首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Global banana production is affected by Fusarium wilt, a devastating disease caused by the soilborne root-infecting fungus, Fusarium oxysporum f. sp. cubense (Foc). Fusarium wilt is notoriously difficult to manage because infection arises through complex below-ground interactions between Foc, the plant, and the soil microbiome in the root–soil interface, defined as the rhizosphere. Interactions in the rhizosphere play a pivotal role in processes associated with pathogen development and plant health. Modulation of these processes through manipulation and management of the banana rhizosphere provides an auspicious prospect for management of Fusarium wilt. Yet, a fundamental understanding of interactions in the banana rhizosphere is still lacking. The objective of this review is to discuss the state-of-the-art of the relatively scant data available on banana below-ground interactions in relation to Fusarium wilt and, as a result, to highlight key research gaps. Specifically, we seek to understand (a) the biology of Foc and its interaction with banana; (b) the ecology of Foc, including the role of root-exuded metabolites in rhizosphere interactions; and (c) soil management practices and how they modulate Fusarium wilt. A better understanding of molecular and ecological factors influencing banana below-ground interactions has implications for the development of targeted interventions in the management of Fusarium wilt through manipulation of the banana rhizosphere.  相似文献   

2.
In 1994, Fusarium wilt of melon cultivars which are resistant to races 0 and 2 of Fusarium oxysporum f. sp. melonis was observed in southern area of the Lake Biwa region, Shiga prefecture. In commercial fields, mature plants of cv. Amus which were grafted onto cv. Enken Daigi 2, and of cv. FR Amus showed yellowing, wilting and finally death before harvesting of fruits. Diseased plants had vascular and root discolorations, and their stem sections yielded typical colonies of F. oxysporum. When the Shiga strains were tested for their pathogenicity to 12 species of cucurbits, they caused wilts only on melon. Using race differential cultivars of melon, the Shiga strains were classified as race 1 of F. oxysporum f. sp. melonis, which has not been reported in Japan. To further characterize their pathogenicity, the strains were used to inoculate 46 additional cultivars of melon, oriental melon and oriental pickling melon. All the race 1 strains were pathogenic to the cultivars tested, and their host range was apparently different from those of strains belonging to other races (races 0, 2 and 1,2y). DNA fingerprinting with a repetitive DNA sequence, FOLR3, differentiated race 1 strains from strains of races 0 and 2, but not from race 1,2y strains. Received 2 July 1999/ Accepted in revised form 30 September 1999  相似文献   

3.
The severity of fusarium wilt is affected by inoculum density in soil, which is expected to decline during intervals when a non‐susceptible crop is grown. However, the anticipated benefits of crop rotation may not be realized if the pathogen can colonize and produce inoculum on a resistant cultivar or rotation crop. The present study documented colonization of roots of broccoli, cauliflower and spinach by Fusarium oxysporum f. sp. lactucae, the cause of fusarium wilt of lettuce. The frequency of infection was significantly lower on all three rotation crops than on a susceptible lettuce cultivar, and the pathogen was restricted to the cortex of roots of broccoli. However, F. oxysporum f. sp. lactucae was isolated from the root vascular stele of 7·4% of cauliflower plants and 50% of spinach plants that were sampled, indicating a greater potential for colonization and production of inoculum on these crops. The pathogen was also recovered from the root vascular stele of five fusarium wilt‐resistant lettuce cultivars. Thus, disease‐resistant plants may support growth of the pathogen and thereby contribute to an increase in soil inoculum density. Cultivars that were indistinguishable based on above‐ground symptoms, differed significantly in the extent to which they were colonized by F. oxysporum f. sp. lactucae. Less extensively colonized cultivars may prove to be superior sources of resistance to fusarium wilt for use in breeding programmes.  相似文献   

4.
Twenty-seven seed samples belonging to the lettuce cultivars most frequently grown in Lombardy (northwestern Italy), in an area severely affected by Fusarium wilt of lettuce, were assayed for the presence ofFusarium oxysporum on a Fusarium-selective medium. Isolations were carried out on subsamples of seeds (500 to 1500) belonging to the same seed lots used for sowing, and either unwashed or disinfected in 1% sodium hypochloride. The pathogenicity of the isolates ofF. oxysporum obtained was tested in four trials carried out on lettuce cultivars of the butterhead type, very susceptible to Fusarium wilt. Nine of the 27 samples of seeds obtained from commercial seed lots used for sowing in fields affected by Fusarium wilt were contaminated byF. oxysporum. Among the 16 isolates ofF. oxysporum obtained, only one was isolated from disinfected seeds. Three of the isolates were pathogenic on the tested cultivars of lettuce, exhibiting a level of pathogenicity similar to that of the isolates ofF. oxysporum f.sp.lactucae obtained from infected wilted plants in Italy, USA and Taiwan, used as comparison. The results obtained indicate that lettuce seeds are a potential source of inoculum for Fusarium wilt of lettuce. The possibility of isolatingF. oxysporum f.sp.lactucae, although from a low percent of seeds, supports the hypothesis that the rapid spread of Fusarium wilt of lettuce observed recently in Italy is due to the use of infected propagation material. Measures for prevention and control of the disease are discussed. http://www.phytoparasitica.org posting Dec. 16, 2003.  相似文献   

5.
Although the maritime Pacific Northwest (PNW) is the only region of the United States suitable climatically for spinach seed production, the acidic soils are highly conducive to spinach Fusarium wilt caused by Fusarium oxysporum f. sp. spinaciae. A soil bioassay developed to quantify the risk of spinach Fusarium wilt in fields has been offered to seed growers annually since 2010. Soil sampled from growers' fields each winter was planted with highly susceptible, moderately susceptible, and partially resistant spinach inbred lines, and the plants rated weekly to calculate a Fusarium wilt severity index (FWSI) and the area under the disease progress curve (AUDPC). Results for 147 soils tested from 2010 to 2013 have been published. This study examined results for an additional 248 soils tested from 2014 to 2019 with the bioassay modified to include an option of agricultural limestone amendment to the soils tested. FWSI and AUDPC were affected significantly (p < .001) by the main effects of soil and spinach inbred line, and the interaction of these factors. Correlation analyses showed a range in degree of association of FWSI and AUDPC with spinach seed crop rotation duration and soil properties, depending on the spinach inbred line (r = −.255 to –.267, n = 172 soils with characteristics suitable for correlation analyses). Stepwise regression models for 172 soils with relevant parameters for regression analyses identified spinach seed crop rotation interval, rate of agricultural limestone amendment, soil pH, and soil Fe, Mn, and Zn concentrations as most strongly associated with FWSI and AUDPC. However, the models accounted for ≤33.4% (R2) of the variability in Fusarium wilt risk. The soil bioassay remains a primary tool for spinach seed growers to select fields with low risk of Fusarium wilt.  相似文献   

6.
Fusarium wilt of basil (Ocimum basilicum), caused byFusarium oxysporum f.sp.basilici, is reported for the first time in Greece. Foliage inoculation of young plants resulted in a downward movement of the pathogen to the crown and roots and 20–30% plant mortality. Of 14 commercial basil cultivars evaluated for possible disease resistance using young plants, six out of eight large-leaved cultivars were found resistant, while all six small-leaved ones were susceptible. http://www.phytoparasitica.org posting Feb. 23, 2004.  相似文献   

7.
Pre-inoculation with the endobacterium Serratia marcescens (strain UPM39B3) induced the production of host defence enzymes such as peroxidase, polyphenoloxidase, phenylalanine ammonia lyase, total soluble phenols and lignothioglycolic acid in banana plantlets. The levels of these enzymes were evidently higher in plantlets pre-treated with the endobacterium compared to the control. The production of host-induced enzymes benefitted the crop plants as they may have a role in suppressing Fusarium wilt incidence in the plantlets. This was evident when plantlets pre-treated with the endobacterium showed a lower disease severity (50%) compared to diseased plantlets lacking the endobacterium (74%). The results of this study thus highlight the potential of the isolate Serratia marcescens (strain UPM 39B3) as a biological control agent for Fusarium wilt management in bananas, reducing disease severity via stimulation of host defences.  相似文献   

8.
Long-term continuous monocropping of faba beans increases the incidence of faba bean wilt, while faba bean–wheat intercropping can effectively control it. This study aimed to understand the underlying mechanism of faba bean–wheat intercropping for the control of Fusarium oxysporum and vanillic acid (VA)-promoted occurrence of faba bean wilt. The occurrence of faba bean wilt was investigated among the monocropped and intercropped plants of faba beans in a field experiment. The contents and types of phenolic acids were examined in the rhizosphere soil. Monocropped and intercropped faba beans were examined under the dual stress of F. oxysporum and different concentrations of VA (0, 50, 100, 200 mg/L) to understand the alleviating mechanism of faba bean–wheat intercropping. Exogenous addition of high concentrations of VA significantly inhibited the growth and reproduction of F. oxysporum, but under the dual stress of F. oxysporum and different concentrations of VA, it significantly inhibited the defence enzymes of faba bean roots, stems, and leaves, and rhizosphere soil enzymes. Interestingly, faba bean–wheat intercropping alleviated VA stress and thereby the incidence and disease index of faba bean Fusarium wilt by improving plant resistance and soil enzyme activity. The dual stress of F. oxysporum and VA promotes the occurrence of Fusarium wilt by damaging the defence system of the faba bean root system and rhizosphere soil environment. However, faba bean–wheat intercropping effectively alleviates the autotoxicity of VA by improving the physiological and biochemical resistance of faba beans and soil enzyme activities, and thus controls the occurrence of Fusarium wilt.  相似文献   

9.
Fusarium oxysporum f. sp. cubense (Foc) is the causal pathogen of Fusarium wilt of banana. To understand infection of banana roots by Foc race 4, we developed a green fluorescent protein (GFP)-tagged transformant and studied pathogenesis using fluorescence microscopy and confocal laser scanning microscopy. The transformation was efficient, and GFP expression was stable for at least six subcultures with fluorescence clearly visible in both hyphae and spores. The transformed Foc isolate also retained its pathogenicity and growth pattern, which was similar to that of the wild type. The study showed that: (i) Foc race 4 was capable of invading the epidermal cells of banana roots directly; (ii) potential invasion sites include epidermal cells of root caps and elongation zone, and natural wounds in the lateral root base; (iii) in banana roots, fungal hyphae were able to penetrate cell walls directly to grow inside and outside cells; and (iv) fungal spores were produced in the root system and rhizome. To better understand the interaction between Foc race 4 and bananas, nine banana cultivars were inoculated with the GFP-transformed pathogen. Root exudates from these cultivars were collected and their effect on conidia of the GFP-tagged Foc race 4 was determined. Our results showed that roots of the Foc race 4-susceptible banana plants were well colonized with the pathogen, but not those of the Foc race 4-resistant cultivars. Root exudates from highly resistant cultivars inhibited the germination and growth of the Fusarium wilt pathogen; those of moderately resistant cultivars reduced spore germination and hyphal growth, whereas the susceptible cultivars did not affect fungal germination and growth. The results of this work demonstrated that GFP-tagged Foc race 4 isolates are an effective tool to study plant–fungus interactions that could potentially be used for evaluating resistance in banana to Foc race 4 by means of root colonization studies. Banana root exudates could potentially also be used to identify cultivars in the Chinese Banana Germplasm Collection with resistance to the Fusarium wilt pathogen.  相似文献   

10.
Fusarium wilt of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a disease of primary concern for strawberry production in many countries. Crop rotation and anaerobic soil disinfestation (ASD) have gained recent interest for their potential to contribute to management of this disease. Both techniques involve incorporation of organic matter into soil, which may be utilized by strains of Fusarium that are competitive saprophytes. We show that F. oxysporum f. sp. fragariae can colonize strawberry, lettuce, raspberry, and broccoli leaf tissues, which are sources of organic matter generated during crop rotation. This pathogen increased in soil population density during ASD treatments that did not become anaerobic, possibly as a result of growth on the organic amendment. However, significant population decreases were observed after ASD treatment when at least 100,000 cumulative reduced mV hours occurred in a 14-day experiment. Post-ASD abundance of F. oxysporum f. sp. fragariae in soil was negatively correlated with cumulative reduced mV hours. The only treatment that consistently caused disinfestation was exposed to a maximum temperature of 22 °C, which indicates there is potential for developing effective ASD treatments in the cool climates where strawberries are grown. Awareness that F. oxysporum f. sp. fragariae can act as a competitive soil saprophyte should be further investigated for its potential to alter disease outcomes where organic amendments are applied.  相似文献   

11.
Vegetable grafting for disease management was first used successfully when watermelon grafted onto a Cucurbita moschata rootstock overcame Fusarium wilt. Interspecific grafting has since been used effectively to mitigate several soilborne pathogens in a variety of solanaceous and cucurbitaceous cropping systems. Verticillium wilt caused by Verticillium dahliae is a significant disease in watermelon crops and is difficult to manage. Current management practices, including crop rotation, soil fumigation, and host resistance, are insufficient due to the ability of microsclerotia to persist in absence of a host, lack of efficacy of soil fumigants, and limited availability of resistant cultivars. Watermelon grafted onto commercial cucurbit rootstocks have increased tolerance to Verticillium wilt, although no cucurbit rootstocks are known to be completely resistant. Verticillium wilt incidence decreased on grafted plants grown in artificially and naturally infested soils, while scion health and growth as well as rootstock root mass and vigour increased. Commonly used rootstocks are Lagenaria siceraria, C. moschata, and C. maxima × C. moschata; of these, only C. maxima × C. moschata ‘Tetsukabuto’ reduced severity of Verticillium wilt across several scion cultivars, locations, years, and soil densities of V. dahliae. Although studies on Verticillium wilt resistance of grafted watermelon are few, their combined results suggest the threshold of V. dahliae soil density for watermelon may be around 5–12 cfu/g. This review summarizes available information on Verticillium wilt of watermelon and effects of different rootstock × scion combinations, assisting growers and breeding programmes in decisions to adopt watermelon grafting for management of Verticillium wilt.  相似文献   

12.
大豆枯萎病菌尖孢镰孢遗传多样性及大豆品种抗性   总被引:2,自引:0,他引:2  
 了解大豆枯萎病菌的群体遗传特征及明确大豆种质对大豆枯萎病的抗性,对抗病育种、抗性品种的合理布局以及制定更有效的病害防治策略具有重要的参考价值。本研究利用随机扩增多态性DNA(random amplified polymorphic DNA,RAPD),对采自我国不同地区的大豆枯萎病菌—尖孢镰孢菌(Fusarium oxysporum)进行遗传多样性分析,筛选到10个多态性随机引物,共扩增出75条RAPD条带,其中55条为多态性条带,占73.3%。利用UPGMA法对DNA扩增图谱进行聚类分析,以相似系数0.68为阈值,55个分离物可分为9个遗传聚类组,表明我国大豆枯萎病菌具有丰富的种内遗传多样性,所划分的群体与分离物来源地不相关。同时,对上述分离物进行致病性分析,发现我国的大豆枯萎病菌具有明显的致病力分化现象。进一步利用3个代表性分离物对来自我国不同大豆产区的180个大豆品种(资源)进行抗大豆枯萎病鉴定,发现皖豆28、中黄13、中黄51、中作X08076和5D034等5个品种对大豆枯萎病具有良好抗性,占供试材料的2.8%,表明不同大豆品种对枯萎病的抗性存在一定的差异。  相似文献   

13.
香石竹不同品种对镰刀菌枯萎病的抗性评价   总被引:8,自引:0,他引:8       下载免费PDF全文
连续2年以土壤接种方法对30个香石竹品种进行田间镰刀菌枯萎病抗性鉴定。结果表明,品种间抗性存在明显差异。30个品种中没有发现免疫品种,其中高抗品种占所鉴定总数的16.7%,中抗占40.0%,中感占13.3%,高感占30.0%。在所有鉴定的品种中,红色品种抗性较低,70%属感病品种;复色品种抗性较高,89%为抗病品种。依相对抗性指数,两个年度间的相对抗性无显著差异,鉴定结果可靠,建议将此方法作为我国香石竹对镰刀菌枯萎病田间抗性评价的基本方法。  相似文献   

14.
Fusarium oxysporum f. sp. cubense (Foc), causal agent of fusarium wilt of banana, is among the most destructive pathogens of banana and plantain. The development of a molecular diagnostic capable of reliably distinguishing between the various races of the pathogen is of key importance to disease management. However, attempts to distinguish isolates using the standard molecular loci typically used for fungal phylogenetics have been complicated by a poor correlation between phylogeny and pathogenicity. Among the available alternative loci are several putative effector genes, known as SIX genes, which have been successfully used to differentiate the three races of F. oxysporum f. sp. lycopersici. In this study, an international collection of Foc isolates was screened for the presence of the putative effector SIX8. Using a PCR and sequencing approach, variation in Foc‐SIX8 was identified which allowed race 4 to be differentiated from race 1 and 2 isolates, and tropical and subtropical race 4 isolates to be distinguished from one another.  相似文献   

15.
The use of Brassica crops as green manure in the so-called biofumigation treatment has been successfully exploited for the management of soilborne pathogens and is gaining interest particularly in the case of less intensive agricultural systems. A study was undertaken to investigate possible negative side-effects of biofumigation in order to prevent possible damage caused by wilt pathogens able to attack both plants used for biofumigation as well as agricultural crops. To do so, firstly the response of different Brassicas, including some used in biofumigation, to the formae speciales of Fusarium oxysporum known for being pathogenic on Brassica crops was evaluated. Secondly, the effect of green manure treatments on yield, quality of crops, and inoculum densities, infection and survival of Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. raphani was evaluated. In the second part of the work, four Brassica crops, selected for their response (susceptibility or resistance) to F. oxysporum f. sp. conglutinans and to F. oxysporum f. sp. raphani were evaluated in order to determine their response to the two pathogens during subsequent crops grown in soil where plants were incorporated as green manure into the soil at the end of each cycle. Moreover, the dynamics of the populations of F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. raphani in the soil after several biofumigation cycles was studied. Many of the Brassica crops used for biofumigation tested were susceptible to F. oxysporum f. sp. conglutinans and or to F. oxysporum f. sp. raphani. Green manure treatment, carried out by growing nine cycles of biocidal plants, with a short crop cycle of 30–35 days, did not reduce Fusarium wilts on susceptible Brassica hosts. The population of the pathogen was partially increased as a result of the incorporation of tissues of the susceptible plants. When Brassica crops grown were resistant to the two F. oxysporum pathogens used for soil infestation, green manure simulation did inhibit both pathogens, thus confirming its biocidal activity. The results obtained under our experimental conditions show that biofumigation treatment is not applicable for soil disinfestation on crops susceptible to the same formae speciales of F. oxysporum affecting Brassica species used for biofumigation. Brassica crops resistant to Fusarium yellows should be grown where biofumigation is applied. Moreover, alternation of crops used for biofumigation should be encouraged.  相似文献   

16.
Two diseases of adzuki bean, brown stem rot (BSR, caused by Cadophora gregata f. sp. adzukicola) and adzuki bean Fusarium wilt (AFW, caused by Fusarium oxysporum f. sp. adzukicola), are serious problems in Hokkaido and have been controlled using cultivars with multiple resistance. However, because a new race of BSR, designated race 3, was identified, sources of parental adzuki bean for resistance to race 3 were needed. Therefore, we examined 67 cultivars and lines of cultivated and wild adzuki bean maintained at the Tokachi Agricultural Experiment Station using a root-dip inoculation method. Consequently, nine adzuki bean cultivars, one wild adzuki bean accession and 30 lines (including two lines resistant to all the three races of BSR and AFW) were confirmed to be resistant or tolerant to race 3 of BSR, and we found a cultivar Akamame as well as a wild adzuki bean Acc2515 to be a new source for a resistance gene to the race 3. This cultivar also holds promise as a source of resistance against other races of BSR and AFW.  相似文献   

17.
芝麻枯萎病病原菌致病力室内鉴定方法   总被引:3,自引:0,他引:3  
 芝麻枯萎病(Sesame Fusarium wilt, SFW)是由尖孢镰刀菌芝麻专化型(Fusarium oxysporum Schl. f. sp. sesami (Zap.), FOS)引起的一种土传真菌病害, 是世界芝麻生产上的主要病害之一。为测定FOS致病力, 本文选用郑芝98N09等4个芝麻品种, 在苗期对15个FOS菌株的致病力强弱进行了室内鉴定和评价。结果表明, 采用1×106个/mL分生孢子悬浮液与无菌蛭石和无菌土壤按V1∶V2∶V6比例混合接菌(即最终接菌浓度为1.4×105孢子/g土壤), 在接菌后第7 d幼苗开始出现枯萎病症状, 调查菌株致病性的最佳时间为接菌后第25 d~28 d;在供试15个FOS菌株中, 对4个品种均表现为强致病力的菌株有8个(DI>50), 均表现为弱致病力的菌株有5个(DI<20);不同芝麻品种对不同菌株的抗性有一定差异。该方法可应用于芝麻枯萎病病原菌致病性测定和芝麻种质抗枯萎病特性评价, 并为后续的机理研究提供了技术支持。  相似文献   

18.
This study combined the micro‐cross‐section cultural system with in vitro mutagenesis induced by ethyl methanesulphonate (EMS) to screen for fusarium wilt‐resistant lines of Brazil banana (Musa spp., AAA). The results indicated that the optimum EMS concentration and duration for the treatment of micro‐cross‐sections cut from the pseudostem of tissue‐cultured plantlet were 300 mm and 60 min, respectively. Under the optimal treatment, an average of 2·2 regenerated shoots were produced from each explant. One hundred regenerated plantlets were used for screening for fusarium wilt‐resistant lines by the early screening technique. The initial disease symptom – yellowing in lower leaves of susceptible plantlets – was observed 2 weeks after inoculation. After 2 months, only six plants survived – the putative fusarium wilt‐resistant lines. The fusarium wilt pathogen Fusarium oxysporum f. sp. cubense race 4, was identified in the preliminary test field by a SCAR marker technique. Of the six putative resistant lines, five survived the preliminary field test. The regenerated plantlets from these five fusarium wilt‐resistant lines were subjected to early screening again, where they showed markedly reduced disease incidences compared with regenerated plantlets of Brazil banana (control). It was concluded that EMS‐induced mutation of banana through the micro‐cross‐section cultural system is potentially useful for banana improvement.  相似文献   

19.
20.
四季豆枯萎病病原鉴定及防治   总被引:2,自引:0,他引:2  
从南宁市郊11个病区采集的四季豆枯萎病株标样,经分离培养鉴定和致病性测定,证明其病原菌为尖孢镰刀菌菜豆专化型(Fusarium oxysporum f. sp. phaseoli Kend & Syd)。此病在南宁于4月上中旬四季豆初花期开始发生,5月中下旬盛花至结荚期为发病高峰期。用滤纸碟法进行药效试验的结果,40%灭病威300-500倍液的抑菌圈最大,田间灌根防治也有一定效果。可用种子重量的0.5%多菌灵可湿性粉拌种。品种间抗病性有显著差异,秋抗19号和秋抗6号较抗病。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号