首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of imazapyr and glyphosate against Imperata cylindrica was studied in field and glasshouse experiments using two methods of direct contact application; a rope-wick wiper and a cloth soaked in herbicide solution. The effect of concentration and position of application on herbicide uptake and translocation was also measured. At the lowest dose of imazapyr (5 mg acid equivalent (a.e.) per plant), phytotoxicity was greater from applications by a rope-wick wiper than by a cloth. However, when the dose of imazapyr was increased, the cloth applicator was more effective than the rope-wick wiper. At all doses of glyphosate, rope-wick application was more effective than wiping with a cloth. Herbicide performance in the glasshouse was similar to that in the field. Radiotracer studies showed that increasing the concentration of imazapyr, while keeping herbicide dose constant, decreased uptake and translocation of radiolabel. In contrast, the rate of uptake of 14C-glyphosate increased with increasing herbicide concentration. Position of application did not significantly affect the amount of uptake and translocation of radiolabel to the rhizomes. It is concluded that rope-wick wipers are more effective than wiping with a cloth for applying imazapyr and glyphosate to I. cylindrica, provided that the concentration of imazapyr does not exceed 10 g a.e. l?1.  相似文献   

2.
Experiments evaluated the effect of glyphosate rate and Anoda cristata density, on crop and weed biomass and weed seed production in wide (70 cm) and narrow rows (35 cm) glyphosate‐resistant soyabean (Glycine max). Soyabean density was higher at 35 cm row spacing as an increase in planting rate in narrow‐row soyabean is recommended for producers in Argentina. Soyabean biomass at growth stage V4 (four nodes on the main stem with fully developed leaves beginning with the unifoliate leaves) was higher when grown on narrow than in wide‐rows but was not affected by the presence of A. cristata. At growth stage R5 (seed initiation – seed 3 mm long in a pod at one of the four uppermost nodes on the main stem, with a fully developed leaf and full canopy development), crop biomass was greater in narrow rows compared with wide rows with 12 plants m?2 of A. cristata. In narrow‐row soyabean, a single application of a reduced rate of glyphosate maintained soyabean biomass at R5 and provided excellent weed control regardless of weed density. In wide‐row soyabean control was reduced at the high weed density. Regardless of row spacing, A. cristata biomass and seed production were severely reduced by half of the recommended dose rate of glyphosate but the relationship between biomass and seed production was not altered. Glyphosate rates as low as 67.5 g a.e. ha?1 in narrow rows or 540 g a.e. ha?1 in wide rows provided excellent control of A. cristata. To minimize glyphosate use, planting narrow‐row soyabean are effective where A. cristata density is low.  相似文献   

3.
Echinochloa colona is the most common grass weed of summer fallows in the grain‐cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate‐resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate‐susceptible populations was evaluated in three field experiments and on both glyphosate‐susceptible and glyphosate‐resistant populations in two pot experiments. The treatments were knockdown and pre‐emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha?1 provided good control of small glyphosate‐susceptible plants (pre‐ to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha?1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre‐emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.  相似文献   

4.
In Argentina, Eleusine tristachya has been recently reported as a problematic weed that can occur at high densities in spring and summer in fallows and in maize and soyabean. The reason for the increase in E. tristachya populations is that once the weed is established, it is difficult to eliminate because it produces a high number of seeds and plant regrowth occurs after herbicide treatments. The aim of this study was to determine the effect of post-emergence application of herbicides (glyphosate, haloxyfop-methyl and clethodim) at the seedling, vegetative and reproductive stages on the short-term (biomass 30 days after treatment—30 DAT) and long-term (tiller number and height and seed production—regrowth at 330 DAT) control of E. tristachya selected biotypes in outdoor pot experiments. Data fitted to a log-logistic model. For all the herbicides considered, at the seedling and vegetative stages, short-term control was achieved with low ED50 and ED90 values, whereas at the reproductive stage, ED90 values were three- to sixfold (glyphosate), six- to 52-fold (haloxyfop-methyl) and five- to 13-fold (clethodim) higher. Long-term control at the recommended dose or lower was not possible at the reproductive stage as tiller regrowth and seed production occurred with all herbicides. It is advisable to control Eleusine tristachya when plants are small at the beginning of the growing season using the recommended herbicide dose. A delayed application will produce tiller regeneration the following year, and consequently, control would only be achieved applying an overdose, which can cause risks to health and the environment. We concluded that a management programme based on the combination of glyphosate with post-emergence graminicides applied at early stages will be effective to control future infestations.  相似文献   

5.

BACKGROUND

The potential of weed species to respond to selection forces affecting the evolution of weedy traits such as competitive ability is poorly understood. This research characterized evolutionary growth changes in a single Abutilon theophrasti Medik. population comparing multiple generations collected from 1988 to 2016. A competition study was performed to understand changes in competitive ability, and a herbicide dose–response study was carried out to assess changes in sensitivity to acetolactate synthase-inhibiting herbicides and glyphosate over time.

RESULTS

When grown in monoculture, A. theophrasti biomass production per plant increased steadily across year-lines while leaf number decreased. In replacement experiments, A. theophrasti plants from newer year-lines were more competitive and produced more biomass and leaf area than the oldest year-line. No clear differences in sensitivity to imazamox were observed among year-lines. However, starting in 1995, this A. theophrasti population exhibited a progressive increase in growth in response to a sublethal dose of glyphosate (52 g a.e. ha−1), with the 2009 and 2016 year-lines having more than 50% higher biomass than the nontreated control.

CONCLUSION

This study demonstrates that weeds can rapidly evolve increased competitive ability. Furthermore, the results indicate the possibility of changes in glyphosate hormesis over time. These results highlight the importance of the role that rapid (i.e., subdecadal) evolution of growth traits might have on the sustainability of weed management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

6.

Research has shown the occurrence of the hormesis effect in some upland rice cultures resulting from low-dose application of glyphosate. Glyphosate herbicide is widely used in Brazilian agriculture for controlling the large quantity of weeds. The aim of this work was to verify the effects of low-dose application of glyphosate herbicide on agronomic characteristics in upland rice. The experimental design used was randomized blocks comprising five low-dose applications of glyphosate herbicide (10, 20, 40, 70, and 100?g acid equivalent [a.e.] ha?1) and the control, in two stages of development of the rice culture (tillering [V4] and floral differentiation [R1]) with four repetitions. The agronomic traits of upland rice were evaluated. Data were subjected to variance analysis, polynomial regression analysis for the quantitative factor, and Tukey’s test for the qualitative factor at p?<?0.05. The grain yield and the number of spikelets per panicle increased with the application of 10?g a.e. ha?1 of glyphosate at the floral differentiation stage. Until the low dose of 75?g a.e. ha?1, there was an increase in the number of panicles. Low doses between 70 and 100?g a.e. ha?1 applied in R1 provided less spikelets per panicle, lower 100-grain weight, and lower grain yield. The leaf flavonoid content increased due to the increase in the low doses of glyphosate herbicide.

  相似文献   

7.
The effect of glyphosate on weeds was evaluated in greenhouse bioassays with five weed species and compared with a commercial mixture of phenmedipham and ethofumesate. Glyphosate was more active than a mixture of phenmedipham and ethofumesate on the weeds. Solanum nigrum was the most sensitive species to both herbicide treatments. The relative potency of glyphosate between the weeds showed consistency at 50% and 90% control levels for four out of five weed species, which could be ranked independently of control level because of similar response curves. In a field trial on sugarbeet genetically engineered to acquire glyphosate tolerance, a total of 720 g a.i. ha?1 of glyphosate applied in one, two or three applications gave similar or superior control of weeds to a total of 3.17 kg a.i. ha?1 mixture of metamitron, phenmedipham and ethofumesate applied in three repeated applications.  相似文献   

8.
Alternanthera philoxeroides is a problematic invasive plant in many regions of the world that is difficult to control once naturalised. It poses a threat to agricultural productivity, biodiversity and social amenity values of aquatic environments. Significant research has been conducted internationally, regarding the efficacy of different herbicides for control of A. philoxeroides. However, no studies have looked at key aspects of control for effective management in an early stage of invasion of aquatic environments, hindering eradication and control programmes. This study evaluates the efficacy of herbicides and surfactants on key A. philoxeroides response metrics, including control of above‐ground biomass, below‐ground biomass and production of viable stem fragments. This study concluded that glyphosate (isopropylamine salt) minimises viable stem fragment production post‐herbicide application, compared with imazapyr and metsulfuron, thus reducing the potential for dispersal throughout catchments and waterways. In contrast, imazapyr and metsulfuron provided more effective control than glyphosate for A. philoxeroides growing on exposed embankments. We propose that an effective management strategy for early invasion of aquatic A. philoxeroides, using herbicides, would be to conduct initial applications of glyphosate to control overwater biomass and limit dispersal of viable stem fragments. Once infestations have been forced back to the embankment, imazapyr or metsulfuron treatments will provide longer term control.  相似文献   

9.
Recent reports of weed‐control failures after the use of glyphosate led to suspicion about the selection of resistant biotypes of Conyza at locations in west and north Paraná, Brazil. Plants were collected, identified as Conyza sumatrensis and subsequently evaluated for possible resistance to glyphosate in four stages of weed development. The experiments were carried out in a greenhouse by combining biotypes, stages of development and a range of glyphosate doses. All the suspected biotypes were collected from locations in Cascavel, Toledo, Assis Chateaubriand, Tupãssi and Campo Mourão with a history of glyphosate use in burndown and in glyphosate‐resistant soybean for at least the four previous years and were compared to a susceptible biotype (São Jorge do Ivaí) with no previous history of herbicide use. The doses of glyphosate ranged from 0 to 5760 g ae ha?1. The biotypes were considered as resistant if two combined criteria were present (resistance factor > 1 and the rate required to achieve 80% control is >720 g ha?1). The results provided evidence that there is a marked difference in the level of control of older plants and also confirmed the presence of some resistant biotypes. For applications at the first stage of development, two biotypes that were resistant to glyphosate were identified (Cascavel‐1 and Tupãssi‐6). For applications in the second stage of development, beyond the biotypes that were found in the first stage, three other biotypes were considered as resistant: Toledo‐5, Assis Chateaubriand‐7 and Floresta‐10. However, for applications at the third and fourth stages, all the biotypes were considered as resistant.  相似文献   

10.
IKUENOBE  & AYENI 《Weed Research》1998,38(6):397-404
A range of herbicides was evaluated for the control of Chromolaena odorata (L.) K & R in oil palm at the Nigerian Institute for Oil Palm Research. Glufosinate-ammonium quickly dessicated treated foliage but weed plants soon recovered. Glyphosate-isopropylamine and glyphosate-trimesium produced similar results, both formulations controlling treated vegetation and suppressing regrowth for up to 12 weeks after treatment. Triclopyr and hexazinone + diuron were effective for up to 20 WAT, whereas imazapyr controlled regrowth for up to 36 WAT. Regrowth of the weed from its roots was better suppressed when the foliage was left undisturbed for 4–7 days after herbicide treatment. Repeated annual applications of triclopyr, hexazinone + diuron, the two formulations of glyphosate or imazapyr progressively reduced the biomass of C . odorata in the plots. In particular, imazapyr effectively eliminated the weed after the second application. Taking crop tolerance into consideration, the most promising herbicide treatments were glyphosate at 2.4 kg a.i. ha−1 and low rates (0.5 kg a.i. ha−1 or less) of imazapyr.  相似文献   

11.
Use of reduced and no-tillage systems has increased in recent years due to concerns for ecological and economic sustainability of agricultural production. Effective weed control is a serious concern in reduced tillage production. This study was conducted to investigate weed control practices in reduced and no-till maize production. The most effective timing of glyphosate application, either before or after sowing, was investigated in combination with pre-emergence application of acetochlor (840 g a.i/L), post-emergence application of foramsulfuron (22.5 g a.i/L), and two hoeing treatments. The treatments were maintained on the same plots during 2011 and 2012 to evaluate the cumulative effects of the treatments. Main plot treatments consisted of four timings of glyphosate application: 20 or 10 days before sowing, day of sowing, 5 days after sowing, and an untreated control. Sub-plot treatments were: pre- plus post-emergence herbicides, pre-emergence herbicide plus rotary hoeing, post-emergence herbicide plus rotary hoeing, and post-emergence herbicide plus two hoeing treatments (rotary and lister hoe). In the main plots, the lowest weed biomass was produced in glyphosate treatments at sowing and 5 days after sowing; the highest biomass was produced in control plots and in the plots with glyphosate treatments 20 days before sowing. In the sub-plots, the greatest weed biomass was produced in plots with two hoeing treatments (rotary and lister hoe). Glyphosate treatments at sowing and post-emergence herbicide treatment combinations produced the best weed control. Economic analysis revealed that pre-sowing, non-selective herbicide treatments provided a slight increase in net profit. Mechanical hoeing decreased net income due to increased production costs. The highest income was obtained from the pre-emergence plus post-emergence herbicide treatment combinations with no glyphosate.  相似文献   

12.
Glyphosate‐resistant Ambrosia trifida is a competitive and difficult‐to‐control annual broad‐leaved weed in several agronomic crops in the Midwestern United States and Ontario, Canada. The objectives of this study were to compare treatments for control of glyphosate‐resistant A. trifida with tillage followed by pre‐emergence (PRE) and/or post‐emergence (POST) herbicides in glyphosate‐resistant maize and to determine the impact of A. trifida escapes on maize yield. Field experiments were conducted in 2013 and 2014 in grower fields infested with glyphosate‐resistant A. trifida. Tillage prior to maize sowing resulted in 80–85% control compared with no tillage. Tillage followed by PRE application of saflufenacil plus dimethenamid‐P with or without atrazine resulted in 99% control compared with ≤86 and 96% control with PRE herbicides alone at 7 and 21 days after application respectively. Tillage or POST‐only herbicides resulted in 4–14 A. trifida plants m?2, whereas a PRE and POST programme had <3 plants m?2. Maize yield was greatest (13.1–14.2 tonnes ha?1) with tillage followed by PRE and POST herbicide programme. The relationship between maize yield and late‐season density of A. trifida escapes showed a 50% maize yield reduction irrespective of control measures when A. trifida density was 8.4 plants m?2. It was concluded that the combination of tillage with PRE and/or POST herbicides reduced A. trifida density and biomass accumulation early in the season and provided an integrated approach for effective management.  相似文献   

13.
Two field experiments were carried out a year apart on the alkaloid poppy (Papaver somniferum) in 2012 and 2013 in north-west Hungary, to assess the efficacy of mesotrione and tembotrione herbicides for post-emergence weed control. Our experiments tested (1) a single application of mesotrione at 144 g active ingredient (a.i.) ha–1, (2) two separate applications of mesotrione at 144 g a.i. ha–1, (3) a single application of tembotrione at 88 g a.i. ha–1, (4) two separate applications of mesotrione at 88 g a.i. ha–1, and (5) the combination of a single application of mesotrione at 144 g a.i. ha–1 followed by a single application of tembotrione at 88 g a.i. ha–1. Both non-treated and hand-weeded plots were used as controls. Among the most important weeds, Chenopodium album was most successfully controlled in the majority of the test treatments, but Fallopia convolvulus and Polygonum aviculare tolerated each herbicide application in 2012, likely due to the dry weather conditions. Because of the botanical similarity to the crop, none of the treatments proved to be significant against Papaver rhoeas. One dosage of tembotrione alone never reduced the dry weights of the target weed species or weed numbers significantly. The cuticular wax layer of the opium poppy can provide a natural defence against these herbicides, but some temporary phytotoxic yellowish discoloration occurred after tembotrione treatments. Our results show that mesotrione in combination with tembotrione is the most effective treatment and should be employed in poppy cultivation.  相似文献   

14.
In spatially heterogeneous weed infestations, variable dose technologies could be used to minimise herbicide use; high doses could be applied to reduce high‐density patches and low doses to maintain weed populations in low‐density portions of a field. To assess the potential short‐ and long‐term effects of variable herbicide dose and site‐specific management, the major weed demographic processes were described and parameterised in this study. Various doses of rimsulfuron (from 0 to 12.5 g a.i. ha?1) were applied to different densities of Sorghum halepense (0–100 plants m?2). Contrary to similar studies with other weed species, higher herbicide efficacy was not observed at low densities, suggesting that the same rimsulfuron dose should be applied regardless of the S. halepense density. The highest percentage of control was obtained with the full rimsulfuron dose. However, it did not guarantee a decrease of the infestation in the following season in the field areas where the initial S. halepense density was lower than 60 plants m?2. Reduced doses of rimsulfuron to control S. halepense cannot be recommended based on our results.  相似文献   

15.
Weedy rice (Oryza spp.) is a notorious weed in direct-seeding paddy fields. Because it has anatomical and physiological traits similar to those of cultivated rice, no selective herbicide is effective in controlling weedy rice growing among conventional rice cultivars. Imidazolinone (IMI)-resistant rice lines JD372 and JJ818 have been planted with imazamox to control weedy rice in Jiangsu and Shanghai, China. Whole-plant dose–response analysis showed that imazamox exhibited high efficacy against three populations of weedy rice. The ED90 of weedy rice populations FN-5, GY-8, and HY-3 were 46.87, 61.43, and 52.17 g a.i. ha−1, respectively, close to the recommended field dose (50 g a.i. ha−1) of imazamox. Conversely, the ED10 values of JD372 and JJ818 were slightly lower than 50 g a.i. ha−1. These findings indicate that imazamox can control weedy rice production in JD372 and JJ818 fields. The acetolactate synthase (ALS) sensitivity of JD372 in vitro was 1714.89-fold lower to imazamox than was that of FN-5. ALS gene sequencing revealed a Ser653Asn point mutation—a common mutation that confers resistance to IMI herbicides in JD372. In addition, higher ALS expression levels in JD372 were found at 24 and 72 h after imazamox treatment. ALS overexpression might partially compensate for the ALS activity of JD372 that was suppressed by imazamox.  相似文献   

16.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

17.
Waterhemp (Amaranthus tuberculatus) is a common and troublesome weed in cropping systems throughout the United States. With the potential for future periods of low rainfall or drought, the need for improved weed control under drought stress is necessary. Drought stress typically reduces herbicide efficacy by reducing the foliar uptake of herbicides and their translocation. The objectives of this research were to determine the efficacy of 2,4‐dichlorophenoxyacetic acid (2,4‐D) and glyphosate, applied alone or when tank‐mixed, on waterhemp under varying levels of drought stress, the effect of the timing of drought stress in relation to herbicide application and the absorption and translocation of each herbicide in drought‐stressed waterhemp. At reduced herbicide rates, 2,4‐D had a greater level of control of waterhemp under drought stress, compared to glyphosate. The level of herbicide efficacy was lower when the amount of water that was applied to the plants was reduced. The level of waterhemp control was greatest when drought stress occurred before the herbicide application and when the plants were watered to saturation after the application, compared to when drought stress occurred after the herbicide application or restricted watering levels occurred throughout the entire study. Glyphosate absorption and translocation were reduced in the drought‐stressed plants, but 2,4‐D absorption and translocation were not altered. The absence of a reduction in 2,4‐D translocation in the drought‐stressed weeds has not been previously reported. Applying herbicides prior to a rainfall event could increase the weed control level, even if the weed is stressed. Determining how and why 2,4‐D absorption and translocation levels, compared to those of glyphosate, are unaffected by drought stress in waterhemp can aid in improving the control of drought‐stressed weeds with other postemergence herbicides.  相似文献   

18.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

19.
The effects of a range of herbicide doses on crop–multiple weed competition were investigated. Competitivity of Galium aparine was approximately six times greater than that of Matricaria perforata with no herbicide treatment. Competitivities of both weeds decreased with increasing herbicide dose, being well described by the standard dose–response curve with the competitivity of M. perforata being more sensitive than that of G. aparine to a herbicide mixture, metsulfuron‐methyl and fluroxypyr. A combined model was then developed by incorporating the standard dose–response curve into the multivariate rectangular hyperbola competition model to describe the effects of multiple infestation of G. aparine and M. perforata and the herbicide mixture on crop yield. The model developed in this study was used to predict crop yield and to estimate the herbicide dose required to restrict crop yield loss caused by weeds to an acceptable level. At the acceptable yield loss of 5% and the weed combination of 120 M. perforata plants m?2 and 20 G. aparine plants m?2, the model recommends a mixture of 1.2 g a.i. ha?1 of metsulfuron‐methyl and 120 g a.i. ha?1 of fluroxypyr.  相似文献   

20.
Two winter oilseed rape (Brassica napus) cultivars, tolerant to glyphosate and glufosinate, were compared with a conventional cultivar at three sites over 4 years, in 3‐year crop rotations in the UK. The winter oilseed rape was grown in Years 1 and 4, with winter cereals, which received uniform herbicide treatments, in the intervening years. The second winter oilseed rape treatments were applied to randomised sub‐plots of the original plots. Weed densities were recorded in autumn and spring and weed biomass was measured in summer. At most sites, there was only one application of glufosinate or glyphosate, whereas two products were often used on the conventional variety. The timing of glyphosate and glufosinate application was, on average, 34 days later than that of the conventional broad‐leaved weed control treatments. Overall weed control, across all sites and years, was not statistically different between the conventional, glyphosate and glufosinate treatments. However, glyphosate achieved higher control of individual weed species more frequently than the other treatments. Glufosinate and the conventional treatments were similar in performance. The treatments in Year 1 sometimes affected weed populations in the subsequent cereal crops and, in rare instances, those in the rape in Year 4. Carry‐over effects were small after most treatments. In general, weed survival was greater in the oilseed rape crops, irrespective of the treatment, than it was in the intervening cereal crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号