首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology and properties of the soils of permafrost peatlands in the southeast of the Bol’shezemel’skaya tundra are characterized. The soils developing in the areas of barren peat circles differ from oligotrophic permafrost-affected peat soils (Cryic Histosols) of vegetated peat mounds in a number of morphological and physicochemical parameters. The soils of barren circles are characterized by the wellstructured surface horizons, relatively low exchangeable acidity, and higher rates of decomposition and humification of organic matter. It is shown that the development of barren peat circles on tops of peat mounds is favored by the activation of erosional and cryogenic processes in the topsoil. The role of winter wind erosion in the destruction of the upper peat and litter horizons is demonstrated. A comparative analysis of the temperature regime of soils of vegetated peat mounds and barren peat circles is presented. The soil–geocryological complex of peat mounds is a system consisting of three major layers: seasonally thawing layer–upper permafrost–underlying permafrost. The upper permafrost horizons of peat mounds at the depth of 50–90 cm are morphologically similar to the underlying permafrost. However, these layers differ in their physicochemical properties, especially in the composition and properties of their organic matter.  相似文献   

2.
The composition and fabric of the upper permafrost layer and its relationships with the permafrost-affected soils developing from the loamy substrates on the interfluves within coastal lowlands of northern Yakutia are considered. The studied area is characterized by the maximum activity of cryogenic processes and a shallow depth of seasonal thawing. The permafrost layer affected by the maximum thawing during the Holocene has a specific morphology attesting to the impact of soil processes on it. In general, the modern soil profile and the underlying permafrost layer can be distinguished as the soil-permafrost complex. It is subdivided into the soil profile, the transient layer, and the intermediate layer. The morphology and properties of the transient layer depend on the character of the soil horizons above the permafrost table. The lateral migration of raw organic substances takes place above the permafrost surface between the particular elements of the cryogenic soil complexes; this material tends to accumulate within the transient layer.  相似文献   

3.
The molecular composition of humic substances in permafrost peatlands of the forest-tundra zone in northeastern European Russia has been characterized for the first time on the basis of systematic studies. Changes in the molar x(H): x(C) ratio along the peat profiles have been revealed, which is due to the activation of cryogenic processes in the upper part of the seasonally thawing layer, the natural selection of condensed humic molecules, and the botanical composition and degree of degradation of peat, which reflect the climatic features of the area in the Holocene. Dry-peat soils of mounds are worse heated during the summer period because of the buffering effect of moss litter, which results in a lower degree of condensation of humic and fulvic acid molecules in the peat horizons down to the permafrost table. Transformation of quantitative and qualitative parameters of specific organic compounds occurs at the permafrost boundary of peatlands, which can serve as an indicator of recent climate changes in high latitudes.  相似文献   

4.
The microbial activity of peat soils was studied in boggy larch forests and in an oligo-mesotrophic bog in the basins of the Kochechum and Nizhnaya Tunguska rivers (central Evenkia). It was found that the organic matter transformation in the peat soils of all the plots is mainly performed by oligotrophic bacteria composing 88–98% of the total bacterial complex. The major contribution to the organic matter destruction belonged to the heterotrophic microorganisms, the activity of which depended on the permafrost depth and the soil temperature, the soil acidity, and the botanical composition of the peat. Peat soils were characterized by different activities as judged from their microbiological and biochemical parameters. The functioning of microbial communities in the studied ecotopes of the permafrost zone was within the range of natural variations, which pointed to their ecological stability.  相似文献   

5.
Organic-accumulative horizons above the permafrost table have been described in the profiles of cryozems developing on interfluve surfaces in the tundra zone of northern Yakutia. The organic matter content in these suprapermafrost horizons is comparable with or even exceeds the organic matter content in the surface horizons. The dynamics of seasonal thawing specify the annual involvement of the material of these horizons into the zone of active pedogenesis or its exclusion from it in the case of their frozen state. The analysis of the morphology of cryozems of the Kolyma Lowland along a 1000-km-long sublatitudinal transect shows that the accumulation and migration of raw organic materials (predominantly, differently decomposed peat) above the permafrost table take place upon the particular combinations of local factors (the soil moistening, ice content, freezing-thawing conditions, nanotopography of the permafrost table, etc.) at the lower boundary of the active layer. The well-pronounced accumulation of the raw organic material in the suprapermafrost horizons can be reflected in the substantive characteristics of these horizons and should be taken into account in classification decisions.  相似文献   

6.
Natural fires on forest bogs significantly affect all the groups and fractions of peat organic matter. The type and intensity of the fires are responsible for the depth of the pyrogenic transformation of peat. In the course of thermal destruction of peat organic matter, humus substances (humic acids in particular) are accumulated, which leads to changes in the type of humus; the humus reserves may increase by 1.5–8 times. Several ways of the formation of humus components related to the intensity of a fire are suggested. The regressive evolution of bog ecosystems caused by fires is a reversible process. The humus status of pyrogenically transformed horizons and their morphology are preserved within the peat deposit as a relic characteristic of the discrete metamorphosis of the soils.  相似文献   

7.
The role of cryogenic mass exchange in the distribution of the viable microfauna (ciliates, heterotrophic flagellates, and nematodes) in the profiles of cryoturbated cryogenic soils and in the upper layers of permafrost was revealed. The material for microbiological investigations was collected from the main horizons of cryozem profiles, including the zones with morphologically manifested processes of cryogenic mass exchange (the development of barren spots, cryoturbation, and suprapermafrost accumulation) and the zones affected by solifluction. The radiocarbon dating of the soil samples showed that the age of the organic cryogenic material and material buried in the course of solifluction varied from 2100 to 4500 years. Some zones with specific ecological conditions promoting the preservation of species diversity of the microfauna were found to develop in the cryozem profiles. A considerable part of the community (38% of ciliates, 58% of flagellates, and 50% of nematodes) maintained its viability in the dormant state, and in some cases, it could pass to the state of long-term cryobiosis in the upper layer of permafrost.  相似文献   

8.
Data on the distribution of the components of oil products that have accumulated in the arctic tundra soils of the Bol’shoi Lyakhovskii Island (the Novosibirskie Islands) under the impact of technogenic loads are analyzed. The examined soils differ in the vertical and lateral distribution patterns of the methanenaphthenic and naphthenic hydrocarbons and in the degree of their transformation. This is determined by the position of particular soils in the catenas and by the sorption of particular hydrocarbon compounds in the soils. The portion of light molecular-weight hydrocarbons in the upper horizons decreases by two-ten times in comparison with the deeper soil layers. In the lateral direction, the twofold difference in the contents of the methane-naphthenic and naphthenic hydrocarbons in the upper horizons is seen. The degree of transformation of the hydrocarbons under the impact of microbiological processes depends on the aeration conditions, the depth of permafrost table, the composition of oil products, and the soil organic matter content.  相似文献   

9.
Statistical analysis of a vast body of data collected during five field seasons (2011–2015) was performed to characterize the biological activity of soils in the northern taiga ecosystems of Western Siberia. Automorphic forest soils, hydromorphic (oligotrophic bog) soils, and semihydromorphic (flat-topped and large peat mounds) soils were characterized. Statistically significant differences of average levels of CO2 emission from the soils were identified at the ecosystem level. The CO2 emission from podzols of automorphic forest ecosystems at the peak of the growing season (205 ± 30 to 410 ± 40 mg CO2/(m2 h)) was significantly higher than the emission from semihydromorphic soils of peat mounds (70 ± 20 to 116 ± 10 mg CO2/(m2 h)). The presence and depth of permafrost was a significant factor that affected ecosystem diversity and biological activity of northern taiga soils. Statistically significant differences in the total, labile, and microbial carbon pools were observed for the studied soils. Labile and microbial carbon pools in the organic layer (10 cm) of forest podzols amounted to 0.19 and 0.66 t/ha, respectively; those in the organic layer (40 cm) of peat cryozems of flat-topped peat mounds reached 1.24 and 3.20 t/ha, and those in the oligotrophic peat soils (50 cm) of large peat mounds were 2.76 and 1.35 t/ha, respectively. The portion of microbial carbon in the total carbon pool (Cmicr/Ctot, %) varied significantly; according to the values of this index, the soils were arranged into the following sequence: oligotrophic peat soil < peat cryozem < podzol.  相似文献   

10.
Freezing and thawing may substantially influence the rates of C and N cycling in soils, and soil frost was proposed to induce NO losses with seepage from forest ecosystems. Here, we test the hypothesis that freezing and thawing triggers N and dissolved organic matter (DOM) release from a forest soil after thawing and that low freezing temperatures enhance the effect. Undisturbed soil columns were taken from a soil at a Norway spruce site either comprising only O horizons or O horizons + mineral soil horizons. The columns were subjected to three cycles of freezing and thawing at temperatures of –3°C, –8°C, and –13°C. The control columns were kept at constant +5°C. Following the frost events, the columns were irrigated for 20 d at a rate of 4 mm d–1. Percolates were analyzed for total N, mineral N, and dissolved organic carbon (DOC). The total amount of mineral N extracted from the O horizons in the control amounted to 8.6 g N m–2 during the experimental period of 170 d. Frost reduced the amount of mineral N leached from the soil columns with –8°C and –13°C being most effective. In these treatments, only 3.1 and 4.0 g N m–2 were extracted from the O horizons. Net nitrification was more negatively affected than net ammonification. Severe soil frost increased the release of DOC from the O horizons, but the effect was only observed in the first freeze–thaw cycle. We found no evidence for lysis of microorganisms after soil frost. Our experiment did not confirm the hypothesis that soil frost increases N mineralization after thawing. The total amount of additionally released DOC was rather low in relation to the expected annual fluxes.  相似文献   

11.
Arctic permafrost soils contain large stocks of organic carbon (OC). Extensive cryogenic processes in these soils cause subduction of a significant part of OC-rich topsoil down into mineral soil through the process of cryoturbation. Currently, one-fourth of total permafrost OC is stored in subducted organic horizons. Predicted climate change is believed to reduce the amount of OC in permafrost soils as rising temperatures will increase decomposition of OC by soil microorganisms. To estimate the sensitivity of OC decomposition to soil temperature and oxygen levels we performed a 4-month incubation experiment in which we manipulated temperature (4–20 °C) and oxygen level of topsoil organic, subducted organic and mineral soil horizons. Carbon loss (CLOSS) was monitored and its potential biotic and abiotic drivers, including concentrations of available nutrients, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools, were measured. We found that independently of the incubation temperature, CLOSS from subducted organic and mineral soil horizons was one to two orders of magnitude lower than in the organic topsoil horizon, both under aerobic and anaerobic conditions. This corresponds to the microbial biomass being lower by one to two orders of magnitude. We argue that enzymatic degradation of autochthonous subducted OC does not provide sufficient amounts of carbon and nutrients to sustain greater microbial biomass. The resident microbial biomass relies on allochthonous fluxes of nutrients, enzymes and carbon from the OC-rich topsoil. This results in a “negative priming effect”, which protects autochthonous subducted OC from decomposition at present. The vulnerability of subducted organic carbon in cryoturbated arctic soils under future climate conditions will largely depend on the amount of allochthonous carbon and nutrient fluxes from the topsoil.  相似文献   

12.
On the basis of a large volume of literature and original data, the high content (1–7%) of organic matter in the mineral layer of loamy permafrost-affected soils of coastal lowlands in East Siberia (from the lower reaches of the Lena River to the lower reaches of the Kolyma River) has been statistically proved. In most cases, the reserves of Corg in the mineral layer of these soils exceed those in the surface organic horizons and constitute 60–90% of the total soil pool of Corg. The enrichment of the mineral layer with Corg is due to the cryogenic retention (retenization) of humus (the illuviation and accumulation of colorless humic substances above permafrost) and the cryogenic mass exchange (mechanical admixture of organic matter from the upper organic horizons into the mineral layers). The analysis of 60 soil profiles showed that the accumulation of organic matter above the permafrost table is observed in 43% of cases; in general, the organic matter distribution in the soil profiles is highly variable. A specific type of colorless humus is accumulated above the permafrost table. The mechanisms of its precipitation and transformation in the profile require further studies.  相似文献   

13.
The microbial activity and bacterial community structure were investigated in two types of peat soil in a temperate marsh. The first, a drained grassland fen soil, has a neutral pH with partially degraded peat in the upper oxic soil horizons (16% soil organic carbon). The second, a bog soil, was sampled in a swampy forest and has a very high soil organic carbon content (45%), a low pH (4.5), and has occasional anoxic conditions in the upper soil horizons due to the high water table level. The microbial activity in the two soils was measured as the basal and substrate-induced respiration (SIR). Unexpectedly, the SIR (μl CO2 g−1 dry soil) was higher in the bog than in the fen soil, but lower when CO2 production was expressed per volume of soil. This may be explained by the notable difference in the bulk densities of the two soils. The bacterial communities were assessed by terminal restriction fragment length polymorphism (T-RFLP) profiling of 16S rRNA genes and indicated differences between the two soils. The differences were determined by the soil characteristics rather than the season in which the soil was sampled. The 16S rRNA gene libraries, constructed from the two soils, revealed high proportions of sequences assigned to the Acidobacteria phylum. Each library contained a distinct set of phylogenetic subgroups of this important group of bacteria.  相似文献   

14.
Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.  相似文献   

15.
The composition and distribution of polycyclic aromatic hydrocarbons (PAHs) were studied in organomineral and organic soils of the Meshchera National Park. It was found that the background oligotrophic peat soils unaffected by fires in central parts of the bogs are characterized by the increased PAH concentrations due to their high sorption capacity. The fires of 2007 and 2010 resulted in the transformation of the plant cover and soil morphology, the formation of new horizons, and the change in the PAHs content and composition. Significant burn-off of organic matter was found in oligotrophic-eutrophic soils and resulted in the decrease of PAHs content after fire. Only partial burn-off of organic horizons and intense formation of PAHs were recorded in the soil with initially great thickness of peat horizons. Pyrogenic accumulation of PAHs was identified in organomineral soils of the marginal parts of bogs and of forest sites.  相似文献   

16.
Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SOM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbially-mediated processes remains sparse. To identify possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil parameters, as well as with microbial community composition, estimated using phospholipid fatty acid profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calculated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly between ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil horizons were correlated with SOM content (i.e., C and N content) and microbial community composition. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH and microbial community composition. The lack of correlation between enzyme patterns and SOM quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization of SOM rather than SOM content might determine substrate availability for enzymatic breakdown. The correlation of microbial community composition and enzyme patterns in all horizons, suggests that microbial community composition shapes enzyme patterns and might act as a modifier for the usual dependency of decomposition rates on SOM content or C/N ratios.  相似文献   

17.
This paper considers three topical problems—the definition of peat soils as natural-historical formations and the estimation of their profile thickness, the analysis of the genesis of organic soils, and the principles of the classification of peat soils. Based on the experimental data of long-term studies, it was concluded that peat soils may include the whole peat layer and the upper horizons of the surface mineral soil. The organic and mineral parts of the natural structures were found to be a genetically homogeneous soil profile, which has the same history of development. The upper layer of the peat soils should be considered as the horizon reflecting the contemporary stage of the soil formation. A hierarchy of peat soils is analyzed for developing their classification.  相似文献   

18.
《Soil biology & biochemistry》2012,44(12):2432-2440
Feedbacks to global warming may cause terrestrial ecosystems to add to anthropogenic CO2 emissions, thus exacerbating climate change. The contribution that soil respiration makes to these terrestrial emissions, particularly from carbon-rich soils such as peatlands, is of significant importance and its response to changing climatic conditions is of considerable debate. We collected intact soil cores from an upland blanket bog situated within the northern Pennines, England, UK and investigated the individual and interactive effects of three primary controls on soil organic matter decomposition: (i) temperature (5, 10 and 15 °C); (ii) moisture (50 and 100% field capacity – FC); and (iii) substrate quality, using increasing depth from the surface (0–10, 10–20 and 20–30 cm) as an analogue for increased recalcitrance of soil organic material. Statistical analysis of the results showed that temperature, moisture and substrate quality all significantly affected rates of peat decomposition. Q10 values indicated that the temperature sensitivity of older/more recalcitrant soil organic matter significantly increased (relative to more labile peat) under reduced soil moisture (50% FC) conditions, but not under 100% FC, suggesting that soil microorganisms decomposing the more recalcitrant soil material preferred more aerated conditions. Radiocarbon analyses revealed that soil decomposers were able to respire older, more recalcitrant soil organic matter and that the source of the material (deduced from the δ13C analyses) subject to decomposition, changed depending on depth in the peat profile.  相似文献   

19.
Because carbon dioxide (CO2) concentration is rising, increases in plant biomass and productivity of terrestrial ecosystems are expected. However, phosphorus (P) unavailability may disable any potential enhanced growth of plants in forest ecosystems. In response to P scarcity under elevated CO2, trees may mine deeper the soil to take up more nutrients. In this scope, the ability of deep horizons of forest soils to supply available P to the trees has to be evaluated. The main objective of the present study was to quantify the relative contribution of topsoil horizons and deep horizons to P availability through processes governed by the activity of soil micro-organisms. Since soil properties vary with soil depth, one can therefore assume that the role of microbial processes governing P availability differs between soil layers. More specifically, our initial hypothesis was that deeper soil horizons could substantially contribute to total plant available P in forested ecosystems and that such contribution of deep horizons differs among sites (due to contrasting soil properties). To test this hypothesis, we quantified microbial P and mineralization of P in ‘dead’ soil organic matter to a depth of 120 cm in forest soils contrasting in soil organic matter, soil moisture and aluminum (Al) and iron (Fe) oxides. We also quantified microbiological activity and acid phosphomonoesterase activity. Results showed that the role of microbial processes generally decreases with increasing soil depth. However, the relative contribution of surface (litter and 0–30 cm) and deep (30–120 cm) soil layers to the stocks of available P through microbial processes (51–62 kg P ha?1) are affected by several soil properties, and the contribution of deep soil layers to these stocks vary between sites (from 29 to 59%). This shows that subsoils should be taken into account when studying the microbial processes governing P availability in forest ecosystems. For the studied soils, microbial P and mineralization of P in ‘dead’ soil organic matter particularly depended on soil organic matter content, soil moisture and, to a minor extent, Al oxides. High Al oxide contents in some sites or in deep soil layers probably result in the stabilization of soil organic compounds thus reducing microbiological activity and mineralization rates. The mineralization process in the litter also appeared to be P-limited and depended on the C:P ratio of soil organic matter. Thus, this study highlighted the effects of soil depth and soil properties on the microbial processes governing P availability in the forest spodosols.  相似文献   

20.
Feedbacks to global warming may cause terrestrial ecosystems to add to anthropogenic CO2 emissions, thus exacerbating climate change. The contribution that soil respiration makes to these terrestrial emissions, particularly from carbon-rich soils such as peatlands, is of significant importance and its response to changing climatic conditions is of considerable debate. We collected intact soil cores from an upland blanket bog situated within the northern Pennines, England, UK and investigated the individual and interactive effects of three primary controls on soil organic matter decomposition: (i) temperature (5, 10 and 15 °C); (ii) moisture (50 and 100% field capacity – FC); and (iii) substrate quality, using increasing depth from the surface (0–10, 10–20 and 20–30 cm) as an analogue for increased recalcitrance of soil organic material. Statistical analysis of the results showed that temperature, moisture and substrate quality all significantly affected rates of peat decomposition. Q10 values indicated that the temperature sensitivity of older/more recalcitrant soil organic matter significantly increased (relative to more labile peat) under reduced soil moisture (50% FC) conditions, but not under 100% FC, suggesting that soil microorganisms decomposing the more recalcitrant soil material preferred more aerated conditions. Radiocarbon analyses revealed that soil decomposers were able to respire older, more recalcitrant soil organic matter and that the source of the material (deduced from the δ13C analyses) subject to decomposition, changed depending on depth in the peat profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号