首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abundance, activity, and temperature response of aerobic methane-oxidizing bacteria were studied in permafrost-affected tundra soils of northeast Siberia. The soils were characterized by both a high accumulation of organic matter at the surface and high methane concentrations in the water-saturated soils. The methane oxidation rates of up to 835 nmol CH4 h−1 g−1 in the surface soils were similar to the highest values reported so far for natural wetland soils worldwide. The temperature response of methane oxidation was measured during short incubations and revealed maximum rates between 22 °C and 28 °C. The active methanotrophic community was characterized by its phospholipid fatty acid (PLFA) concentrations and with stable isotope probing (SIP). Concentrations of 16:1ω8 and 18:1ω8 PLFAs, specific to methanotrophic bacteria, correlated significantly with the potential methane oxidation rates. In all soils, distinct 16:1 PLFAs were dominant, indicating a predominance of type I methanotrophs. However, long-term incubation of soil samples at 0 °C and 22 °C demonstrated a shift in the composition of the active community with rising temperatures. At 0 °C, only the concentrations of 16:1 PLFAs increased and those of 18:1 PLFAs decreased, whereas the opposite was true at 22 °C. Similarly, SIP with 13CH4 showed a temperature-dependent pattern. When the soils were incubated at 0 °C, most of the incorporated label (83%) was found in 16:1 PLFAs and only 2% in 18:1 PLFAs. In soils incubated at 22 °C, almost equal amounts of 13C label were incorporated into 16:1 PLFAs and 18:1 PLFAs (33% and 36%, respectively). We concluded that the highly active methane-oxidizing community in cold permafrost-affected soils was dominated by type I methanotrophs under in situ conditions. However, rising temperatures, as predicted for the future, seem to increase the importance of type II methanotrophs, which may affect methane cycling in northern wetlands.  相似文献   

2.
On the basis of a large volume of literature and original data, the high content (1–7%) of organic matter in the mineral layer of loamy permafrost-affected soils of coastal lowlands in East Siberia (from the lower reaches of the Lena River to the lower reaches of the Kolyma River) has been statistically proved. In most cases, the reserves of Corg in the mineral layer of these soils exceed those in the surface organic horizons and constitute 60–90% of the total soil pool of Corg. The enrichment of the mineral layer with Corg is due to the cryogenic retention (retenization) of humus (the illuviation and accumulation of colorless humic substances above permafrost) and the cryogenic mass exchange (mechanical admixture of organic matter from the upper organic horizons into the mineral layers). The analysis of 60 soil profiles showed that the accumulation of organic matter above the permafrost table is observed in 43% of cases; in general, the organic matter distribution in the soil profiles is highly variable. A specific type of colorless humus is accumulated above the permafrost table. The mechanisms of its precipitation and transformation in the profile require further studies.  相似文献   

3.
The composition and properties of humic acids in permafrost-affected meadow-chernozemic soils of the Transbaikal Region have been studied. The contents of carbon, nitrogen, and acid functional groups in the humic acids of the studied soils formed under the impact of cryogenic factors are relatively low. Thus, both the condensed nuclear part and the aliphatic chains are well pronounced in the humic acids of the studied soils. At the same time, the degree of their aromaticity is lower in comparison with humic acids in the analogous soils of Western Siberia and Kazakhstan.  相似文献   

4.
5.
Data on the mineralogical composition of clay in soils of solonetzic complexes of the Priobskoe Plateau and the Kulunda and Baraba lowlands have been generalized. The parent materials predominating in these regions have loamy and clayey textures and are characterized by the association of clay minerals represented by dioctahedral and trioctahedral mica–hydromica, chlorite, kaolinite, and a number of irregular interstratifications. They differ in the proportions between the major mineral phases and in the qualitative composition of the minerals. Mica–hydromica and chlorites with a small amount of smectitic phase predominate on the Priobskoe Plateau and in the Kulunda Lowland; in the Baraba Lowland, the portion of mica–smectite interstratifications is higher. An eluvial–illuvial distribution of clay fraction in solonetzes is accompanied by the acid–alkaline destruction and lessivage of clay minerals, including the smectitic phase in the superdispersed state. This results in the strong transformation of the mineralogical composition of the upper (suprasolonetzic) horizons and in the enrichment of the solonetzic horizons with the products of mineral destruction; superdispersed smectite; and undestroyed particles of hydromica, kaolinite, and chlorite from the suprasolonetzic horizons. A significant decrease in the content of smectitic phase in the surface solodic horizons of solonetzic complexes has different consequences in the studied regions. In the soils of the Priobskoe Plateau and Kulunda Lowland with a relatively low content (10–30%) of smectitic phase represented by chlorite–smectite interstratifications, this phase virtually disappears from the soils (there are only rare cases of its preservation). In the soils of the Baraba Lowland developed from the parent materials with the high content (30–50%) of smectitic phase represented by mica–smectite interstratifications, the similar decrease (by 10–20%) in the content of smectitic phase does not result in its complete disappearance. However, the smectitic phase acquires the superdispersed state and the capacity for migration.  相似文献   

6.
The abundance and activity of the soil microflora were studied in a field experiment with the use of green manure crops to assess the impact of reclamation measures on the biological activity of soils of the solonetz complex. The number of microorganisms in the plow soil horizon increased in the background of the green fallows as compared to the black ones. Coefficients of mineralization, immobilization, and transformation of organic compounds were calculated for different variants of the soil treatment. The value of the mineralization coefficient indicates the intense decomposition of the green manure that entered the soil. In the first year, peas were actively decomposed, while oats, in the second year (aftereffect). The activity of the soil enzymes (invertase, urease, and catalase) was determined. A close relationship between the catalase activity and the intensity of the microbiological processes in the soils was revealed.  相似文献   

7.
The parameters of the potential biological activity (respiration, methanogenesis, nitrogen fixation, and denitrification) of drained peat soils were analyzed as depending on their morphological, chemical, and electrical properties. A high positive correlation was found between the potential respiration of the soil and its electrical resistance, because these parameters depended on the same soil properties: the ash content, the cation exchange capacity, etc. The correlation was disturbed under a significant adverse impact of the soil water-air regime on the microbial community, which was difficult to detect from the resistance. No correlation of anaerobic methanogenesis and denitrification with the resistance was found. The revealed relationships can find wide use in the study of the spatial distribution of the potential biological activity of soils, which will allow deriving more correct and representative data.  相似文献   

8.
The study of soils of different ages developing on the drying bottom of the shallow-water Yudinsk reach of Lake Chany (Western Siberia) has shown that soil salinization is a powerful factor affecting the biomass and metabolic activity of microorganisms. Strong salinity of parent materials retards the development of microbial population in the young soils. With an increase the soil age of lake depressions, desalinization takes place, and the rate of the formation of microbial biomass increases. Its metabolic activity becomes more pronounced, though the specific rate of metabolic activity slows down. The carbon of the microbial biomass and basal respiration in the soils developing on drying lake bottoms in the forest-steppe zone reach the values typical of the zonal chernozemic soils in about 80 years.  相似文献   

9.
Differently directed and heterochronous cryogenic processes have contributed to the contrasting soil cover patterns and spatial heterogeneity of the properties of soils in hydromorphic ecosystems of the discontinuous permafrost zone of the northern taiga in Western Siberia. Frost heave and permafrost thawing within ecosystems of highmoor bogs have led to the development of specific cryogenic landforms, such as flat-topped and large peat mounds. A set of cryogenic soils is developed in these ecosystems; it includes different variants of cryozems, gleyzems (Cryosols), and peat soils (Histosols). The distribution of these soil types is controlled by the local topography and thawing depth, other factors being insignificant. Alternation of peat horizons of different types and ages, whirl-like patterns of horizon boundaries, considerable variations in the thickness of soil horizons, and inversions of soil horizons under the impact of frost cracking, frost heave, and cryoturbation are typical of the considered soils. Thawing depth is the most significant factor affecting the thickness of organic horizons, the soil pH, and the degree of decomposition of peat. As a result of the upward movement of bog ecosystems under the impact of frost heave, peat soils are subjected to considerable transformation: peat horizons undergo mineralization, and the thickness of organic horizons decreases; in some cases, eluvial–illuvial differentiation of the mineral horizons takes place, and peat podzols are developed. However, the opposite process of the return of the soils to the bog stage of pedogenesis with peat accumulation may take place in any time in the case of activation of thermokarst processes.  相似文献   

10.
Meadow-chernozemic soils (Turbic Chernozems Molliglossic) in the western Trans-Baikal Region are dissected by large cryogenic cracks penetrating to the depth of 100–120 cm and filled with humified material. The depth of humus pockets is 50–80 cm, and their width in the upper part is 50–90 cm. The lower boundary of most of the humus pockets lies at the depth of 60–70 cm. The development of cryogenic cracks proceeded due to their penetration into the frozen ground, which is evidenced by their sharply narrowing lower part. The fraction of physical clay (<0.01 mm) constitutes a considerable part of the material filling the cracks, which explains the significant humus content in this material. The contents of humus and adsorbed bases sharply decrease down through the soil profile in the soil mass between the cracks and remain relatively stable in the material filling the cracks. The soil mass in humus pockets is less compact that that in the background soil mass at the same depth, which is explained by the higher humus content in the pockets. Humified soil material in the pockets is also characterized by a higher porosity and, hence, higher water permeability than the surrounding soil mass.  相似文献   

11.
The polyphenolic compositions of 31 Basque cider apple cultivars were determined in pulp, peel, and juice by high-performance liquid chromatography--diode array detection analysis of crude extracts and after thiolysis. Data sets, consisting of individual polyphenol concentrations, total procyanidin content, and the average degree of polymerization of procyanidins, were evaluated by multivariate chemometric techniques, to develop decision rules for classifying apple cultivars technologically into bitter and nonbitter categories. A preliminary study of the data structure was performed by cluster analysis and principal component analysis in each apple material. Bitter apple varieties presented higher contents of flavan-3-ols and/or dihydrochalcones than nonbitter cultivars. Different classification systems for the two categories on the basis of the chemical data were obtained applying several supervised pattern recognition procedures, such as linear discriminant analysis, K-nearest neighbors, soft independent modeling of class analogy, partial least-squares, and multilayer feed forward artificial neural networks. Excellent performance in terms of recognition and prediction abilities for both categories (100% of hits) was achieved in every case (pulp, peel, or juice). Polyphenolic profiles of apple pulp, peel, or juice provide enough information to develop classification criteria for establishing the technological group of apple cultivars (bitter or nonbitter).  相似文献   

12.
The informativeness of NDVI for predictive mapping of the physical and chemical properties of plow horizons of soils on different slope positions within the first (280–310 m a.s.l.) and second (240–280 m a.s.l.) altitudinal steps has been examined. This index is uninformative for mapping soil properties in small hollows, whose factual width is less than the Landsat image resolution (30 m). In regression models, NDVI index explains 52% of variance in the content of humus; 35 and 24% of variance in the contents of total and nitrate nitrogen; 19 and 29% of variance in the contents of total and available phosphorus; 25 and 50% of variance in the contents of exchangeable calcium and manganese; and 30 and 29% of variance in the contents of fine silt and soil water, respectively. On the basis of the models obtained, prognostic maps of the soil properties have been developed. Spatial distribution patterns of NDVI calculated from Landsat 8 images (30-m resolution) serve as the cartographic base and the main indicator of the soil properties. The NDVI values and the contents of humus, physical clay (<0.01 mm) and fine silt particles, total and nitrate nitrogen, total phosphorus, and exchangeable calcium and manganese in the soils of the first altitudinal step are higher than those in the soils of the second altitudinal step. An opposite tendency has been found for the available phosphorus content: in the soils of the second altitudinal step and the hollow, its content is higher than that in the soils of the first altitudinal step by 1.8 and 2.4 times, respectively. Differences in the pH of soil water suspensions, easily available phosphorus, and clay in the soils of the compared topographic positions (first and second altitudinal steps and the hollow) are statistically unreliable.  相似文献   

13.
Large amounts of carbon are stored in permafrost‐affected soils of the Arctic tundra. The quantity, distribution and composition of this carbon are important, because much of the carbon is likely to be released as a result of global warming. We have studied soils of the central Siberian Arctic to determine the carbon content and the nature of the organic matter by density fractionation, and 13C‐NMR‐ and 13C‐stable‐isotope analyses. There are pronounced differences in the profile and variations from place to place in the quantity and nature of soil organic matter. We estimated that the mean stock of carbon was 14.5 kg m–2 within the active layer. We found a total of about 30.7 kg C m–3 in the entire upper metre of the soils. Carbon of the tussock tundra showed strong vertical differentiation, with a large proportion comprising decomposed, recalcitrant compounds. We identified within the soil several zones of aerobe and anaerobe decomposition. Mobile carbon fractions have precipitated under the influence of low temperatures.  相似文献   

14.
Elizarov  N. V.  Popov  V. V.  Semendyaeva  N. V. 《Eurasian Soil Science》2020,53(12):1701-1708
Eurasian Soil Science - Soil salinization and alkalization is an acute problem in Western Siberia because of the rise of saline groundwater above the critical level. We studied modern hydromorphism...  相似文献   

15.
《CATENA》2001,43(3):191-202
Changes in humus resulting from up to 20 years' irrigation with slightly saline water were studied in dry steppe soils in southwest Siberia. The amounts of brown humic acids and of the Pg fraction increased with the period of irrigation, and their maximum amounts occurred at greater depths in the profile. Other fractions of humus and humic acids fluctuated within the limits typical of dry steppe soils. The humus therefore remained essentially stable under irrigation for up to 20 years.  相似文献   

16.
Specific features of soil formation in the taiga zone of Western Siberia are considered. The polygenetic nature of podzolic and gley-podzolic soils in the middle taiga zone, soddy-podzolic and soddy gley soils in the southern taiga zone, and meadow soils in the subtaiga zone is related to the pre-Holocene transformation of the lithogenic matrix upon activation of denudation and accumulation processes and the complicated Holocene evolution of these soils. A soil profile can be subdivided into separate layers according to the geomorphic features of the cryogenesis, the indices of interruption of soil formation, and the differences in the composition of the organic matter in the relict and modern humus horizons.  相似文献   

17.
Soil sequences along catenas crossing the peripheral parts of shallow-water drying lakes in the south of Siberia have been studied. They include the sulfidic and typical playa (sor) solonchaks (Gleyic Solonchaks), playa solonchak over the buried solonetz (Gleyic Solonchak Thapto-Solonetz)), shallow solonetz–solonchak (Salic Solonetz), and solonetzic and solonchakous chernozemic-meadow soil (Luvic Gleyic Chernozem (Sodic, Salic)). This spatial sequence also represents a series of historical stages of the development of halomorphic soils: the amphibian, hydromorphic, semihydromorphic, and automorphic–paleohydromorphic stages. During all of them, the biogenic component plays a significant role in the matter budget of halomorphic soils. The diversity, number, and functional activity of large insects and spiders are particularly important. Their total abundance in the course of transformation of the halomorphic soils decreases from several thousand to about 100 specimens/(m2 day), whereas their species diversity increases from 17 to 45 species. Changes in the functional structure of the soil zoocenosis and its impact on the character and intensity of pedogenetic processes can be considered driving forces of the transformation of hydromorphic soils. This is ensured by the sequential alteration of the groups of invertebrates with different types of cenotic strategy and different mechanisms of adaptation to biotic and abiotic components of the soil in the course of the development of the soil zoocenosis.  相似文献   

18.
The published and author’s data on soil-forming conditions, morphology, substance composition and physicochemical properties, total chemical and mineralogical composition, and micromorphology of mountain-meadow soils of the Western Caucasus Range are analyzed. On the basis of the analytical data obtained, the transformation of minerals and features of chemical element profile patterns developed in the course of soil formation are characterized. The main processes accompanying the transformation of mineral and organic parts of the soil mass and migration of soil-formation products are described. Soil formation is shown to be accompanied by two major elementary soil processes developing with participation of soil biota: humus accumulation and clay formation. Ways to improve the classification of mountain-meadow soils are proposed.  相似文献   

19.
It is shown that the water content in the upper part of chernozems in Western Siberia in the late fall period exceeds the field capacity. An ice-rich barrier is formed in the humus horizon of these soils at temperatures below zero in the cold period. This barrier has both negative and positive effects. Being impermeable for snowmelt water, it favors the development of erosion processes. At the same time, it prevents infiltration of snowmelt water beyond the soil profile with the formation of a percolative water regime (favoring soil leaching) in the chernozems.  相似文献   

20.
Distribution patterns of calcium in peat deposits of seventeen bogs in the middle and southern taiga of Western Siberia have been studied. Four types of Ca distribution patterns related to the genesis of peat deposits are specified. Up to three Ca-enriched peat layers are distinguished in thick deposits. This Ca distribution pattern is typical of different peat deposits formed under various conditions. It is shown that Ca accumulation in particular layers of peat deposits is related to the warm stages of the Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号