved caspase-3 in the H9c2 cells in H2O2 group showed significant elevation in comparison with control group, and the protein expression of Bcl-2 declined in H2O2 group compared with control group, but high, middle and low doses of ecdysterone treatments down-regulated the protein levels of Bax, cleaved caspase-3 and up-regulated the expression of Bcl-2 in H2O2-treated H9c2 cells. CONCLUSION: Ecdysterone attenuates the effect of H2O2-induced oxidative stress on H9c2 cardiomyocytes. The mechanism may be involved in scavenging oxidative stress products, increasing antioxidant enzyme activity and improving mitochondrial function.  相似文献   

17.
AIM:To investigate the effect of shikonin on the apoptosis and oxidative stress induced by high concentration of glucose in vascular endothelial cells. METHODS:Rat thoracic aortic endothelial cells were randomly divided into 5 groups:normal control group (with glucose at concentration of 5.5 mmol/L in cell culture medium), high glucose group (with glucose at concentration of 33 mmol/L in cell culture medium), high glucose+low shikonin group (with glucose at concentration of 33 mmol/L and shikonin at concentration of 0.1 μmol/L in cell culture medium), high glucose+medium shikonin group (with glucose at concentration of 33 mmol/L and shikonin at concentration of 1 μmol/L in cell culture medium), and high glucose+high shikonin group (with glucose at concentration of 33 mmol/L and shikonin at concentration of 10 μmol/L in cell culture medium). After treatments, the cell viability was measured by CCK-8 assay and cell apoptotic rate was analyzed by flow cytometry. In addition, the status of oxidative stress was evaluated by determining the levels of malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The activation of Nrf2/HO-1 signaling pathway was determined by Western blot. RESULTS:Compared with high glucose group, shikonin reversed high glucose-induced decrease in cell viability and increase in apoptosis in a concentration-dependent manner. High concentration of glucose induced high levels of MDA and ROS, while decreased the levels of SOD and GSH-Px. However, after treatment with shikonin, the contents of MDA and ROS were decreased, while the activities of SOD and GSH-Px were increased as compared with high glucose group. Furthermore, the high concentration of glucose up-regulated the protein levels of cleaved caspase-3, HO-1 and Nrf2 (nuclear). Compared with high glucose group, the protein levels of cleaved caspase-3, HO-1 and Nrf2 (nuclear) were partly decreased after treatment with shikonin. CONCLUSION:Shikonin alleviates high glucose-induced vascular endothelial cell apoptosis. Its mechanism may be related to activation of Nrf2/HO-1 signaling pathway and down-regulation of oxidative stress in vascular endothelial cells.  相似文献   

18.
AIM:To study the effect of activated protein C (APC) at different concentrations on apoptosis of human umbilical vein endothelial cells (HUVECs) induced by lipopolysaccharide (LPS).METHODS:The HUVECs were induced by LPS (1.0 mg/L) as apoptotic model that was administered by different concentration of APC (10 μg/L or 50 μg/L). Meanwhile, the control group and induced apoptosis group induced by LPS (1.0 mg/L) stimulation were also set up. The changes of cellular ultrastructures were observed under electron microscope. The DNA ladder and TUNEL fluorescent staining were measured in cells. Annexin-Ⅴ/PI double staining was used to measure the cell apoptosis rate by flow cytometry. Cell survival rate was measured by MTT assay. The proliferating cell nuclear antigen (PCNA) expression levels in cells were also measured by Western blotting to reflect the proliferation of the cells.RESULTS:There were significant apoptotic changes in the cells induced by LPS, but the apoptotic changes were reduced and apoptosis rates were decreased in the cells treated with APC. Meanwhile, cell survival rate and the protein levels of PCNA were increased after APC treatment, particularly at the concentration of 50 μg/L, which showed difference when compared with those induced apoptosis group by LPS (P<0.05).CONCLUSION:APC can inhibit HUVECs apoptosis induced by LPS and promote cell proliferation, thus protect the cells from injury.  相似文献   

19.
AIM To study the effect of microRNA-153-3p (miR-153-3p) knock-down on oxidative injury of H9C2 cells induced by H2O2 and its specific mechanism. METHODS The oxidative stress injury of H9C2 cell model was induced by H2O2, and then the cell viability and the expression of miR-153-3p were detected by MTT assay and RT-qPCR, respectively. The effects of miR-153-3p knock-down on the H9C2 cell injury under oxidative stress were studied by RNA interference technology. The targets of miR-153-3p were identified by Western blot and dual-luciferase reporter assay. RESULTS MTT assay showed that the viability of H9C2 cells was decreased with the increase in H2O2 concentration (P<0.05). The results of RT-qPCR showed that the expression of miR-153-3p was increased with the increase in H2O2 concentration (P<0.05). Knock-down of miR-153-3p increased the viability of H9C2 cells under oxidative stress, decreased the cell apoptosis and the content of malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD). The expression of nuclear factor E2-related factor 2(Nrf2) and antioxidant response element(ARE) activity were increased with the increase in H2O2 concentration (P<0.01). TargetScan analysis and dual-luciferase reporter assay showed that Nrf2 was one of the potential target genes of miR-153-3p. The results of Western blot further showed that over-expression of miR-153-3p inhibited the expression of Nrf2 (P<0.01), while down-regulation of miR-153-3p increased the expression of Nrf2 (P<0.01). Dual interference with Nrf2 and miR-153-3p significantly reduced H9C2 cell viability, promoted the apoptosis, increased MDA content, and decreased SOD activity in the presence of H2O2 (P<0.01). CONCLUSION Inhibition of miR-153-3p expression attenuates the injury of H9C2 cells induced by H2O2 through up-regulating Nrf2/ARE signaling pathway.  相似文献   

20.
AIM: To evaluate the effect of senegenin (Sen) on H2O2-treated retinal ganglion cells (RGCs) and to explore its underlying mechanisms. METHODS: RGCs were retrograde labeled by injection of fluorogold into the superior colliculi of SD rats on the postnatal day 3. On the postnatal days 6 to 8, the retinas were dissociated with papain and cultured. Primary RGCs cultured in vitro were treated with H2O2 and/or various doses of Sen. The viability of RGCs was evaluated by counting the fluorescence-labeled neurons under microscope. The morphological changes of the nuclei in the retinal neurons were observed by Hoechst 33258 staining. Western blotting was applied to determine the expression of cleaved caspase-3, cytochrome C and Bcl-2 in cultured retinal neurons. RESULTS: Compared with the control cells, Sen at doses of 10, 20 or 40 μmol/L had no toxicity to RGCs (P>0.05). However, Sen at doses of 80 and 160 μmol/L had significant toxicity to RGCs (P<0.01). Compared with H2O2-injured group, Sen at doses of 10, 20 and 40 μmol/L effectively protected against H2O2-induced injury in RGCs (P<0.05) with the best efficiency at 40 μmol/L. Hoechst 33258 staining showed that the neuronal apoptosis caused by H2O2 was reduced by Sen. The results of Western blotting showed an up-regulation of Bcl-2, and decreased cytochrome C and cleaved caspase-3 levels by Sen in H2O2-treated retinal neurons. CONCLUSION: Sen is able to protect RGCs from H2O2-induced injury by enhancing Bcl-2 expression and inhibiting cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号