首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interactions between six insecticides (methiocarb, formetanate, acrinathrin, deltamethrin, methamidophos and endosulfan) and three potential synergists (piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM)) were studied by topical exposure in strains selected for resistance to each insecticide, and in a susceptible strain of Frankliniella occidentalis (Pergande). In the susceptible strain PBO produced appreciable synergism only of formetanate, methiocarb and methamidophos. Except for endosulfan, PBO synergized all the insecticides to varying degrees in the resistant strains. A very high level of synergism by PBO was found with acrinathrin, which reduced the resistance level from 3344- to 36-fold. PBO slightly synergized the carbamates formetanate (4.6-fold) and methiocarb (3.3-fold). PBO also produced a high synergism of deltamethrin (12.5-fold) and methamidophos (14.3-fold) and completely restored susceptibility to both insecticides. DEF did not produce synergism with any insecticide in the resistant strains and DEM was slightly synergistic to endosulfan (3-fold). These studies indicate that an enhanced detoxification, mediated by cytochrome P-450 monooxygenases, is the major mechanism imparting resistance to different insecticides in F occidentalis. Implications of different mechanisms in insecticide resistance in F occidentalis are discussed.  相似文献   

3.
西花蓟马天敌种类及主要种类的控害潜能   总被引:1,自引:0,他引:1  
西花蓟马[Frankliniella occidentalis(Pergande)]是国际上备受关注的检疫性有害生物,近年来该虫分布范围不断扩大,对农作物、园林园艺植物的危害日趋加重,发挥天敌对该虫的自然控制作用已引起人们广泛重视。本文根据国内外研究报道,总结和记述了西花蓟马的天敌种类及其主要种类对西花蓟马的控制作用。西花蓟马的天敌约有60种,其中天敌昆虫50种,昆虫病原线虫5种,虫生真菌5种。同时,对主要天敌种类小花蝽、昆虫病原线虫和虫生真菌对西花蓟马的捕食寄生及控制潜力进行了阐述。  相似文献   

4.
To study the systemic effects of active neem ingredients, the substrate of bean plants was treated with a 170 g kg(-1) azadirachtin (NeemAzal-U; Trifolio-M GmbH, Lahnau, Germany, registration pending). This product was used at a dose rate of 10 mg AZA (azadirachtin a) and 1.2 mg 3-tigloyl-azadirachtol (azadirachtin b) per treated bean plant. Afterwards, the translocation and persistence of AZA and 3-tigloyl-azadirachtol and the effects on western flower thrips, Frankliniella occidentalis (Pergande), were studied. Residues of AZA and 3-tigloyl-azadirachtol from substrates with different contents of organic matter [pure culture substrate (CS), CS-sand mixture] and from various plant parts were quantified by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The dissipation trends of AZA and 3-tigloyl-azadirachtol were similar within the same substrates. A slower decline of both active ingredients was measured with CS than with CS-sand mixture. Residue analysis of the bean plants showed that only small proportions of the initial amounts of AZA and 3-tigloyl-azadirachtol applied to the substrate were present in the plant (0.3-8.1%). Variable amounts of residues of the active components in relation to plant parts and time of analysis indicated a different translocation pattern for the two active ingredients. Higher residues of the active ingredients were found in roots and stems after neem application using CS, whereas higher residues were found in leaves after CS-sand mixture treatments. Mortality of F. occidentalis after NeemAzal-U soil applications reached up to 95% on CS-sand mixture, compared with 86% in CS.  相似文献   

5.
西花蓟马传播病毒病的研究进展   总被引:6,自引:0,他引:6  
西花蓟马[Frankliniella occidentalis (Pergande)]是一种世界性的重要农业害虫,目前在69个国家和地区已有报道。西花蓟马能以持久性的方式传播番茄斑萎病毒属(Tospovirus)的病毒,所传播病毒造成的经济损失远远大于其本身所造成的损失。因此,许多学者对西花蓟马及其传播的番茄斑萎病毒属病毒进行了大量研究。本文主要综述了近年来西花蓟马传播病毒的种类、番茄斑萎病毒属病毒的结构以及西花蓟马的传毒机制等方面的研究进展。  相似文献   

6.
BACKGROUND: Spinosad is a biopesticide widely used for control of Frankliniella occidentalis (Pergande). It is reported to be non‐toxic to several predatory mite species used for the biological control of thrips. Predatory mites Typhlodromips montdorensis (Schicha), Neoseiulus cucumeris (Oudemans) and Hypoaspis miles (Berlese) have been used for control of F. occidentalis. This study investigated the impact of direct and residual toxicity of spinosad on F. occidentalis and predatory mites. The repellency of spinosad residues to these predatory mites was also investigated. RESULTS: Direct contact to spinosad effectively reduced the number of F. occidentalis adults and larvae, causing > 96% mortality. Spinosad residues aged 2–96 h were also toxic to F. occidentalis. Direct exposure to spinosad resulted in > 90% mortality of all three mite species. Thresholds for the residual toxicity (contact) of spinosad (LT25) were estimated as 4.2, 3.2 and 5.8 days for T. montdorensis, N. cucumeris and H. miles respectively. When mites were simultaneously exposed to spinosad residues and fed spinosad‐intoxicated thrips larvae, toxicity increased. Residual thresholds were re‐estimated as 5.4, 3.9 and 6.1 days for T. montdorensis, N. cucumeris and H. miles respectively. Residues aged 2–48 h repelled T. montdorensis and H. miles, and residues aged 2–24 h repelled N. cucumeris. CONCLUSION: Predatory mites can be safely released 6 days after spinosad is applied for the management of F. occidentalis. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Susceptibility to spinosad of western flower thrips (WFT), Frankliniella occidentalis (Pergande), from south-eastern Spain was determined. LC(50) values of the field populations without previous exposure to spinosad collected in Murcia in 2001 and 2002 ranged from 0.005 to 0.077 mg L(-1). The populations collected in Almeria in 2003 in greenhouses were resistant to spinosad (LC(50) > 54 mg L(-1)) compared with the authors' highly susceptible laboratory strain. The highly sensitive laboratory strain leads to very high resistance ratios for the field populations (>13 500), but these ratios do not necessarily mean resistance problems and control failures (spinosad field rate 90-120 mg L(-1)). The populations collected in Murcia from some greenhouses in 2004 were also resistant to spinosad (RF > 3682). Spinosad overuse, with more than ten applications per crop, produced these resistant populations in some greenhouses. Spinosad showed no cross-resistance to acrinathrin, formetanate or methiocarb in laboratory strains selected for resistance towards each insecticide. Correlation analysis indicated no cross-resistance among spinosad and the other three insecticides in 13 field populations and in nine laboratory strains. The synergists piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM) did not enhance the toxicity of spinosad to the resistant strains, indicating that metabolic-mediated detoxification was not responsible for the spinosad resistance. These findings suggest that rotation with spinosad may be an effective resistance management strategy.  相似文献   

8.
蓟马对农作物的危害逐年加重, 为筛选防治蓟马的高效低毒药剂, 采用叶管药膜法测定了10种常用药剂对4种蓟马的室内毒力, 并开展了田间防效试验。室内毒力测定结果表明, 6%乙基多杀菌素SC和10%虫螨腈SC对4种蓟马的毒力相对较高, 25%噻虫嗪WG和5%甲维盐EC的毒力较低, 西花蓟马和瓜蓟马对10种药剂的敏感性低于花蓟马和烟蓟马。田间药效结果表明, 25%噻虫嗪WG、10%溴虫氟苯双酰胺SC和4.5%高效氯氰菊酯EC对西花蓟马的防效较高, 药后7 d药效最高达到90%以上。综合室内毒力和田间药效试验结果, 推荐4.5%高效氯氰菊酯EC和10%溴虫氟苯双酰胺SC为防治蓟马的首选药剂, 可与25%噻虫嗪WG、48%多杀霉素SC、1.8%阿维菌素EC和10%吡丙醚SC等药剂轮换使用。  相似文献   

9.
阿维菌素与三种杀虫剂对西花蓟马的联合毒力   总被引:2,自引:0,他引:2  
阿维菌素是防治西花蓟马的常用药剂,为筛选出对西花蓟马具有增效作用的阿维菌素与其他药剂的混配组合,采用浸叶法测定了阿维菌素、毒死蜱、吡虫啉和吡蚜酮等药剂对西花蓟马2龄若虫的毒力,并通过共毒因子法和共毒系数法分别确定了最佳药剂配伍和最佳复配比例。结果表明,阿维菌素与毒死蜱复配表现出明显的增效作用;阿维菌素与毒死蜱比值为2∶8与8∶2时,增效作用最显著;阿维菌素与吡蚜酮、吡虫啉均表现出拮抗作用。  相似文献   

10.
西花蓟马在中国的适生性分布研究初报   总被引:20,自引:5,他引:20  
根据西花蓟马生物学及生态学特性的研究,利用地理信息系统ArcView 3.2分析预测了该虫在中国可能适生分布范围。结果表明,西花蓟马在中国可能的最适宜分布范围大体在16.53-30.77°N,97.85-121.9°E范围内,涉及华南、西南、华东地区的11个省(自治区、市)的123个县(市或地区);潜在适宜分布范围大体在25.43-48.77°N,75.23-132.96°E范围内,涉及华东、华南、西南、华中、西北、华北共28个省(自治区、直辖市)的468个县(市或地区)。  相似文献   

11.
为筛选出用于防治棕榈蓟马的有效药剂,采用玻璃残留处理法测定了5种药剂对蔬菜上棕榈蓟马的室内毒力,并进行了田间药效试验。室内毒力测定结果表明,杀虫活性最高的是乙基多杀菌素,其48h的LC50值为0.19mg/L;其次是阿维菌素、溴氰虫酰胺和啶虫脒,LC50值为54.45~76.48mg/L,呋虫胺的毒力最低。田间试验结果表明,6%乙基多杀菌素悬浮剂和1.8%阿维菌素乳油对棕榈蓟马药后1~14d的防效均达90.88%以上,明显高于其他3种药剂。6%乙基多杀菌素悬浮剂是防治棕榈蓟马的首选药剂,推荐轮换使用1.8%阿维菌素乳油和10%溴氰虫酰胺可分散油悬浮剂。  相似文献   

12.
BACKGROUND: The western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an economically important pest. The genetic basis of acrinathrin resistance was investigated in WFT. RESULTS: The resistant strain, selected in the laboratory for acrinathrin resistance from a pool of thrips populations collected in Almeria (south-eastern Spain), showed a high resistance to acrinathrin (43-fold based on LC(50) values) compared with the laboratory susceptible strain. Mortality data from reciprocal crosses of resistant and susceptible thrips indicated that resistance was autosomal and not influenced by maternal effects. Analysis of probit lines from the parental strains and reciprocal crosses showed that resistance was expressed as a codominant trait. To determine the number of genes involved, a direct test of monogenic inheritance based on the backcrosses suggested that resistance to acrinathrin was probably controlled by one locus. Another approach, which was based on phenotypic variances, showed n(E), or the minimum number of freely segregating genetic factors for the resistant strain, to be 0.79. CONCLUSION: The results showed that acrinathrin resistance in WFT was autosomal and not influenced by maternal effects, and was expressed as a codominant trait, probably controlled by one locus.  相似文献   

13.
室内药剂交替使用对西花蓟马抗药性发展的影响   总被引:1,自引:0,他引:1  
分别单独使用毒死蜱、多杀菌素和两种农药交替使用连续处理西花蓟马(Frankliniella occidentalis)18代,采用浸渍法从第6至第18代每隔2世代测定3个汰选种群对毒死蜱和多杀菌素的敏感性.结果表明,毒死蜱和多杀菌素交替汰选种群比单一药剂连续汰选种群抗性上升趋势缓慢,F18代时交替使用汰选种群对毒死蜱和多杀菌素的抗性倍数分别为10.89倍和17.19倍,而毒死蜱单一汰选种群对毒死蜱的抗性倍数达到24.19倍,多杀菌素单一汰选种群对多杀菌素的抗性倍数达到20.78倍.因此,交替或轮换使用药剂可以延缓西花蓟马抗药性的发展.  相似文献   

14.
西花蓟马抗药性研究进展   总被引:5,自引:0,他引:5  
西花蓟马是世界范围内蔬菜和花卉上的重要害虫之一,使用化学药剂是防治西花蓟马的主要手段,目前西花蓟马已对有机氯、有机磷、氨基甲酸酯、拟除虫菊酯、阿维菌素和多杀菌素等多种杀虫剂产生了抗药性。本文从抗药性现状、抗性机制和抗性治理等几个方面介绍了国内外有关西花蓟马抗药性的研究进展。  相似文献   

15.
Journal of Plant Diseases and Protection - Next-generation sequencing combined with bioinformatic analysis has become an instrumental tool for quick and reliable SNP discovery in genomes. Here, we...  相似文献   

16.
Response of western flower thrips, Frankliniella occidentalis (Pergande), to selection for resistance to insecticides commonly used to control this pest in Murcia (south-east Spain) was studied under field and laboratory conditions. In the field, plots within sweet pepper crops in commercial and experimental greenhouses were treated under different selection strategies: insecticide rotation versus formetanate reiteration, formetanate reiteration versus acrinathrin reiteration, and formetanate reiteration versus methiocarb reiteration. Thrips populations were sampled monthly and bioassayed against methiocarb, methamidophos, acrinathrin, endosulfan, deltamethrin and formetanate. In the laboratory, F occidentalis strains were selected against each insecticide for several generations. To evaluate cross-resistance, each selected strain was bioassayed with the other insecticides. Frankliniella occidentalis populations showed a rapid development of acrinathrin resistance, reaching high levels in field and laboratory conditions. Formetanate and methiocarb resistance were also observed, although development was slower and at moderate levels. Cross-resistances between acrinathrin/deltamethrin and acrinathrin/formetanate were detected under field and laboratory conditions. Formetanate/methiocarb cross-resistance was suspected in laboratory selections, but not in field assays. Simultaneous moderate resistance levels to the three specific insecticides against thrips (formetanate, methiocarb and acrinathrin) were shown in laboratory selection strains, indicating a general mechanism of resistance, probably metabolic.  相似文献   

17.
Virulence and efficacy of five species and strains of the entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae:Steinernema riobravis, Steinernema feltiae strains Ger. and UK, andHeterorhabditis bacteriophora strains HP88 and IS5, against the prepupal and pupal stages of the western flower thrips (WFT),Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), were investigated in the laboratory. Although all these nematodes controlled WFT to some extent, they differed in efficiency. The heterorhabditid nematodeH. bacteriophora strain HP88 was more specific to the soil-inhabiting WFT stages (36–49% thrips mortality). The steinernematid nematodesS. riobravis andS. feltiae strains Ger. and UK had only a slight effect (10% mortality) on prepupal and pupal populations of WFT, andH. bacteriophora strain IS5 had the least effect of all. A possible reason for such species variation is suggested and discussed.  相似文献   

18.
19.
In 1992 and 1993, sunflower (Helianthus annuus L.) crops in Israel were heavily damaged by the western flower thrips (WFT),Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Adult females appear in the heads of sunflower just as the latter begin to blossom; the population decreases towards completion of anthesis. The damage to kernels is greatest at the periphery of the heads, where flowers appear first, and lowest at the center. Fields sown early in the season (in March) are usually the ones infested most by WFT and suffering the greatest damage. Fields sown one month later are less infested, since predatory bugs of the genusOrius are very active at that time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号