首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on the mineralogical composition of clay in soils of solonetzic complexes of the Priobskoe Plateau and the Kulunda and Baraba lowlands have been generalized. The parent materials predominating in these regions have loamy and clayey textures and are characterized by the association of clay minerals represented by dioctahedral and trioctahedral mica–hydromica, chlorite, kaolinite, and a number of irregular interstratifications. They differ in the proportions between the major mineral phases and in the qualitative composition of the minerals. Mica–hydromica and chlorites with a small amount of smectitic phase predominate on the Priobskoe Plateau and in the Kulunda Lowland; in the Baraba Lowland, the portion of mica–smectite interstratifications is higher. An eluvial–illuvial distribution of clay fraction in solonetzes is accompanied by the acid–alkaline destruction and lessivage of clay minerals, including the smectitic phase in the superdispersed state. This results in the strong transformation of the mineralogical composition of the upper (suprasolonetzic) horizons and in the enrichment of the solonetzic horizons with the products of mineral destruction; superdispersed smectite; and undestroyed particles of hydromica, kaolinite, and chlorite from the suprasolonetzic horizons. A significant decrease in the content of smectitic phase in the surface solodic horizons of solonetzic complexes has different consequences in the studied regions. In the soils of the Priobskoe Plateau and Kulunda Lowland with a relatively low content (10–30%) of smectitic phase represented by chlorite–smectite interstratifications, this phase virtually disappears from the soils (there are only rare cases of its preservation). In the soils of the Baraba Lowland developed from the parent materials with the high content (30–50%) of smectitic phase represented by mica–smectite interstratifications, the similar decrease (by 10–20%) in the content of smectitic phase does not result in its complete disappearance. However, the smectitic phase acquires the superdispersed state and the capacity for migration.  相似文献   

2.
Mineralogy of the fine component of meadow podbel soil in the Central Amur Lowland significantly varies depending on texture differentiation within the profile and clay categories with different binding strengths (water-peptized and aggregated clay). In the eluvial part of the profile, hydromicas are predominant, which are accompanied by kaolinite and mica-smectites with a low content of smectite layers; there are many finely dispersed quartz and feldspars; plagioclases are less abundant. The illuvial part of the profile is characterized by a high content of smectite minerals (mica-smectite and kaolinite-smectite interstratifications). Kaolinite, chlorite, and chlorite-vermiculite are also found. Fragmentary components pass into a peptized state: micas-hydromicas, kaolinite, finely dispersed quartz, feldspars, plagioclases, amphiboles, and diatom skeletons (mainly in the illuvial part of the profile). Aggregated clays are characterized by a high content of interstratifications with smectite layers. The mineral composition of two clay categories is strongly differentiated according to eluvial-illuvial type. The bulk chemical composition confirms the textural differentiation of the finely dispersed component within the profile. The chemistry of silty sand cutans on the faces of structural units in the illuvial part of the profile significantly differs from the chemistry of the enclosing horizon and is analogous to that of the eluvial part of the profile. The involvement of silica in the meadow podbel fractions with different binding strengths has been revealed.  相似文献   

3.
Mineralogical composition of silt and clay fractions (<1.1–5 and 5–10 µm) in heavy loamy agrogrey soils (Luvic Retic Phaeozems) considerably changes both in the vertical (along the soil profile) and horizontal (along soil microcatenas) directions. The eluvial–illuvial distribution pattern of the clay fraction in the podzolized agrogrey soils with the second humus horizon is replaced by the homogeneous distribution in the agrogrey soils with residual carbonates. The distribution of silt fractions in the soil profiles is relatively homogeneous. The clay (<1 µm) fraction of the parent material is represented by the poorly ordered micasmectite interstratifications minerals, the proportion between which changes in the soil profiles in dependence on the particular pedogenetic processes. Hydromicas represent the second important component of the clay fraction. They consist of di- and trioctahedral varieties, the proportion between which changes in the soil profiles. Kaolinite and iron–magnesium chlorite are present in smaller amounts. The second humus horizon is characterized by the lowest content of mica-smectite interstratifications minerals with the high content of smectitic layers and by the lowest content of the clay fraction. Silt fractions are composed of quartz, micas, potassium feldspars, and plagioclases.  相似文献   

4.
Properties and mineralogy of fine fractions separated from agrochernozems forming a three-component noncontrasting soil combination in the Kamennaya Steppe have been characterized. The soil cover consists of zooturbated (Haplic Chernozems (Clayic, Aric, Pachic, Calcaric)), migrational-mycelial (Haplic Chernozems (Clayic, Aric, Pachic)), and clay-illuvial (Luvic Chernozems (Clayic, Aric, Pachic)) agrochernozems. All the soils are deeply quasi-gleyed because of periodical groundwater rise. The mineralogy of the fraction <1μm includes irregular mica–smectite interstratifications, di- and trioctahedral hydromicas, imperfect kaolinite, and magnesium–iron chlorite. The profile distribution of these minerals slightly varies depending on the subtype of spot-forming soils. A uniform distribution of clay minerals is observed in zooturbated agrochernozem; a poorly manifested eluvial–illuvial distribution of the smectite phase is observed in the clay-illuvial agrochernozem. The fractions of fine (1–5 μm) and medium (5–10 μm) silt consist of quartz, micas, potassium feldspars, plagioclases, kaolinite, and chlorite. There is no dominant mineral, because the share of each mineral is lower than 35–45%. The silt fractions differ in the quartz-to-mica ratio. The medium silt fraction contains more quartz, and the fine silt fraction contains more micas.  相似文献   

5.
The mineralogical composition of the clay fraction and microfabrics of the cryogenic soil-loess sequences of the Middle and Late Pleistocene ages have been studied near the northern boundary of loess sediments on the East European Plain. Poorly ordered mixed-layered mica-smectitic minerals with different portions of smectitic layers predominate in the clay fraction; di-and trioctahedral hydromicas occupy the second place. The clay fraction also contains chlorite, clay-size quartz grains, and feldspars. Individual smectite is present in some of the samples. Interstadial chernozem-like paleosols are specified by the higher content of clay, the maximum concentration of smectitic layers in the mixed-layered minerals, and the presence of individual smectite. The clay fraction in the profiles of interglacial paleosols is sharply differentiated: in the eluvial part, it is depleted of smectite and enriched in kaolinite, hydromica, and clay-size quartz. These features allow us to suppose that interglacial paleosols were subjected to podzolization processes. According to the mineralogical indices, Middle Pleistocene paleosols can be differentiated into those subjected to lessivage (the Kamenskii interglacial paleosol) and podzolization (the Inzhavin interglacial paleosol).  相似文献   

6.
The profile distributions of oxalate- and pyrophosphate-soluble Al compounds and oxalate-soluble Si compounds in the main horizons of pale-podzolic soils of the Central Forest Reserve and the fractions <1. 1–5, and >5 μm have been considered. In the clay-eluvial part of soil profile, the content of these compounds is differentiated by the eluvial–illuvial type with a clear accumulation in the EL horizon compared to the AEL horizon. This distribution is largely ensured by their differentiation in the clay and fine silt fractions, while an accumulative distribution of mobile Al compounds is observed in fractions >5 μm. The high correlation between the Al and Si contents in the Tamm extracts from the clay and fine silt fractions with the (Alox–Alpy)/Siox molar ratios, which are in the range of 1–3 in the EL horizon, confirms that mobile compounds are accumulated in these fractions in the form of amorphous aluminosilicates. In the AEL and EL horizons, an additional amount of Al can pass into the oxalate solution from the fine fractions due to the dissolution of Al hydroxide interlayers of soil chlorites. The eluvial–illuvial distribution of mobile Al and Si compounds typical for Al–Fe–humus podzols within the clay-illuvial part of profiles of the soils under study can be considered as an example of superimposed evolution.  相似文献   

7.
Changes in the mineralogical composition of the clay fraction (<0.001 mm) sampled from soils of the model lysimetric experiment of Moscow State University have been studied. The mineralogical composition of clay is represented by the paragenetic association of minerals typical of noncalcareous mantle loams in the center of the Russian Plain. The predominant smectitic phase consists of complex mixed-layered minerals (mica-smectite with high and low contents of the smectitic layers, chlorite-smectite with different ratios between the chloritic and smectitic layers) and individual smectites. Tri-and dioctahedral hydromica, kaolinite, chlorite, and clay-sized quartz are present in lower amounts. At the early stages of the experiment, the distribution of the smectitic phase in the soil profile is more contrasting than the distribution of the clay fraction. Under the impact of artificially planted meadows, forests, and agrocenoses, soil profiles with different distribution patterns of the clay fraction are formed. The weakly pronounced eluvial distribution pattern of the clay fraction has been registered. Under spruce and mixed stands, the loss of the clay fraction from the upper horizons is due to the hydrolysis of smectitic minerals in the acidified medium. Under broad-leaved stands, perennial herbs, agroecenoses, and fallow, the depletion of smectites from the upper horizons is due to lessivage. The relative accumulation of hydromica and kaolinite is observed in the uppermost soil layer.  相似文献   

8.
Soils developed from the red-brown Neogene clay and the Quaternary loesslike loams have been studied in the south of the forest-steppe zone on the Central Russian Upland. A polygenetic nature of the soil profile on the loesslike loams is shown. The modern pedogenetic processes in this soil ensure its eluvial-illuvial differentiation with the development of multilayered coatings in the illuvial horizon. The soil developed from the Neogene clay has a lower degree of differentiation despite the more acid reaction. The micromorphological study of the coatings and the mineralogical analysis of the clay fraction separated from the coatings and from the intraped mass disclose differences in the geneses of B horizons of the two soils. In the soil developed from the loesslike loam, hydromica predominates among clay minerals of the coatings; in the soil developed from the red-brown clay, smectitic minerals predominate in the clay fraction. Differences in the properties of these two parent materials predetermined differences in the major directions of soil formation: the metamorphic pedogenesis predominates on the red-brown clay, whereas the textural differentiation develops in the soil on the loesslike loam. The middle horizons in the studied soil profiles are referred to as the structural-metamorphic and textural (clay-illuvial) horizons, respectively.  相似文献   

9.
A comparative assessment of pedogenetic processes in solonetzes (Calcic Gypsic Salic Solonetzes (Siltic, Albic, Cutanic, Differentic)) developing on terraces of lake depressions within the Volga–Ural interfluve of the Caspian Lowland has been performed on the basis of data on their macro- and micromorphological features and chemical, physicochemical, and physical properties. The studied soils have number of common characteristics shaped by the humus-accumulative, solonetzic, eluvial–illuvial, calcification, and gypsification processes. However, it is shown that macro- and micromorphological indicators of solonetzic processes (the development of clay–humus coatings and the character of structural units in the solonetzic (B) horizon) do not always agree with the modern physicochemical conditions of the development of this process. This is explained by differences in the degree and chemistry of the soil salinization and the depth and salinity of the groundwater. Solonetzes developing on the second terrace of Playa Khaki are distinguished by the highest water content and maximum thickness of the horizons depleted of soluble salts. They are characterized by the well-pronounced humus-accumulative process leading to the development of the light-humus (AJ) horizon. In other solonetzes, the accumulation of humus is weaker, and their topsoil part can be diagnosed as the solonetzic-eluvial (SEL) horizon. Active solodic process and illuviation of organomineral substances with the development of thick coatings and infillings in the B horizon are also typical of solonetzes on the second terrace of Playa Khaki. Micromorphological data indicate that, at present, layered clayey coatings in these soils are subjected to destruction and in situ humification owing to the active penetration of plant roots into the coatings with their further biogenic processing by the soil microfauna. The process of gleyzation (as judged from the number of Fe–Mn concentrations) is most active in solonetzes developing on the first terrace of Playa Khaki. These soils are also characterized by the highest degree of salinization with participation of toxic salts. The maximum accumulation of gypsum is typical of the heavy-textured horizons.  相似文献   

10.
The composition and the regularities of the profile distribution of the clay minerals in the solods of the Baraba Steppe (ground moistening) and the Priobskoe Plateau (atmospheric moistening) were studied. The two profiles have the distinct eluvial-illuvial distribution of the clay fraction. The composition of the clay fraction in the eluvial layer is dominated by illite. The content of chlorite and labile minerals of the montmorillonite group increases downwards in the profile. The revealed regularities in the profile distribution of the clay fraction and some groups of clay minerals are explained by the joint influence of the mineral dissolution under the influence of the gleying and alkaline hydrolysis, as well as the processes of illitization and lessivage. The major differences in the content and distribution of the clay minerals between the solods and the podzolic soils are the following. The solods have a clear illuvial layer in the clay, while the majority of podzolic soil profiles have the eluvial distribution of the silty fraction. The solods in the eluvial part of the profile and sometimes in even the bottom layers have an unusually high content of the illite minerals in the clay fraction due to illitization. The podzolic layers of the solods do not contain soil chlorites common for the eluvial layers of the podzolic soils, which is due here to a less acidic medium that can not provide the proper conditions of aluminum mobilization and migration needed for the development of chloritization.  相似文献   

11.
The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational–mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (<1 μm) fraction separated from these soils consists of mixed-layer minerals with alternating layers of hydromica, smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite–vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica–smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun–Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.  相似文献   

12.
Characteristics of Clay Minerals in Podzols and Podzolic Soils   总被引:1,自引:0,他引:1  
The clay minerals in Podzols and podzolic soils developed under coniferous forests in the Subarctic and Cool-temperate zones are characterized by the predominance of smectite and/or mica-smectite interstratified minerals in the eluvial horizons and chlorite-vermiculite intergrade in the illuvial horizons. A large amount of vermiculite is present in the eluvial horizons of some podzolic soils in the Cool-temperate zone. The illuvial horizons of these soils also contain free iron oxides such as goethite. Imogolite and allophane are present in the illuvial horizons of several soils derived from volcanic ashes. It is suggested that the critical bioclimate for the release of interlayered aluminum from the 2:1-type minerals lies between the Cool- and Warm-temperate zone. In the eluvial horizons of Podzols and podzolic soils, mica minerals and chlorite, as primary minerals, have been transformed to smectite through the pedogenic process. Based on previous studies on the structure and degradation of the dioctahedral mica minerals, it is considered that smectite is transformed from 1M-type mica minerals directly, and from 2M-type mica minerals via mica-smectite interstratifled minerals. The formation of a smectite lattice in the eluvial horizon should be a clay-mineralogical indicator of podzolization.  相似文献   

13.
The organic matter in soils may be stabilized by its interactions with minerals. We have studied such interactions in a Haplic Alisol under forest in which clay and organic matter have migrated from an eluvial A horizon to accumulate in an illuvial B horizon. We have tried to trace the fate of organic matter in these horizons (Ah and Bvt) by determining clay mineralogy, carbon and nitrogen content, hydrolysable amino acids, lignin signature by alkaline CuO oxidation and carbon species by 13C CPMAS NMR of bulk soils and particle‐size fractions. In both horizons, most of the organic matter was present in O–alkyl and methylene structures, each contributing one‐third to the bulk organic matter. In the Ah horizon the ratios of carbon‐to‐nitrogen, and yields for lignin and hydrolysable amino acids decreased as the particle‐size class decreased, but side‐chain oxidation of lignin compounds increased with decreasing particle size. In contrast to previous observations, the proportions of O–alkyl carbon increased as particle size decreased, constituting a major proportion of the organic carbon in the clay‐size fractions from both the Ah and Bvt horizons (≥ 38%), while proportions of methylene carbon decreased. Illite was the dominant mineral in the fraction ≤ 6 μm, whereas the mobile fine clay fraction (<0.2 μm) was rich in smectites – minerals with large surface areas. Our results support the hypothesis that potentially labile organic matter, such as O–alkyl carbon typically present in polysaccharides, may be stabilized against further degradation in organomineral complexes.  相似文献   

14.
Chemical and mineralogical properties of a soil chronosequence in the high mountain zone between 3857 m and 4120 m a.s.l. in Central Nepal (Langtang valley) are presented. The soils have been developed in moraine deposits which consist of acid gneisses. They were classified as Entisols, and Spodosols. XRD analyses of the clay and fine silt fraction show increasing changes with distance from the recent Lirung glacier, depending on the time of deposition, resp. soil age. Alteration of illite to interstratified minerals and to hydroxy-Al interlayered minerals or pedogenic chlorite with increasing soil development could be observed. The interstratified minerals could be identified as random and regular illite-interlayered vermiculite mixed-layer minerals. Intensification of the X-ray signals of the fine silt fraction is given compared to the clay. With increasing soil development differences between the clay and fine silt fraction seem to increase. Indications are given of interstratification of the mica-pedogenic chlorite and chloriteinterlayered vermiculite type in the more intensively weathered soils.  相似文献   

15.
Five variants of the distribution of clay (<0.001 mm) and physical clay (<0.01 mm) fractions along the vertical profiles of Vertisols (slitozems) and vertic soils (slitic subtypes of different soil types) from the European part of Russia are distinguished: (1) accumulative, (2) even, (3) regressive, (4) with a maximum in the middle-profile horizon and with their approximately equal contents in the upper and the lower horizons, and (5) eluvial–illuvial. These distribution patterns are related to the lithological specificity of sedimentation and formation of parent materials composed of swelling clays of different geneses and ages. Solonetzic, eluvial- gley, and solodic processes contribute to the development of the eluvial–illuvial and, partly, regressive variants of clay distribution. All the five variants with a predominance of the even distribution pattern can be found in Vertisols. Most of Vertisols in the European part of Russia have a medium clayey or a heavy clayey texture in the entire profile. The regressive distribution pattern is typical of the group of vertic soils. In the upper horizons of Vertisols, where slickensides do not form, the texture is usually heavier than that in the analogous horizons of vertic soils. The middle-profile and lower horizons with slickensides have similar statistical distributions of particle-size fractions in Vertisols proper and in vertic soils. However, in Vertisols, a tendency for a more frequent occurrence of the soils with a higher content of the clay fraction and with a higher portion of this fraction in the physical clay fraction is observed (as compared with the vertic soils).  相似文献   

16.
The classification of solonetzes (including the scheme developed by Fridland et al.) does not take into account the thickness of the solonetzic horizon and the depth of the lower boundary of the illuvial horizon. The degree of solonetzicity is only judged from the content of absorbed sodium in the illuvial horizon. For the diagnostics of solonetzes, the authors propose two additional characteristics: the degree of illuviation (weak, medium, strong, and very strong (for solonetzes)) and the depth and kind of illuviation (typical medium-profile, lithogenic medium-profile, deep-profile, and high-profile). As an example, data on some soils of Ukraine are presented.  相似文献   

17.
Dark chestnut soils of the Ershov Experimental Station in the Transvolga region are characterized by the even distribution and aggregation of clay minerals in the profile. Hydromica, chlorite, kaolinite, and smectitic minerals predominate in the clay (<1 μm) fraction. The smectitic phase consists of randomly ordered mixed-layered minerals of the following types: mica-smectite with a low (<50%) content of smectite layers, mica-smectite with a high (>50%) content of smectite layers, and chlorite-smectite. In some horizons, the smectitic phase occurs in the superdispersed state. The long-term irrigation of these soils with fresh water of the Volga River has led to certain changes in the composition and properties of the clay particles. The weakening of bonds between them has taken place. As a result, the content of water-peptizable clay has increased by two times, and the content of aggregated clay of the first category (AC1) has increased by 1.5 times at the expense of a decrease in the contents of tightly bound clay (TBC) and aggregated clay of the second category (AC2). Also, the redistribution of organic matter bound with clay particles has taken place: its content in the AC1 fraction has decreased, whereas its content in the AC2 and TBC fractions has increased. In the topsoil horizon, the amount of the smectitic phase has lowered, whereas the contents of hydromica, kaolinite, and fine-dispersed quartz in the clay fraction have increased. In general, some amorphization of the clay material has occurred. The periodic alkalization of the soil solutions upon irrigation has led to the conversion of the smectitic phase into the superdispersed state in the entire soil profile.  相似文献   

18.
D. Righi  F. De Connick 《Geoderma》1977,19(4):339-359
Soils of the nearly level “Landes du Médoc” in southwestern France have a pattern of alternating bodies of hydromorphic podzols (Haplaquods) and low humic hydromorphic soils (Psammaquents). The soils are formed in a sedimentary mantle of coarse, quartzose sands with a slight microrelief consisting of low, elongated ridges and shallow, intervening troughs. The water table is at shallow depths throughout the plain, even at the surface in places. The podzols on the crests of the low ridges have distinct A2 and cemented B2 h horizons. Podzols persist down the sides of ridges but going downslope first lose the A2 horizon and then the cementation of the Bh horizon. Soils in the shallow troughs have A1 and Cg horizons without B horizons.The fine silt (2–20 μm) and clay (0–2 μm) fractions of the parent sand contain primary trioctahedral chlorite, mica, feldspars, and quartz, with the last mineral predominant. During soil development, the first three minerals undergo weathering at different rates and to different extents. Chlorite is most strongly weathered, followed in order by plagioclases and K-minerals. In the fine silt fraction, weathering seems to occur mostly by fragmentation of particles. In the clay fraction, the phyllosilicates successively form irregularly interstratified minerals with contractible but not expandable vermiculitic layers, interstratified minerals with contractible and expandable smectitic layers, and finally smectites.The extent to which the silicate minerals are weathered becomes progressively greater from the low humic hydromorphic soils to the podzols with friable Bh horizons to the podzols with cemented Bh horizons. Smectite is present only in the A2 horizons of these last podzols.The aluminum release by weathering of silicate minerals is translocated in part in the form of organo-metal complexes into the Bh horizons of the podzols. Greatest concentrations of Al are associated with coatings of monomorphic organic matter on mineral grains in the cemented Bh horizons, in which some Al has also crystallized into gibbsite. That mineral was not detected in friable B horizons of podzols nor in the low humic hydromorphic soil. Contrary to expectations, the mobile Al did not enter interlayer spaces of expanding 2:1 clay minerals.  相似文献   

19.
20.
The amounts of monomeric silica released on trimethylsilylation of a range of Soil Groups of the Darleith Soil Association, developed on glacial till derived from Carboniferous age lavas of basic and intermediate composition, is significantly higher than the amounts released from corresponding Soil Groups of the Lauder Soil Association, developed on glacial till derived from Devonian age conglomerates and sandstone. Monoremic silica release values for the leached soils within an association are, in general, higher than those of the gley soils. For all soil profiles the eluvial horizon released the smallest amount of monomeric silica with the maximum amount being released, in most instances, from the illuvial horizon. Ferromagnesian minerals and crystalline clay minerals, in particular vermiculite and chlorite in the Darleith Association soils, release monomeric silica under acid conditions. For both the Darleith and Lauder Association soils the principal source of monosilicic acid is thought to be aluminosilica gel of low Si:A1 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号