首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
We use trivariate kernel density estimation to define spawning habitat of northern anchovy ( Engraulis mordax ) and Pacific sardine ( Sardinops sagax ) in the California Current using satellite data and in situ egg samples from the Continuous Underway Fish Egg Sampler (CUFES) deployed during surveys in April by the California Cooperative Oceanic Fisheries Investigations (CalCOFI). Observed egg distributions were compared with monthly composite satellite sea surface temperature (SST) and surface chlorophyll a (chl a ) data. Based on the preferred spawning habitat, as defined in SST and chl a space, the satellite data were used to predict potential spawning habitat along two areas of the west coast of North America. Data from the southern area (21.5 to 39°N) were compared to observations from the CUFES data for the period 1998–2005. Northern anchovy and Pacific sardine exhibited distinctly different spawning habitat distributions. A significant relationship was found between satellite-based spawning area and that measured during surveys for sardine. CUFES area estimated for sardine was similar in magnitude to that estimated from satellite data (∼60 000 km2). In contrast, spawning habitat of anchovy averaged between 1000 and 200 000 km2 for the period 1998–2005, for CUFES and satellite estimates, respectively. Interannual variability in the area (km2) and duration (months) of estimates of suitable habitat varied between species and between the northern (39 to 50.5°N) and southern portions of the California Current. Long-term monitoring of habitat variability using remote sensing data is possible in the southern portion of the California Current, and could be improved upon in the northern area with the addition of surveys better timed to describe relationships between observed and estimated spawning habitats.  相似文献   

2.
The spatial extent of small pelagic fish spawning habitat is influenced by environmental factors and by the state of the adult population. In return, the configuration of spawning habitat affects recruitment and therefore the future structure of the adult population. Interannual changes in spatial patterns of spawning reflect variations in adult population structures and their environment. The present study describes the historical changes in the spatial distribution of spawning of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in the Bay of Biscay during two periods: 1967–72 and 2000–2004. Using data from egg surveys conducted in spring, the spatial distributions of anchovy and sardine eggs are characterized by means of geostatistics. For each survey, a map of probability of egg presence is constructed. The maps are then compared to define (1) recurrent spawning areas, (2) occasional spawning areas and (3) unfavourable spawning areas during each period. Sardine spawning habitat is generally fragmented and appears spatially limited by the presence of cold bottom water. It is confined to coastal or shelf break refuge areas in years of restricted spawning extent. For anchovy, recurrent spawning sites are found in Gironde and Adour estuaries whilst spawning can extend further offshore in years of more intense spawning. For both species, the mean pattern of spawning has changed between 1967–72 and 2000–2004. Noticeably, the spatial distribution of anchovy eggs in spring has expanded northward. This trend possibly results from changes in environmental conditions during the last four decades.  相似文献   

3.
Environmental variability and growth‐rate histories from hatching to capture were investigated for larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus). Larvae collected around the front of the Kuroshio Current were examined using otolith microstructure analysis, and their movement was estimated from numerical particle‐tracking experiments. Sardine larvae collected inshore of the Kuroshio front originated from a coastal area near the sampling site, while those collected in the offshore area originated from an area 500–800 km west‐southwest of the sampling site. Anchovy larvae collected both inshore and offshore had been transported from widely distributed spawning areas located west of the sampling area. At the age of 13–14 days for sardine and 19–20 days for anchovy, the offshore group exhibited significantly higher mean growth rates than did the inshore group. Although the offshore area was generally warmer than the inshore area, temporal variations in growth rate are not attributable solely to fluctuations in environmental temperature. While previous studies have examined the relationship between larval growth rates and environment based solely on data at capture, the methods used in the present study, combining otolith analysis and numerical particle‐tracking experiments, utilize data up until hatching. Although the relationship between growth rate and environment was not fully confirmed, this approach will greatly advance our understanding of fish population dynamics.  相似文献   

4.
In the mid 1970s, the fishery catch of postlarval Japanese anchovy (Engraulis japonica) in a shelf region of the Enshu‐nada Sea, off the central Pacific coast of Japan, started to decline corresponding to a rapid increase of postlarval sardine (Sardinops melanostictus). In late 1980s, sardine started to decline, and it was replaced by anchovy in the 1990s. This alternating dominance of postlarval sardine and anchovy corresponded to the alternation in egg abundance of these two species in the spawning habitat of this sea. It was also noteworthy that during the period of sardine decline, sardine spawning occurred in April–May, a delay of two months compared with spawning in the late 1970s. The implication of oceanographic changes in the spawning habitat for the alternating dominance of sardine and anchovy eggs was explored using time‐series data obtained in 1975–1998, focusing on the effect of the Kuroshio meander. Large meanders of the Kuroshio may have enhanced the onshore intrusion of the warm water into the shelf region and contributed to an increase in temperature in the spawning habitat. This might favour sardine, because its egg abundance in the shelf region was more dependent on the temperature in early spring than was that of anchovy. In addition, enhanced onshore intrusion could contribute to transport of sardine larvae from upstream spawning grounds of the Kuroshio region. On the other hand, anchovy egg abundance was more closely related to lower transparency at the shelf edge, which may indicate the prevalence and prolonged residence of the coastal water, and therefore higher food availability, frequently accompanying non‐meandering Kuroshio. The expansion/shrinkage of the spawning habitat of sardine and anchovy in the shelf region, apparently responding to the change in the Kuroshio, possibly makes the alternation in dominance of postlarval sardine and anchovy most prominent in the Enshu‐nada Sea, in combination with changes in the abundance of spawning adults, which occurred almost simultaneously in the overall Kuroshio region. The implication of this rather regional feature for the alternating dominance of sardine and anchovy populations on a larger spatial scale is also discussed.  相似文献   

5.
Recent findings suggest that recruitment of Japanese anchovy (Engraulis japonicus) and sardine (Sardinops melanostictus) depends on survival during not only the first feeding larval stage in the Japanese coastal waters and the Kuroshio front but also during the post‐larval and juvenile stages in the Kuroshio Extension. Spatial distributions of juvenile anchovy and sardine around the Shatsky Rise area in the Kuroshio Extension region and the Kuroshio–Oyashio transition region are described, based on a field survey in the late spring using a newly developed mid‐water trawl for sampling juveniles. All stages of anchovy from post‐larvae to juveniles were obtained in the northern Shatsky Rise area. The Kuroshio Extension bifurcates west of the Shatsky Rise area and eddies are generated, leading to higher chlorophyll concentrations than in the surrounding regions in April and May. When Japanese anchovy and sardine spawn near the Kuroshio front or the coastal waters south‐east of Japan, their larvae are transported by the Kuroshio Extension and are retained in the Shatsky Rise area, which forms an important offshore nursery ground, especially during periods of high stock abundance.  相似文献   

6.
The abundance and recruitment of anchovy Engraulis spp. and sardine Sardinops spp. alternate in a synchronized way across the Pacific. Convergent cross mapping (CCM) indicated that climate change drives the alternation of the two species in the California Current System. However, climate indices patterns in the western North Pacific contrast with those in the eastern North Pacific, despite synchronous species alternations occurring. Therefore, it is of great interest to clarify whether climate change, or any other factors, affects the population dynamics of Japanese anchovy and Japanese sardine in the western North Pacific. Using CCM, we tested whether climate change and interspecific interactions affect the population dynamics of these two species. We found that climate change affected recruitment, and we clarified the spatiotemporal pattern of this effect. This result supports the existing hypotheses that population dynamics are regulated by climate change in the western North Pacific. The present study also detected interspecific interactions between sardine and anchovy, which might promote the alternation of the two species, and has not been reported in other regions.  相似文献   

7.
Decadal change in abundance of surface migratory myctophid fishes was examined in the Kuroshio region of the western North Pacific for the 35 yr from 1957 to 1994 in relation to the Kuroshio regime shift, indicated by changes in its transport volume and sea surface temperature in the early 1970s. Each year, samples were collected from the 0‐ to 1‐m depth layer at night, from January to March, at 83 stations on average. Ten species belonging to five genera occurred. Juveniles [standard length (SL) ≤ 40 mm] and adults (SL > 40 mm) of each species were analysed. In juveniles, Myctophum asperum, M. nitidulum, Symbolophorus evermanni and Centrobranchus brevirostris accounted for 91.1% of the total catch (7419 individuals), while M. nitidulum contributed 82.4% of the total adult catch (494 individuals). The abundance of juvenile S. evermanni, C. brevirostris and M. nitidulum showed prominent peaks in 1971, together with adult M. nitidulum. These peaks corresponded to extraordinarily high zooplankton abundance in the Kuroshio region in 1971, suggesting high recruitment success and low adult mortality in surface migratory myctophids. Smaller changes in abundance in other years were species‐specific, and the fluctuation patterns were mainly explained by year‐to‐year fluctuations in the strength of the Kuroshio and the geographical distribution of each species, i.e. an increased Kuroshio flow volume resulted in an increase in tropical species and a decrease in temperate species, but no change in the pan‐Kuroshio species.  相似文献   

8.
The marine ecosystems around Japan are very productive and have typical wasp-waist structure dominated by small pelagic fishes such as sardine, exhibiting large low-frequency fluctuations in biomass. Whereas studies on the variability in abundance of individual species such as sardine and anchovy are popular, only a few studies focused on the long-term variability of fish assemblage around Japan. In this study, 13 species/taxa ranging from small forage to large predatory species and from warm- to cold-water species were selected to indicate essential characteristics of the fish assemblage and their drivers were analysed based on fishery, oceanographic and climatic data sets from 1901 to 2018. Results show that two outstanding peaks during the 1930s and 1980s were characterized by abundant sardine. Additionally, species composition showed high similarities during similar temperature regimes while exhibiting contrasts during different temperature regimes. Variations and regime shifts in dominant patterns and fish community indices coincided well with the Atlantic Multidecadal Oscillation (AMO) and regional sea surface temperature (SST). Furthermore, gradient forest analysis identified AMO and regional SSTs as most important predictors of dominant patterns and fish community indices, suggesting that the decadal and multidecadal variability in the fish assemblage around Japan was forced by basin-scale climate variability as inherent in the AMO through its connections with regional SSTs. Autocorrelation coefficient demonstrated that the ecological indicators have the potential to be early warning signals of regime shifts, which suggests the possibility of coming cold regime since around 2015 and has important implications for fisheries management.  相似文献   

9.
The Peru‐Humboldt Current system (HCS) supports the world's largest pelagic fisheries. Among the world's eastern boundary current systems, it is the most exposed to high climatic stress and is directly affected by El Niño and La Niña events. In this volatile ecosystem, fish have been led to develop adaptive strategies in space and time. In this paper, we attempt to understand the mechanisms underlying such strategies, focusing on the El Niño 1997–98 in Peru from which an extensive set of hydrographic, capture and acoustic survey data are available. An integrated analysis of the data is crucial, as each has substantial shortcomings individually; for example, both catch data and acoustic surveys may easily lead to wrong conclusions. Existing hypotheses on anchovy and sardine alternations lead us to a ‘habitat‐based’ synthetic hypothesis. Using our data, an integrated approach evaluated how fish responded to habitat variation, and determined the consequences in terms of fish‐population variability. Various factors occurring at a range of different spatio‐temporal scales were considered: interdecadal regime (warm ‘El Viejo’/cool ‘La Vieja’ decadal scale); strength and the duration of the El Niño Southern Oscillation event (interannual scale); population condition before the event (interannual scale); fishing pressure and other predation (annual scale); changes in reproductive behaviour (intra‐annual scale); presence of local upwelling (local scale). During El Niño 1997–98, anchovy was able to exploit a small‐scale temporal and spatial ‘loophole’ inside the general unfavourable conditions. Moreover, sardine did not do better than anchovy during this El Niño and was not able to take advantage of the ‘loophole’ opened by this short‐term event. Our results question the traditional view that El Niño is bad for anchovy and good for sardine.  相似文献   

10.
11.
Variability in catch-per-unit-effort (CPUE) was examined for the autumn cohort of Ommastrephes bartramii collected with research driftnets during 1979–1998 along five longitudinal transects passing through the Subarctic, Transitional and Subtropical Domains in the North Pacific. CPUE was generally low during the period of intensive commercial driftnet fishing (1980–1992) and increased following the 1992 moratorium on the use of large-scale driftnets. However, CPUE levels were low for the cohorts hatched in 1992 and 1996 (captured in subsequent years owing to a one-year life of O. bartramii ) that experienced low sea surface temperatures from hatching to recruitment. Among similar-aged squid collected from 180° and 179°30'W in June, mantle lengths were significantly greater in 1997 than during 1995–96. These findings suggest that the driftnet fishery and sea surface temperatures from hatching to recruitment strongly affected stock abundance and possibly growth.  相似文献   

12.
Data sets for two bottom trawl fisheries, the coastal pair-trawler fishery and offshore single-trawler fishery in the Tsushima Warm Current (TWC) region of the Japan Sea, were compiled and analyzed for the last three decades (1974-2006). These data sets were used to (1) identify and compare the variability in demersal fish assemblages, and (2) relate these to water temperature to examine the impacts of climate regime shifts. Principal component analysis (PCA) of catches of target species in the two trawler fisheries showed synchronous decadal variability with step changes around 1986/1987 and 1996/1997. These step changes strongly suggest the effect of the late 1980s climate regime shift, which was characterized by an abrupt change from a cool to a warm condition in the TWC. The first and second principal components (PC1 and PC2) for both trawler fisheries agreed closely with winter and summer water temperature in the Japan Sea, respectively, suggesting PC1 (PC2) was associated with cold- (warm-) water species. However, between warm- and cold-water species the response pattern to water temperature was different. CPUE (catch per unit effort) of warm- (cold-) water species correlated positively (negatively) with water temperature, indicating the increase in water temperature has a positive (negative) effect on warm- (cold-) water species. Cold-water species decreased (increased) both in biomass and distribution during the warm (cold) regime, while warm-water species increased in biomass and/or distribution during the warm 1990s. These results suggested that the demersal fish assemblage structure changed abruptly as a consequence of the late 1980s climate regime shift. Impact of fishing was unclear on the demersal fish assemblage as a whole, but fishing pressure has been intensified for specific species under unfavorable climate regimes even with a declining fishing effort. Differing response patterns between warm- and cold-water species to climate regime shifts suggest the importance of integrated assessment and ecosystem-based management for the whole trawl fishery rather than only for individual target species.  相似文献   

13.
  • 1. Boat surveys were conducted between 2002 and 2005 to study bottlenose dolphins living in the 400 km2 Amvrakikos Gulf, western Greece. During 116 survey days, 4705 km of total effort resulted in the individual photo‐identification of 106 animals, through long‐term natural markings on their dorsal fins.
  • 2. Mark–recapture analyses based on the Mth model provided estimates of 82 marked individuals in 2003 (95% CI=80–91), 92 in 2004 (95% CI=86–108) and 98 in 2005 (95% CI=94–110). To include the unmarked portion of the population, the proportion of unmarked individuals was computed based on the number of photographs of marked and unmarked dorsal fins. The mean proportion of unmarked animals in the population was 0.338 (95% CI=0.288–0.389). By adding this to the estimate for marked animals in 2005, considered as the most robust, a total population estimate of 148 individuals (95% CI=132–180) was obtained.
  • 3. Dolphin encounter rates in 2003–2005 did not show significant variations, and averaged 7.2 groups per 100 km or 72.5 individuals per 100 km. Encounter rates within the Gulf were about one order of magnitude greater than those found for bottlenose dolphins in nearby eastern Ionian Sea coastal waters.
  • 4. Mean dolphin density in the Gulf was 0.37 animals km?2. This relatively high density, together with high levels of site fidelity shown by most individuals, was thought to be related primarily to prey availability, particularly of epipelagic schooling fish.
  • 5. The importance of the semi‐closed Amvrakikos Gulf for bottlenose dolphins and other threatened species encourages the adoption of measures aimed to conserve its valuable ecosystems and raise the naturalistic profile of the area, while promoting environment‐conscious development. Meaningful action includes restoring natural hydrology (e.g. freshwater input from rivers), curtailing pollution from various sources, responsible fisheries and aquaculture management, and control of illegal fishing. Interactions between dolphins and fisheries also deserve careful quantitative investigation.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
  1. Environmental water management seeks to balance competing demands between the water needed to sustain human populations and their economic activities and that required to sustain functioning freshwater ecosystems and the species they support. It must be predicated on an understanding of the environmental, hydrological, and biological factors that determine the distribution and abundance of aquatic species.
  2. The Daly River of the wet–dry tropics of northern Australia consists of a perennially flowing main stem and large tributaries, as well as many small to large naturally intermittent tributaries, and associated off‐channel wetlands. Increased groundwater abstraction to support irrigated agriculture during the dry season threatens to reduce dry‐season flows that maintain perenniality and persistence of freshwater fishes.
  3. Fish assemblages were surveyed at 55 locations during the dry season over a 2‐year period with the goal of establishing the key landscape‐scale and local‐scale (i.e. habitat) drivers of fish species distribution.
  4. Longitudinal (upstream/downstream) and lateral (river/floodplain) gradients in assemblage structure were observed with the latter dependent on the position in the river landscape. Underlying these gradients, stream flow intermittency influenced assemblage composition, species richness, and body size distributions. Natural constraints to dispersal were identified and their influence on assemblage structure was also dependent on position within the catchment.
  5. Eight distinct assemblage types were identified, defined by differences in the abundance of species within five groups differing in functional traits describing body size, spawning requirements, and dispersal capacity. These functional groups largely comprised species widely distributed in northern Australia.
  6. The results of the study are discussed with reference to the environmental flow needs of the Daly River and other rivers of northern Australia. The findings may also be applied to environmental flow management in savannah rivers elsewhere.
  相似文献   

15.
Shelf waters of southern Australia support the world's only northern boundary current ecosystem. Although there are some indications of intense nitrate enrichment in the eastern Great Australian Bight (GAB) arising from upwelling of the Flinders Current, the biological consequences of these processes are poorly understood. We show that productivity in the eastern GAB is low during winter, but that coastal upwelling at several locations during the austral summer–autumn results in localized increases in surface chlorophyll a concentrations and downstream enhancement of zooplankton biomass. Sardine (Sardinops sagax) and anchovy (Engraulis australis) eggs and larvae are abundant and widely distributed in shelf waters of the eastern and central GAB during summer–autumn, with high densities of sardine eggs and larvae occurring in areas with high zooplankton biomass. Egg densities and distributions support previous evidence suggesting that the spawning biomass of sardine in the waters off South Australia is an order of magnitude higher than elsewhere in southern Australia. Sardine comprised >50% of the identified prey species of juvenile southern bluefin tuna (SBT, Thunnus maccoyii) collected during this study. Other studies have shown that the lipid content of sardine from the GAB is relatively high during summer and autumn. We suggest that juvenile SBT migrate into the eastern and central GAB during each summer–autumn to access the high densities of lipid‐rich sardines that are available in the region during the upwelling period. Levels of primary, secondary and fish production in the eastern GAB during summer–autumn are higher than those recorded in other parts of Australia, and within the lower portion of ranges observed during upwelling events in the productive eastern boundary current systems off California, Peru and southern Africa.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号