首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国盐渍土研究:历程、现状与展望   总被引:10,自引:0,他引:10  
盐渍土研究是以盐渍土和盐渍生境作为主要研究对象,以盐渍土和盐渍化的发生与演变过程、环境要素和人类活动对盐渍化的影响与作用机制、盐渍土的治理、改良和利用的理论与技术为主体的研究领域。我国盐渍土面积巨大、种类繁多,盐渍化问题突出,对农业生产和生态环境造成不同程度的影响。我国科学家提出的盐渍土“水盐调控”“水盐平衡”,“淡化肥沃层”和“障碍消减”等理论与技术方法,为发展农业生产、提高土地产能、保障粮食安全、拓展耕地资源等发挥了积极作用。近期我国在土壤盐渍化演变过程的监测与多源数据融合、土壤水盐运移过程模拟与尺度转换、盐渍农田养分循环与减损增效、盐渍障碍的生态消减、盐渍障碍微生物修复、盐渍农田灌排优化管理与边际水安全利用等方面取得了积极的进展和成果。建议今后深入开展盐渍土精准控盐的高效和安全用水、土壤盐渍障碍的绿色消减与健康保育、盐渍农田养分库容扩增与增碳减排、土壤盐渍化与区域生态的耦合响应和协同适应等方面的理论与技术研究。应面向农业、资源、生态、环境等领域和行业,致力于拓展理论和新技术的研究,为国家农业升级、粮食安全、耕地保护、生态安全、高质量发展发挥重要作用。本文回顾了我国盐渍土研究工作的...  相似文献   

2.
盐碱地的生态修复研究   总被引:14,自引:0,他引:14  
随着人口不断增长和社会经济的发展,耕地面积逐步减少,土地质量也在降低,世界范围内土地盐碱化问题越来越严重。为了科学、合理地治理盐碱地,应当以系统论的观点,从盐渍土资源、植物资源、水资源等诸方面综合考虑,把盐碱地作为一种可利用的资源,根据生态恢复学原理,对盐碱地进行生态修复,统筹开发利用与水土保持、经济效益与景观效果之间的关系,努力拓展盐碱地开发利用新途径,积极推进盐碱地资源的生态利用与产业化开发。  相似文献   

3.
Soil salinity (high levels of water-soluble salt) and sodicity (high levels of exchangeable sodium), called collectively salt-affected soils, affect approximately 932 million ha of land globally. Saline and sodic landscapes are subjected to modified hydrologic processes which can impact upon soil chemistry, carbon and nutrient cycling, and organic matter decomposition. The soil organic carbon (SOC) pool is the largest terrestrial carbon pool, with the level of SOC an important measure of a soil's health. Because the SOC pool is dependent on inputs from vegetation, the effects of salinity and sodicity on plant health adversely impacts upon SOC stocks in salt-affected areas, generally leading to less SOC. Saline and sodic soils are subjected to a number of opposing processes which affect the soil microbial biomass and microbial activity, changing CO2 fluxes and the nature and delivery of nutrients to vegetation. Sodic soils compound SOC loss by increasing dispersion of aggregates, which increases SOC mineralisation, and increasing bulk density which restricts access to substrate for mineralisation. Saline conditions can increase the decomposability of soil organic matter but also restrict access to substrates due to flocculation of aggregates as a result of high concentrations of soluble salts. Saline and sodic soils usually contain carbonates, which complicates the carbon (C) dynamics. This paper reviews soil processes that commonly occur in saline and sodic soils, and their effect on C stocks and fluxes to identify the key issues involved in the decomposition of soil organic matter and soil aggregation processes which need to be addressed to fully understand C dynamics in salt-affected soils.  相似文献   

4.
Sodicity and salinity can adversely affect soil structure and are common constraints to plant growth in arid regions. Current remote sensing techniques cannot distinguish between the various classes of salt-affected soils. Field and laboratory measurements of salt-affected soils are time-consuming and expensive. Mapping of the salt-affected soils can be used in soil conservation planning to identify regions with different degrees of limitations. There is a need to use existing field and laboratory measurements to create maps of classes of salt-affected soils. The objectives of this study are to classify salt-affected soils, use existing field data to interpolate and validate geospatial predictions of the classes of salt-affected soils using Geographic Information Systems (GIS), and create maps showing the different classes and distribution of salt-affected soils. The classification framework for salt-affected soils is based on electrical conductivity (ECe), soil pH and the sodium adsorption ratio (SAR), and provides four degrees of limitations to salt-affected soils: slight (normal soils), moderate (saline soils), severe (sodic soils), and extreme (saline-sodic soils). Spatial interpolation of the field data from northwestern Libya was verified by cross-validation, and maps of the salt-affected soils in the region were created. The majority of soils in this region of Libya are normal (slight degree of limitation). Twenty percent of the topsoil is saline-sodic (extreme degree of limitation). Land use recommendations and rehabilitation strategies can be developed from such maps of salt-affected soil classes. The methodology followed in this study can be applied to other arid regions around the world, particularly in developing countries where budgetary constraints limit detailed field and laboratory measurements of sodicity and salinity.  相似文献   

5.
The number of streptomycetes isolated from salt-affected soils of the Caspian Lowland and desert soils of Mongolia comprises hundreds and thousands of colony-forming units (CFU) per one gram of soil. A complex of moderately halophilic streptomycetes is present in salt-affected soils. The factor of halophily (the ratio between the numbers of streptomycetes isolated from salt-affected soils on nutrient media with 5% NaCl and with 0.02% NaCl) has been calculated for the complex of streptomycetes. The streptomycetic complex of salt-affected soils is characterized by the presence of moderately haloalkaliphilic streptomycetes, whose optimum growth is observed in the medium containing 5% NaCl having pH 8.  相似文献   

6.
《CATENA》2005,60(2):113-128
Salt-affected soils differ in their chemical properties to all other soils. Sodicity and salinity may affect the soil organic matter component of these soils. In a field experiment, we investigated organic matter decomposition in nonsaline nonsodic Aquic Argiudoll, a nonsaline sodic Typic Natraquoll, nonsaline nonsodic Petrocalcic Paleudoll and a saline sodic Typic Natralboll in the Pampa Deprimida, Argentina. The objectives were to identify the degree of stabilization of organic matter by association with mineral particles in these soils and to follow in particular the fate of lignin in these soils. We measured organic carbon, total nitrogen and the extent of lignin alteration with soil depth and in various particle size fractions. The salt-affected soils contained much less organic carbon and nitrogen in their mollic epipedons than the nonsaline nonsodic soils, and bioturbation into deeper layers was restrained. In the salt-affected soils most of the organic matter was in sand-sized particles. Retarded degradation of plant residues was indicated by the pattern of lignin-derived phenols, suggesting less alteration of lignin in the salt-affected soils than in the nonsaline nonsodic soils. We suggest that this results from the effects of high pH, high sodicity, and high salinity on the microorganisms and their enzymatic activities. The high pH and high concentrations of monovalent cations decreased formation of solid organo-mineral complexes. We conclude that in the salt-affected soils oxidatively altered organic compounds are susceptible to losses in dissolved or colloidal forms, because these compounds are not stabilized against leaching and mineralization by chemical bonding to soil minerals.  相似文献   

7.
Factual materials on salt-affected soils in the Barguzin Depression (Buryat Republic) are generalized. A geomorphic map of the depression has been developed. The distribution of salt-affected soils and the specificity of salinization in different geomorphic regions are characterized. These soils tend to be developed within the low lacustrine–alluvial plain of the depression, on the floodplain of the Barguzin River and its tributaries. Smaller areas of salt-affected soils are found on the river terraces. They are virtually absent on ancient sandy ridged terraces (kuituns). The genesis and chemistry of soil salinization are mainly related to the discharge of slightly saline deep water along tectonic faults and fissures. An additional source of soil salinity is represented by surface water flows. The presence of permafrost preventing the leaching of salts and the cryoarid climate favoring the migration of salts toward the soil surface during the dry spring and early summer periods and during the soil freezing in the winter contribute to the soil salinization. Slightly saline hydromorphic solonchakous soils predominate among salt-affected soils of the depression; the portion of semihydromorphic saline soils is smaller. Automorphic saline soils rarely occur in the depression. Strongly saline soils— solonchaks—are widespread within lacustrine depressions around salt lakes. Soils of the soda and sulfate salinization predominate. The content of chlorides is small; their increased amounts, as well as the presence of sulfates, are indicative of the discharge of dee ground water onto the surface. The soda type of salinization is also related to the discharge of deep stratal water with further transformation of salt solutions during freeze–thaw cycles. Under anaerobic conditions, the formation of soda is favored the processes of sulfate reduction.  相似文献   

8.
东亚和邻近地区受盐影响土壤的性质及盐化危险   总被引:5,自引:0,他引:5  
Asia is the largest distribution area of salt-affected soils in the world,Very few countries in Asia could escape from hazard of salinization.This paper deals with various salt-affected soils spreading in East Asia and its neighboring regions (including China,Japan,Kampuchea,Democratic Peolpe‘s Republic of Kores,Republic of Korea,Laos,Mongolia,Burma,Thailand and Vietnam),Principles of occurrence of salinization,and features of salt-affected soils in these regions have been studied in the present paper,Based on studies on types,features and distribution patterns of salt-affected soils.a salt-affected soil map of East Asia and its neighboring regions has been complied.Mechanism and manifestation of the salinization hazard on the regional agriculture and ecological environment,measures of preventing salinization hazard and exploiting salt-affected soils in these regions are also discussed.  相似文献   

9.
含盐量对土壤的水汽吸附及土壤水能量状态的影响   总被引:3,自引:1,他引:3  
李小刚 《土壤通报》2001,32(6):245-249
以甘肃景电灌区盐化土壤为对象用水汽平衡吸附法就盐分对土壤的水汽吸附和土壤水能量状态的影响进行了研究 .结果表明盐分显著增加了土壤水汽吸附量 ,水汽饱和度为 98%的情况下 ,含盐量为 1 0 .772 g/kg和 1 2 .887g/kg的两个土壤的水汽吸附量分别达到了 1 9.4 5 %和 2 5 .34 % .水汽饱和度大于65 %左右时水汽吸附有一个明显的转折点 ,.水汽饱和度大于 65 %时水汽吸附量主要受含盐量影响 ,而当饱和度小于 65 %时则主要受物理性粘粒含量的影响 .盐分非常显著地降低了土壤的水势 ,可以用盐化土样的水势与脱盐处理土样的水势估算盐化土样的渗透势 .估算结果表明在低水势段以及在相当大含水量范围内盐化土壤因盐分浓度所产生的渗透势的绝对值远大于基质势的绝对值  相似文献   

10.
ABSTRACT

The properties of secondary salt-affected soils developed from improper irrigation and drainage management and their effects on rice growth and yield are well documented. However, relevant information on coastal reclaimed tideland (RTL) soils, which are classified as primary salt-affected soils developed through salt-accumulated sediments is lacking. In this paper, we reviewed the physical and chemical properties of RTL soils in comparison with non-RTL soils and analyzed the relationship between rice production and soil salinity in RTL to suggest agricultural management practices for sustainable rice production and soil carbon sequestration in RTL. Similar to the secondary salt-affected soils, RTL soils were characterized by high alkalinity, salinity, and sodicity, and rice yield was negatively correlated with salinity. However, it was also found that lower fertility (e.g., organic matter and phosphorus) of RTL soils than non-RTL soils might also hamper rice growth and thus carbon input via plant residues in RTL soils. Correlation between years after reclamation and soil properties of RTL showed that cultivation of rice with annual fertilization and organic matter inputs increased soil fertility but salinity and sodicity did not show a significant tendency of change, suggesting that natural desalinization in RTL soils is hard to be achieved with conventional rice cultivation. Therefore, it is suggested that fertilization management as well as salinity management via drainage, gypsum application, tillage, and proper irrigation may be necessary to improve rice production and carbon sequestration in RTL soils.  相似文献   

11.
Unique experiments performed since the 1950s at the Arshan’-Zel’men Experimental Station have formed the basis for afforestation in the dry steppe and semidesert zone without irrigation on the salt-affected soils of solonetzic soil complexes of the Ergeni Upland. Ameliorative measures favored the accumulation of productive moisture in the upper 2-m-thick soil layer, which ensured the growth of trees and the partial leaching of soluble salts to a depth of 1–1.4 m. However, no complete desalinization of the soil profiles took place. The degree of removal of exchangeable sodium from the exchange complex (soil dealkalization) was smaller. The monitoring of changes in the salt status of the soils upon agroforest reclamation was performed until the early 1980s. Our investigations of 2005–2006 showed that the soil amelioration is still in progress: the salt maximum in the profile of the solonetzes descended to a depth of 2.2 m, and the exchangeable sodium was lost from the plow layer (0–40 cm). Plowed soils between forest shelterbelts were also subjected to desalinization and dealkalization of their soil profile, though less intensely than those under the shelterbelts.  相似文献   

12.
不同磷水平对水稻土供锌能力的影响   总被引:1,自引:1,他引:1  
通过室内培养的方式研究了不同磷浓度对土壤供锌容量-强度(Q/I)关系的影响,并应用能量的观点探讨不同磷浓度对土壤中锌的交换过程的影响。结果表明:在不供磷条件下,盘锦盐渍型水稻土的供锌能力最强,沈阳盐渍型水稻土次之,而抚顺潜育型水稻土最差;不同磷水平对锌浓度的改变值(△Zn)、活度比(AR)和交换自由能(△G)均没有显著影响,而这些指标的显著变化是由于不同锌水平的差异引起的。  相似文献   

13.
The relationships between soil salinization and the zonal and provincial bioclimatic conditions, the lithological composition of the sediments, and the geomorphic features of the territory have been analyzed for the Southern federal okrug of Russia. It is shown that the lithological and geomorphic conditions (relief, salinity of parent materials, degree of drainage, and the depth of saline groundwater) play an important role in the distribution of salt-affected soils against the background of the more general regularities specified by the climate. The participation of salt-affected soils in the soil cover of the Southern federal okrug increases in the eastward direction from the forest-steppe zone to the semidesert zone in agreement with an increase in the aridity and continentality of the climate. The chemical composition of soil salts also changes: the sulfate and soda-sulfate types predominate in the forest-steppe zone; the sulfate type or the sulfate type with the participation of soda, in the steppe zone; the sulfate-chloride type, in the dry steppe zone; and the chloride type, in the semidesert zone. The lithological and geomorphic conditions within the particular zones and provinces affect the distribution pattern of the salt-affected soils and the degree and chemistry of the soil salinization. The areas of salt-affected soils were calculated with the use of a digital version of the Map of Salt-Affected Soils of Russia (1: 2.5 M scale) with due account for the participation of these soils in the soil cover of the particular delineations and the data on the depth of the upper boundary of the salt-bearing horizons, the degree and chemistry of the soil salinization, and the area of solonetzes and solonetzic soils.  相似文献   

14.
Soil inorganic carbon (SIC) is an important reservoir of carbon (C) in arid, semi-arid, and semi-humid regions. However, knowledge is incomplete on the dynamics of SIC and its relationship with soil organic C (SOC) under different land use types in the semi-humid region, particularly in coastal zones impacted by soil salinization. We collected 170 soil samples from 34 profiles across various land use types (maize-wheat, cotton, paddy, and reed) in the middle-lower Yellow River Delta (YRD), China. We measured soil pH, electrical conductivity (EC), water-soluble salts, and SOC and SIC contents. Our results showed significant differences in both SOC and SIC among land use types. The dry cropland (maize-wheat and cotton) soils had significantly higher SOC and SIC densities (4.71 and 15.46 kg C m-2, respectively) than the paddy soils (3.28 and 14.09 kg C m-2, respectively) in the 0–100 cm layer. Compared with paddy soils, reed soils contained significantly higher SOC (4.68 kg C m-2) and similar SIC (15.02 kg C m-2) densities. There was a significant positive correlation between SOC and SIC densities over a 0–100 cm soil depth in dry cropland soils, but a negative relationship in the paddy soils. On average, SOC and SIC densities under maize-wheat cropping were 15% and 4% lower, respectively, in the salt-affected soils in the middle-lower YRD than the upper YRD. This study indicated that land use types had great influences on both SOC and SIC and their relationship, and salinization had adverse effect on soil C storage in the YRD.  相似文献   

15.
Soil microbes in urban ecosystems are affected by a variety of abiotic and biotic factors resulting from changes in land use. However, the influence of different types of land use on soil microbial properties and soil quality in urban areas remains largely unknown. Here, by comparing five types of land use: natural forest, park, agriculture, street green and roadside trees, we examined the effects of different land uses on soil microbial biomass and microbial functional diversity in Beijing, China. We found that soil properties varied with land uses in urban environments. Compared to natural forest, soil nutrients under the other four types of urban land use were markedly depleted, and accumulation of Cu, Zn, Pb and Cd was apparent. Importantly, under these four types of land use, there was less microbial biomass, but it had greater functional diversity, particularly in the roadside‐tree soils. Furthermore, there were significant correlations between the microbial characteristics and physicochemical properties, such as organic matter, total nitrogen and total phosphorus (P < 0.05), suggesting that lack of nutrients was the major reason for the decrease in microbial biomass. In addition, the larger C/N ratio, Ni concentration and pool of organic matter together with a higher pH contributed to the increase in microbial functional diversity in urban soils. We concluded that different land uses have indirect effects on soil microbial biomass and microbial community functional diversity through their influence on soil physicochemical properties, especially nutrient availability and heavy metal content.  相似文献   

16.
Rice-wheat rotation and poplar afforestation are two typical land use types in the coastal reclaimed flatlands of eastern China.This study investigated two rice-wheat rotation lands(one reclaimed from 1995 to 2004 and cultivated since 2005, RW1, and the other reclaimed from 1975 to 1995 and cultivated since 1996, RW2) and a poplar woodland(reclaimed from 1995 to 2004 and planted in2004, PW1) to determine the effects of land use types and years of cultivation on soil microbial biomass and mineralizable carbon(C) in this coastal salt-affected region. The results showed that the soil in PW1 remained highly salinized, whereas desalinization was observed in RW1. The total organic C(TOC) in the top soil of PW1 and RW1 did not show significant differences, whereas at a soil depth of 20–30 cm, the TOC of RW1 was approximately 40%–67% higher than that of PW1. The TOC of 0–30-cm soil in RW2 was approximately 37% higher than that in RW1. Microbial biomass C(MBC) and mineralizable C(MNC) exhibited the trend of RW2 RW1 PW1. Sufficient nutrition with more abundant C substrates resulted in higher MBC and MNC, and soil respiration rates were negatively correlated with C/N in RW1 and RW2. Nutrient deficiency and high salinity played key roles in limiting MBC in PW1. These suggested that rice-wheat rotation was more beneficial than poplar afforestation for C accumulation and microbial biomass growth in the coastal salt-affected soils.  相似文献   

17.
胡纪常  祝寿泉 《土壤学报》1981,18(3):281-289
滨海盐渍土是否有碱化问题,特别是在开垦利用以后,土壤是否会向碱化方向演化,这是很多生产单位所关心的问题。对此,过去已做了不少工作。有人认为滨海盐渍土由于长期受海水浸渍,土壤胶体表面吸附着大量的钠离子,因此有比较高的碱化度,盐渍程度愈重则碱化度愈高,随着土壤脱盐同时脱碱,当不致进一步碱化[3]。也有人认为滨海盐债土耕垦后不会发生碱化,其碱化度随改良利用年限而降低[1]。还有人在滨海盐溃土耕垦种稻后,观测到在土壤脱盐过程中,土壤pH值和总碱度有所增高,认为土壤发生了碱化[2,5]1)。我们就这一间题曾先后对浙江上虞、乐清,江苏东台、大丰、滨海、灌云以及辽宁兴城、锦县、大洼等县的滨海地区进行了调查研究和室内试验。  相似文献   

18.
为了研究新疆喀什地下水浅埋区弃荒地表层土壤积盐与地下水的定量关系,对试验区自然状况下的土壤含水量、表层土壤含盐量、地下水埋深、地下水矿化度和潜水蒸发量进行了原位监测,模拟了潜水蒸发量与地下水埋深的关系,定量分析了弃荒地自然条件下地下水埋深、地下水矿化度对土壤表层盐分的影响,建立了表层土壤含盐量与地下水埋深、地下水矿化度的经验模型。结果表明:在5~50 cm土层,土壤质量含水率随土层深度增加而增大;地下水埋深、地下水矿化度对表层土壤盐分有显著的影响,当地下水埋深为定值时,表层土壤含盐量与地下水矿化度呈线性正相关;当地下水矿化度为定值时,表层土壤含盐量与地下水埋深呈线性负相关;土壤盐分表聚现象明显,不同地下水埋深条件下表层土壤含盐量随累计潜水蒸发量的增加而增大,表层土壤积盐速率随地下水埋深的增大而减小,地下水埋深为25 cm条件下表层土壤积盐速率约是地下水埋深为50 cm的表层土壤积盐速率的2倍多。  相似文献   

19.
A comparative analysis of climatic and soil salinity characteristics of the deserts of Central Asia, including deserts of the Turan Depression, the Gobi Desert, and deserts of the Dzungar and Tarim depressions was performed. The climatic characteristics—the degree of aridity, the degree of continentality, and the amount and regime of precipitation—are different in these deserts. No direct relationships between the areas occupied by the automorphic salt-affected soils and the aridity of the climate are observed in the studied regions. In the automorphic landscapes of Asian deserts, the degree and chemistry of the soil salinization and the distribution of salt-affected soils are controlled by the history of the particular territories rather than by their modern climatic conditions. The presence and properties of the salt-bearing rocks and the eolian migration of salts play the most significant role. The deficit of moisture in the modern climate favors the preservation of salt accumulations in places of their origin. The specific features of the climate, including the regime of precipitation, affect the redistribution of salts in the profiles of automorphic salt-affected soils. An increase in the degree of climatic continentality is accompanied by the decrease in the intensity of weathering and initial accumulation of salts. A different situation is observed in the soils of hydromorphic desert landscapes, in which the degree of salinity of the surface horizons and the area occupied by salt-affected soils are directly influenced by the modern climatic conditions.  相似文献   

20.
盐渍土熟化过程中腐殖质特性的研究   总被引:17,自引:7,他引:17       下载免费PDF全文
综合研究了河北省曲周试验区不同改良年代盐渍土的有机质含量、腐殖质组成、含氧官能团含量及腐殖质红外光谱特征等。研究结果表明:随着盐渍土治理年限的延长,施肥及管理水平的提高,从盐荒地经三代、二代到一代试验区,土壤有机质含量逐步提高;有机质的质量也得到改善,主要表现在:腐殖质总量提高、胡富比增大、E465/E665比值减少、官能团含量上升等。红外光谱分析结果表明:试验区土壤腐殖质是极相似的多官能团复杂体系,表现在胡敏酸的类型上,由盐荒地到一代试区土壤胡敏酸逐渐由Rp型向B型转变,表明土壤腐殖质向着结构复杂化、功能多样化方向发展。盐渍土有机质含量和质量逐渐接近当地非盐渍土——浅色草甸土的水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号