首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甘薯病毒病害(Sweet potato virus disease,SPVD)是由毛形病毒属(Crinivirus)的甘薯褪绿矮化病毒(Sweet potato chlorotic stunt virus,SPCSV)和马铃薯Y病毒属(Potyvirus)的甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)协生共侵染甘薯引起的病毒病害[1].  相似文献   

2.
3.
中国甘薯病毒种类的血清学和分子检测   总被引:6,自引:1,他引:6  
 2009~2010年,从我国18个省(市)采集了176份表现病毒病症状的甘薯样品。利用血清学、PCR和核苷酸序列测定的方法,对上述样品中的病毒种类进行了鉴定。血清学检测结果表明,供试样品中甘薯羽状斑驳病毒(SPFMV)的阳性率最高,达56.3%,其次为甘薯G病毒(SPVG)和甘薯类花椰菜花叶病毒(SPCaLV),阳性率分别为34.1%和33.5%。PCR和核苷酸序列测定结果表明,我国甘薯上至少存在SPFMV、SPVG、甘薯潜隐病毒(SPLV)、甘薯褪绿斑病毒(SPCFV)、甘薯褪绿矮化病毒(SPCSV)、黄瓜花叶病毒(CMV)、甘薯脉花叶病毒(SPVMV)和甘薯卷叶病毒(SPLCV)8种病毒。此外,供试样品中没有检测出甘薯轻斑驳病毒(SPMMV),是否存在甘薯轻斑点病毒(SPMSV)、SPCaLV和C 6病毒尚不能确定。  相似文献   

4.
Sweet potato begomoviruses diverge basally from all other begomoviruses and have been named sweepoviruses. In 2009, a sweepovirus was detected for the first time in sweet potato crops in Uganda by using the indicator plant Ipomoea setosa and generic primers in a polymerase chain reaction (PCR). An isolate was cloned and sequenced, the first fully sequenced genome of a sweepovirus from mainland Africa. At the nucleotide level, this isolate differed from other sweepoviruses by at least 13%, discriminating the Ugandan isolate as a new species which has been tentatively named Sweet potato leaf curl Uganda virus (SPLCUV). In infected sweet potato plants, SPLCUV showed an uneven distribution; it was detected more often in samples from the midrib and lamina of middle and lower leaves, and reversion to healthy tissue occurred, especially in shoots of cv. New Kawogo. This appears to be the first report of resistance to a sweepovirus in sweet potato. While it was only detected at relatively low efficiency by PCR, use of I. setosa plants as an indicator of sweepovirus infection in sweet potato plants was as efficient as using real‐time quantitative PCR (qPCR). Storage of dry leaves for 84 days and dried DNA extracts for 21 days did not affect the ability of PCR and qPCR to detect it. Sweepovirus(es) was detected frequently using generic primers in cultivars Ejumula, New Kawogo and 318L in eastern and central Uganda.  相似文献   

5.
甘薯是重要的粮食作物和食品加工及工业原料。我国是世界上最大的甘薯生产国。病毒病是甘薯上的重要病害,目前世界上已报道的侵染甘薯的DNA病毒主要归属于双生病毒科Geminiviridae和花椰菜花叶病毒科Caulimoviridae。近年来,双生病毒等DNA病毒严重影响我国甘薯的产量、品质以及食品加工产业。本文简介了甘薯在我国的重要地位和种植情况;具体介绍了侵染甘薯的菜豆金色花叶病毒属Begomovirus、玉米线条病毒属Mastrevirus及杆状DNA病毒属Badnavirus的病毒特征、分子变异、分类现状和检测方法。结合甘薯生产的实际情况,提出了目前甘薯DNA病毒研究中存在的问题及思考。本文旨在为我国甘薯DNA病毒病的综合防控提供理论依据。  相似文献   

6.
7.
甘薯曲叶病是广东甘薯的一种新病害,病株表现为叶片皱缩,向上卷曲,叶脉肿大等症状.PCR检测结果显示,所有病样中均存在菜豆金色花叶病毒属病毒.通过滚环扩增方法获得了3个病毒分离物的全基因组.扩增产物克隆及序列分析结果表明,这3个病毒分离物基因组均仅含有DNA-A,具有菜豆金色花叶病毒属单组分病毒基因组典型特征;其大小分别为2 829 nt (JX286653、JX286654)和2 828 nt(JX286655).三者核苷酸序列同源率为96.0%~98.4%;与已报道的甘薯曲叶病毒19个分离物的同源率均大于89.0%.因此,引起广东甘薯曲叶病的病原被鉴定为甘薯曲叶病毒.本研究是首次在广东发现甘薯曲叶病毒.  相似文献   

8.
甘薯病毒病害SPVD抗性鉴定方法及产量损失估计   总被引:2,自引:1,他引:2  
为了建立规范、有效的甘薯病毒病害(sweet potato virus disease,SPVD)抗性鉴定方法,于2011—2012连续两年,利用田间人工嫁接病毒接穗的方法对12个甘薯品种进行抗性鉴定和产量损失测定。结果显示,嫁接接种后,接穗成活率接近100%,12个品种都有不同程度发病,病情指数在51.0~95.2之间;感染SPVD的甘薯植株叶绿素含量降低、蔓长缩短;单株薯块产量损失范围在55.1%~97.8%之间。研究表明,供试的12个甘薯主栽品种感染SPVD后均可引起严重的产量损失,且田间人工嫁接病毒接穗是一个有效的SPVD抗性鉴定方法。  相似文献   

9.
Yield reductions ofca 50% or more were observed in field plots infected with both sweet potato feathery mottle virus (SPFMV) and sweet potato sunken vein virus (SPSVV) (‘complex’), compared with plots planted with virus-free propagation stocks. No yield reductions were observed in a plot planted with SPFMV-infected cuttings. In plots infected with SPSVV alone, no significant effect on tuber yields was observed in one year, whereas in the second year there was aca 30% reduction in yield compared with virus-free control plants. Reinfection in the field, in the absence of introduced infection sources, was observed only with SPSVV. However, natural spread resulted when SPFMV-infected source plants were introduced. This implies that aphid vectors were present during the growing season, but that SPFMV infection sources were absent from the area.  相似文献   

10.
为明确引起国家种质广州甘薯资源圃中病毒病的病毒种类及优势种,为甘薯种质安全保存提供支持,2017年从甘薯资源圃中未脱毒更新的盆栽苗和大田苗中采集155份具有不同病毒病症状的甘薯资源样品,利用PCR和RT-PCR检测技术对这些样品进行了17种病毒的分子检测.155份样品均有病毒检出,包括甘薯羽状斑驳病毒Sweet pot...  相似文献   

11.
Aritua  Legg  Smit  & Gibson 《Plant pathology》1999,48(5):655-661
A study compared the spread of sweet potato virus disease (SPVD) into crops of two moderately resistant and initially SPVD-free sweet potato cultivars in northern and southern Mpigi, Uganda. Whiteflies, the vector of sweet potato chlorotic stunt crini virus (SPCSV), a component cause of SPVD, were similarly abundant in farmers' sweet potato fields around Namulonge in northern Mpigi, and Kanoni in southern Mpigi. However, mean incidence of SPVD in farmers' crops neighbouring the trials was higher at Kanoni (13.3%) than at Namulonge (2.8%). Furthermore, spread of SPVD into initially SPVD-free sweet potato plots of two only moderately resistant cultivars was greater in plots at Kanoni than in plots at Namulonge. The SPVD-resistant New Kawogo was the most common cultivar grown in farmers' fields at Namulonge and had few diseased plants, whereas susceptible cultivars with relatively high incidences of disease predominated at Kanoni. Final SPVD incidence in each trial was positively correlated with a measure combining the proximity and level of inoculum in surrounding fields. The study demonstrates the importance of local SPVD inoculum in determining the rate of spread of the disease into fields and implies that the widespread cultivation of a resistant variety limits infection of susceptible cultivars grown nearby.  相似文献   

12.
山东甘薯主要病毒的鉴定及多样性分析   总被引:4,自引:2,他引:4  
为明确山东省甘薯病毒病发生现状,在重病区调查采样,通过鉴别寄主、电镜和分子检测技术明确主要病毒种类;并克隆病毒外壳蛋白基因序列,利用Mega 5.0构建系统进化树进行遗传分析。结果显示,巴西牵牛嫁接甘薯染病枝条后叶片黄化、褪绿及皱缩;病样组织中存在大量600~900 nm的线状病毒粒子和柱状内含体。24份病样中检测到甘薯羽状斑驳病毒、甘薯潜隐病毒、甘薯G病毒、甘薯曲叶病毒和甘薯褪绿矮化病毒5种病毒,其中23份为复合侵染,存在11种侵染类型。遗传分析显示山东省甘薯羽状花叶病毒主要为EA、O和C株系,甘薯潜隐病毒与周边省份分离物相近,甘薯G病毒与中国海南和美国分离物相近,甘薯曲叶病毒分属3个株系。表明山东地区甘薯病毒种类繁多,侵染模式复杂,病毒遗传结构具有多样性。  相似文献   

13.
根据已报道的甘薯潜隐病毒莲藕分离物sweet potato latent virus-lotus(SPLV-lotus)核苷酸序列设计引物,采用RT-PCR从感病莲藕样品中扩增获得SPLV-lotus辅助成分-蛋白酶基因(HC-Pro),大小为1 375 bp。通过序列测定和分析后,将其克隆到原核表达载体pGEX4T-1,转化大肠杆菌Rosetta(DE3),经IPTG诱导并纯化获得大小为74 kD的融合蛋白pGEX4T-1-HC-ProSPLV-lotus。SDS-PAGE结果显示,融合蛋白获得过量表达。以纯化蛋白为抗原免疫新西兰大白兔制备抗血清,采用ELISA和Western blot对抗血清效价和特异性进行检测,当HC-Pro抗血清稀释比为1∶256 000时,ELISA显色后OD450读数仍高于0.6,表明所制备抗血清合格;Western blot结果显示,在感染SPLV-lotus植株样品中仍能检测到单一目的条带。这些结果表明,制备的抗血清效价合格且可用于SPLV-lotus的特异性检测。  相似文献   

14.
Sweet potato leaf curl virus (SPLCV) infects sweet potato and is a member of the family Geminiviridae (genus Begomovirus). SPLCV transmission occurs from plant to plant mostly via vegetative propagation as well as by the insect vector Bemisia tabaci. When sweet potato seeds were planted and cultivated in a whitefly‐free greenhouse, some sweet potato plants started to show SPLCV‐specific symptoms. SPLCV was detected by PCR from all leaves and floral tissues that showed leaf curl disease symptoms. More than 70% of the seeds harvested from SPLCV‐infected sweet potato plants tested positive for SPLCV. SPLCV was also identified from dissected endosperm and embryos. The transmission level of SPLCV from seeds to seedlings was up to 15%. Southern blot hybridization showed SPLCV‐specific single‐ and double‐stranded DNAs in seedlings germinated from SPLCV‐infected seeds. Taken altogether, the results show that SPLCV in plants of the tested sweet potato cultivars can be transmitted via seeds and SPLCV DNA can replicate in developing seedlings. This is the first seed transmission report of SPLCV in sweet potato plants and also, to the authors' knowledge, the first report of seed transmission for any geminivirus.  相似文献   

15.
Studies were conducted to examine the characteristics of infestation of vines of sweet potato plants by the sweet potato weevil, Cylas formicarius (F.). The use of terminal tender vine cuttings, taken even from heavily weevil‐infested sweet potato, to grow a new crop and planting such a crop in plots surrounded by barriers to reduce weevil migration from the outside to the newly planted area, produced a practically weevil‐free crop. On the contrary, crop planted to old vine cuttings in an open field was severely damaged by the weevil. Consequently, crop planted using tender vine cuttings produced significantly more root yield than the one planted to old vine cuttings, irrespective of whether the planting was done in an open field or in an insect‐protected field. Sweet potato weevil infestation of 1‐ to 8‐week‐old plants increased significantly with plant age. The insect preferred sweet potato roots over sweet potato vines when both plant parts were available for infestation. Dipping the vine cuttings for 30 min in carbofuran solution prior to planting protected the newly planted sweet potato crop for up to 6 weeks after planting.  相似文献   

16.
Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) is globally the most common pathogen of sweetpotato. An East African strain of SPFMV incites the severe 'sweetpotato virus disease' in plants co-infected with Sweet potato chlorotic stunt virus and threatens subsistence sweetpotato production in East Africa; however, little is known about its natural hosts and ecology. In all, 2,864 wild plants growing in sweetpotato fields or in their close proximity in Uganda were observed for virus-like symptoms and tested for SPFMV in two surveys (2004 and 2007). SPFMV was detected at different incidence in 22 Ipomoea spp., Hewittia sublobata, and Lepistemon owariensis, of which 19 species are new hosts for SPFMV. Among the SPFMV-positive plants, approximately 60% displayed virus-like symptoms. Although SPFMV incidence was similar in annual and perennial species, virus-like diseases were more common in annuals than perennials. Virus-like diseases and SPFMV were more common in the eastern agroecological zone than the western, central, and northern zones, which contrasted with known incidence of SPFMV in sweetpotato crops. The data on a large number of new natural hosts of SPFMV detected in this study provide novel insights into the ecology of SPFMV in East Africa.  相似文献   

17.
正甘薯病毒2(Sweet potato virus 2,SPV2)是马铃薯Y病毒科(Potyviridae)马铃薯Y病毒属(Potyvirus)成员。SPV2也称为甘薯脉花叶病毒(ipomoea vein mosaic virus,IVMV)和甘薯Y病毒(sweet potato virus Y,SPVY)~[1],是甘薯上常见的病毒之一。SPV2病毒粒体为线条状,长度为850 nm,在细胞质中形成风轮状或卷轴状内含体~[2]。SPV2可由桃  相似文献   

18.
19.
甘薯地土壤线虫群体分布规律及取样方法研究   总被引:2,自引:0,他引:2  
在5年连作甘薯地,于甘薯移栽前和移栽后的不同时间,调查甘薯穴中和穴间、株间和行间以及各样点不同土层线虫的群体数量。分析明确了植物寄生线虫和非植物寄生线虫群体的水平分布和垂直分布规律,提出了研究和了解甘薯地土壤线虫发生动态的调查取样方法。  相似文献   

20.
西瓜银斑驳病毒(Watermelon silver mottle vi-rus,WSMoV)为布尼亚病毒科(Bunyaviridae)番茄斑萎病毒属(Orthotospovirus)病毒,通过蓟马以持久增殖型方式传播,主要危害番茄、辣椒、西瓜等茄科和葫芦科作物,引起褪绿轮纹、环斑、皱缩等症状,造成严重的经济损失[1]....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号