首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The spotted bollworm Earias vittella (Fab.) is a serious pest of cotton and okra in Pakistan. Owing to persistent use of insecticides, this pest has developed resistance, especially to pyrethroids. The present studies aimed at determining the extent of resistance to pyrethroid, organophosphorus and new chemical insecticides in Pakistani populations of E. vittella. RESULTS: Field populations of E. vittella were monitored at Multan, Pakistan, from 1999 to 2007 for their resistance against six pyrethroid, four organophosphorus and six new chemical insecticides using a leaf‐dip bioassay. Of the pyrethroids, resistance was generally low to zeta‐cypermethrin and moderate to high or very high to cypermethrin, deltamethrin, esfenvalerate, bifenthrin and lambda‐cyhalothrin. Resistance to organophosphates chlorpyrifos, profenofos, triazophos and phoxim was recorded at very low to low levels. Among new chemicals, E. vittella had no or a very low resistance to spinosad, emamectin benzoate and methoxyfenozide, a very low to low resistance to abamectin, a very low to moderate resistance to indoxacarb and a moderate resistance to chlorfenapyr. CONCLUSION: The results indicate a lack of cross‐resistance between pyrethroid and organophosphorus insecticides in E. vittella. Rotation of insecticides showing no, very low or low resistance, but belonging to different insecticide classes with unrelated modes of action, may prevent or mitigate insecticide resistance in E. vittella. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
BACKGROUND Unlike synthetic pesticides, azadirachtin-based neem pesticides are environmentally friendly and are well known for their diverse pest control properties. Their use is, however, limited by the instability of azadirachtin, necessitating application at short intervals. The efficacy of relatively stable tetrahydroazadirachtin-A, therefore, needed to be established under field conditions. RESULTS: Azadirachtin-A (Aza-A), its stable derivative tetrahydroazadirachtin-A (THA) and other neem pesticides have been evaluated for their field efficacy against major insect pests of okra, Abelmoschus esculentus (L.) Moench., during summer (kharif) 2003 and 2004. The optimum doses of Aza-A and THA against the fruit borer, Earias vittella F., were also established. Reductions in population of whitefly, Bemisia tabaci (Genn.), and leafhopper (jassid), Amrasca biguttulla biguttulla Ishida, after application of THA or endosulfan was evident up to 10 days after treatment (DAT), whereas with Aza-A and NeemAzal (NZ) the effect was observed up to 7 DAT only. Endosulfan and THA also caused higher reduction in the larvae of shoot and fruit borer E. vittella and E. insulana Boisd., and recorded the highest yields of 4600 and 4180 kg ha(-1). The efficacy of THA (0.05 g L(-1) emulsion) was comparable with that of 0.5 g L(-1) endosulfan emulsion in reducing fruit borer infestation, the reduction over the control being 86.0 and 87.3%, 84.9 and 94.1% and 90.2 and 92.6% at first, second and third picking. THA 0.02 g L(-1) and Aza-A 0.05 g L(-1) were on a par. Laboratory-made neem oil emulsifiable concentrate was the least effective, but was superior to untreated check. CONCLUSION: Three consecutive sprays of THA, a neem-based biopesticide, and endosulfan have been found to be superior in controlling field pests of okra to Aza-A and NZ, which were on a par. THA thus holds potential as a component of pest management strategies against okra pests.  相似文献   

3.
Pesticides     
Abstract

The anticoagulant chlorophacinone was evaluated in the laboratory for the control of the gerbils Tatera indica Hardwicke and Meriones hurrianae (Jerdon), which are major pests of agricultural crops, grassland and reforestation projects in the arid zone of India. Millet and sorghum grain treated with chlorophacinone was offered in no‐choice feeding tests. The results showed that 100% mortality occurred after seven and five days with 0.0075% chlorophacinone and after three and four days with 0.01% chlorophacinone in T. indica and M. hurrianae respectively. The anticoagulant‐treated bait was significantly less palatable than untreated bait, except bait containing 0.0075% chlorophacinone to T. indica. It is concluded that 0.0075% chlorophacinone can be effectively used to control the gerbils, especially bait‐shy populations previously exposed to zinc phosphide bait. Chlorophacinone appears to give more effective control than warfarin and fumarin, and slightly less effective control than brodifacoum.  相似文献   

4.
Abstract

Pearl millet (Pennisetum americanum (L.) K. Schum), a major food crop in the sahelian and savanna regions of West Africa, is attacked by about 100 species of insects. Of these, the only regular pests are stem borers (Acigona ignefusalis Hmps. and Sesamia spp.) and earhead caterpillars (Masalia spp., Raghuva spp.). Sporadic pests such as hairy caterpillars (Amsacta moloneyi Druce), armyworms (Spodoptera spp. and Mythimna spp.) and grasshoppers (Acrididae) may cause severe losses to crops during prolonged droughts early in the season. A grain midge (Geromyia penniseti (Felt)) attacks late millets and causes a considerable loss in yield. Information is presented on the biology, distribution, hosts and natural enemies of these pests, and some methods of control are discussed.  相似文献   

5.
Abstract

Mus musculus, Rattus rattus and Rattus norvegicus are pests in poultry farms, causing economic losses and transmitting diseases. Control is commonly conducted through anticoagulant rodenticides, but this control is not effective through time. We aimed to assess the effect of rodent exclosure on long-term success of rodent control in poultry farms of the pampean region, Argentina, and to evaluate indirect estimators of rodent abundance. In both exclosure and non-exclosure sheds rodent abundance decreased significantly after eradication but mice populations showed a recovery, suggesting that the eradication was not complete. Rats did not recover, but the low abundance found at the beginning of the experiment does not allow an accurate conclusion.  相似文献   

6.
Abstract

The common myna Acridotheres tristis Linn., the jungle crow Corvus macrorhynchus Wagner and the house crow Corvus splendens Viellot are the major pests of oil palm in India. Other birds like crow pheasant Centropus sinensis Stresmann, parrot Loriculus sp. and pariah kite Milvus migrans Sykes also feed on oil palm fruits. These birds feed on the fleshy mesocarp of the ripe fruits resulting in heavy fruit loss, significantly reducing oil yield. Gizzard and intestinal content analysis indicated that oil palm fruits are the major source of food for these birds. Observations on 1657 oil palm fruit bunches during 1985–86 revealed that 76% of the ripe bunches and 5.6% of the unripe bunches were damaged by birds. The damage by birds was either ‘partial’ or ‘complete’, where 40–50% and 80–100% respectively, of the individual fruit weight was lost. The partial fruit damage was more common in 130–160 day‐old bunches and the complete fruit damage increased after 150 days of fruit set. Fruit loss due to bird damage was higher in palms in the border area of the plantation (2.3 kg/bunch) than in the interior (1.3 kg/bunch). It is estimated that around 2.8 tonnes of fresh fruits/ha/yr, equivalent to 420 kg of palm oil, are lost due to bird damage.  相似文献   

7.
BACKGROUND: Environmental impacts and resistance to insecticides pose serious challenges to stored‐product insect and other types of pest control. Insect‐resistant transgenic grain is a potential alternative to fumigants, but candidate control proteins are needed, especially for coleopterans. Therefore, we evaluated the efficacy of a coleopteran‐active toxin, Bacillus thuringiensis Cry3Aa, with or without protease inhibitors, in laboratory feeding assays against coleopteran storage pests. RESULTS: In a comparison of the toxicity of Cry3Aa protoxin towards three species of coleopteran storage pests, Tenebrio molitor L. was found to be most sensitive, Tribolium castaneum (Herbst.) was most refractory and Rhyzopertha dominica F. displayed an intermediate response. For R. dominica, Cry3Aa combined with 3500 mg potato carboxypeptidase inhibitor or 5000 mg aprotinin kg?1 diet resulted in both delayed development and increased mortality. Potato carboxypeptidase inhibitor and bovine aprotinin reduced the LC50 of Cry3Aa for R. dominica two‐ and threefold respectively. Cry3Aa treatment resulted in fewer progeny from R. dominica, and progeny was further reduced when the protoxin was combined with potato carboxypeptidase inhibitor. CONCLUSIONS: These data support the hypothesis that a combination of Cry3Aa protoxin and protease inhibitors, particularly a potato carboxypeptidase inhibitor, may have applications in control strategies for preventing damage to stored products and grains by coleopteran pests. Published 2011 by John Wiley & Sons, Ltd.  相似文献   

8.
BACKGROUND: Biopesticides containing Cry insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are effective against many lepidopteran pests, but there is a lack of Bt‐based pesticides for efficient control of important coleopteran pests. Based on the reported increase in Bt toxin oligomerization by a polypeptide from the Cry3Aa receptor cadherin in Tenebrio molitor (Coleoptera: Tenebrionidae), it was hypothesized that this cadherin peptide, rTmCad1p, would enhance Cry3Aa toxicity towards coleopteran larvae. To test this hypothesis, the relative toxicity of Cry3Aa, with or without rTmCad1p, against damaging chrysomelid vegetable pests of China was evaluated. RESULTS: Cry3Aa toxicity was evaluated in the spotted asparagus beetle (Crioceris quatuordecimpunctata), cabbage leaf beetle (Colaphellus bowringi) and daikon leaf beetle (Phaedon brassicae). To assess the effect of rTmCad1p on Cry3Aa toxicity, neonate larvae were fed Cry3Aa toxin alone or in combination with increasing amounts of rTmCad1p. The data demonstrated that Cry3Aa toxicity was significantly increased in all three vegetable pests, resulting in as much as a 15.3‐fold increase in larval mortality. CONCLUSION: The application of rTmCad1p to enhance Cry3Aa insecticidal activity has potential for use in increasing range and activity levels against coleopteran pests displaying low susceptibility to Bt‐based biopesticides. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
BACKGROUND: Ecdysteroids are steroid hormones that control moulting and govern several changes during metamorphoses in arthropods. The discovery of the same molecules (phytoecdysteroids) in several plant species displayed a wide array of rather beneficial agricultural impact. Many representatives of the genus Ajuga plants contain phytoecdysteroids with a 5β‐7‐ene‐6‐one system exhibiting physiological activities in insects. RESULTS: By means of chromatographic (silica gel column, TLC) and LC‐MS, two major ecdysteroids (20‐hydroxyecdysone and cyasterone) have been isolated and identified from Israeli carpet bugle Ajuga iva (L.) Schreber (Lamiales: Lamiaceae) plants. Ajuga iva extract fractionated on the silica gel column yielded two fractions that showed high activity against the sweetpotato whitefly Bemisis tabaci and the persea mite Oligonychus perseae. A dose of 5 mg AI L?1 of the purely identified A. iva ecdysterone significantly reduced fecundity, fertility and survival of these pests, while commercial 20‐hydroxyecdysone at the same dose had lesser effects. CONCLUSION: The results demonstrate considerable efficacy of natural phytoecdysteroids against major agricultural pests, and suggests that these materials should be considered for potential development of friendly control agents. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Abstract

Greenhouse and field experiments were conducted to study the preference of two scarabaeid beetles, Anomala cupripes Hope and A. expansa Bates, for soybean plants at various growth stages and the potential use of a trap cultivar to control these pests. Insects preferred to feed on 6–9‐week‐old plants compared to younger ones. This may be due to more foliage on the older plants, which is a source of food and a shelter for the insect from direct sunlight. Planting a cultivar with more foliage as a trap cultivar between rows of the agronomic cultivar attracted the beetles and reduced the infestation of the agronomic cultivar. The optimum distance to plant such a trap cultivar between rows of agronomic cultivar needs to be determined for each location.  相似文献   

11.
Nematodes     
Abstract

Studies were carried out on farms to evaluate potential control practices which could be constituted into a package of recommendations for the control of Striga hermonthica in the Gambia. ICSV 1002, a variety of sorghum, was identified as being relatively more tolerant to Striga and to the common insect pests of sorghum. Spot treatment of emerged Striga shoots with 2% solution of product paraquat using a pistol‐grip hand sprayer was found to control Striga without stimulating regrowth, improved yields and was more acceptable and cost‐effective than handpulling of the shoots in early millet and sorghum. Where there might be objections to the use of paraquat because of its toxicity hazards, a mixture of 2,4‐D (1 % soln.) plus glyphosate (1 % soln.) or 2,4‐D (2% soln.) was a useful substitute. A tentative control package consisting of ICSV 1002, spot spraying of Striga shoots with paraquat, and side dressing of urea fertilizer at 30 kg N/ha at 4 w.a.p. was tested at two sites against farmers’ practice on pilot scale. Infestation of Striga was reduced and yields were increased by 119% and 37% by the package at the two sites.  相似文献   

12.
BACKGROUND: Gaseous ozone (O3) has potential for control of insects in stored grain. Previous studies have focused on freely exposed insects. Immatures of internal pests (e.g. Sitophilus spp. and most stages of Rhyzopertha dominica F.) are protected within kernels and probably require higher doses and/or longer treatment times for full control. A laboratory study determined the doses of ozone necessary for full control of freely exposed and internal stages of eleven stored‐product pest species. Test insects were three species of Sitophilus, R. dominica, Tribolium confusum Jacquelin du Val, T. castaneum Herbst, Plodia interpunctella Hübner, Sitotroga cerealella Olivier, Oryzaephilus surinamensis L., Ephestia kuehniella Zeller and Stegobium paniceum L. Insects were exposed to continuous flows of ozone in doses of 10–135 ppm and exposure times of 5–8 days. Dose‐mortality bioassays were conducted on three species of Sitophilus and P. interpunctella. RESULTS: Freely exposed stages (with a few exceptions) were controlled with 35 ppm of ozone for 6 days. Full mortality of internal stages within kernels required exposure to 135 ppm for 8 days. CONCLUSION: This study confirms that higher doses and/or longer treatment times are necessary for control of internal stages of stored‐product pests. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
The forecasting tool SOPRA has been developed with the objective of optimizing timing of monitoring, management and control measures of insect pests in fruit orchards in Switzerland. Applying time‐varying distributed delay approaches, phenology‐models were developed driven by solar radiation, air temperature and soil temperature on hourly basis. Relationships between temperature and stage‐specific development rates for relevant stages of the life cycles were established under controlled laboratory conditions for Dysaphis plantaginea, Hoplocampa testudinea, Cydia pomonella, Grapholita lobarzewskii, Cacopsylla pyri, Rhagoletis cerasi, Anthonomus pomorum and Adoxophyes orana. The implementation of body temperatures in the models is based on habitat selection and biophysical modelling of habitat conditions. In order to validate modelling, phenology predictions were compared with several years of independent field observations. On the basis of local weather data, the age structure of the pest populations is simulated and crucial events for management activities are announced. Through a web interface, the simulation results are made available to consultants and growers ( http://www.sopra.info ) and the latter can be applied as a decision support system for the eight major insect pests of fruit orchards in the alpine valleys and north of the Alps on local and regional scale.  相似文献   

14.
BACKGROUND: The worldwide need to produce an inexpensive and abundant food supply for a growing population is a great challenge that is further complicated by concerns about risks to environmental stability and human health triggered by the use of pesticides. The result is the ongoing development of alternative pest control strategies, and new, lower‐risk insecticidal molecules. Among the recent technological advances in agricultural science, nanotechnology shows considerable promise, although its development for use in crop protection is in its initial stages. RESULTS: This study reports for the first time the insecticidal effect of nanostructured alumina. Two species were used as model organisms, Sitophilus oryzae L. and Rhyzopertha dominica (F.), which are major insect pests in stored food supplies throughout the world. Both species experienced significant mortality after 3 days of continuous exposure to treated wheat. Nine days after treatment, the median lethal doses (LD50) observed ranged from 127 to 235 mg kg?1. CONCLUSION: Comparison of these results with recommended rates for commercial insecticidal dusts suggests that inorganic nanostructured alumina may provide a cheap and reliable alternative for control of insect pests. This study expands the frontiers for nanoparticle‐based technologies in pest management. Further research is needed to identify its mode of action and its non‐target toxicity, and to determine the potential of other nanostructured materials as pest control options for insects. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Abstract

Weeds are major components of agro-ecosystems and they affect the biology of pests and beneficial insects in several ways; provision of flowers, presence of neutral insects, modification of crop microclimate, production of chemical stimulus, alteration of colonisation background, etc. The more relevant beneficial crop–weed–insect interactions are discussed. The role of weeds in regulating pest populations is illustrated by studies on bean (Phaseolus vulgaris L.) cropping systems, in which chemical interactions between Empoasca kraemeri Ross &; Moore and two grass weeds were identified. It is proposed to continue and develop this kind of research in order to incorporate weeds into pest control strategies.  相似文献   

16.
BACKGROUND: Pymetrozine is a valuable novel insecticide for control of sucking insects, including the brown planthopper Nilaparvata lugens (Stål), one of the most serious pests on rice. This study was conducted to elucidate the action mechanisms of pymetrozine on the feeding behaviour of the planthopper. RESULTS: The activity test showed that pymetrozine primarily functioned as an antifeedant that caused starvation and death in N. lugens, rather than having neurotoxicity. Pymetrozine‐treated insects died at a significantly slower speed than insects treated with starvation. Electrical penetration graph (EPG) data indicated that pymetrozine significantly increased the duration of non‐probing periods and had a strong inhibition to phloem ingestion. The inhibition was strongly dose dependent, resulting in a complete suppression of the activity in the phloem region when the pymetrozine concentration was increased to 400 mg L?1. Starvation caused by inhibition of phloem ingestion might be a major toxicity mechanism of pymetrozine. EPG data also showed that pymetrozine had no significant effect on stylet movement and duration of xylem sap ingestion. CONCLUSION: The study revealed that pymetrozine disturbed the feeding behaviour of N. lugens mainly by increasing the non‐probe period and inhibiting phloem ingestion. The inhibition resulted in a slow death similar to starvation. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
Stem rot caused by Sclerotinia sclerotiorum is a major fungal disease of canola worldwide. In Australia the management of stem rot relies primarily on strategic application of synthetic fungicides. In an attempt to find alternative strategies for the management of the disease, 514 naturally occurring bacterial isolates were screened for antagonism to S. sclerotiorum. Antifungal activity against mycelial growth of the fungus was exhibited by three isolates of bacteria. The bacteria were identified as Bacillus cereus (SC‐1 and P‐1) and Bacillus subtilis (W‐67) via 16S rRNA sequencing. In vitro antagonism assays using these isolates resulted in significant inhibition of mycelial elongation and complete inhibition of sclerotial germination by both non‐volatile and volatile metabolites. The antagonistic strains caused a significant reduction in the viability of sclerotia when tested in a greenhouse pot trial with soil collected from the field. Spray treatments of bacterial strains reduced disease incidence and yielded higher control efficacy both on inoculated cotyledons and stems. Application of SC‐1 and W‐67 in the field at 10% flowering stage (growth stage 4·00) of canola demonstrated that control efficacy of SC‐1 was significantly higher in all three trials (over 2 years) when sprayed twice at 7‐day intervals. The greatest control of disease was observed with the fungicide Prosaro® 420SC or with two applications of SC‐1. The results demonstrated that, in the light of environmental concerns and increasing cost of fungicides, B. cereus SC‐1 may have potential as a biological control agent of sclerotinia stem rot of canola in Australia.  相似文献   

18.
Abstract

The incidence, economic importance, ecology, biology and control measures are described in brief for common pests of sorghum and millets in India. At present, shoot flies, stem borers, earhead midges, birds and rats are considered major pests. However formerly occasional or minor pests are becoming a menace in some states due to changes in cultural practices. For most of the recently recorded pests, information on factors responsible for their outbreak, bionomics, yield losses etc. is needed before planning the control operations. As an immediate remedy, chemicals have been used extensively, mainly on high yielding varieties and hybrids of sorghums. It is emphasized that studies should be intensified on varietal resistance, mass rearing techniques, predators and parasites and manipulation of population by cultural practices leading to the possibility of using all available methods on an integrated basis for future pest management programmes for sorghum and millets.  相似文献   

19.
病虫害防控是国家总体安全的重要组成部分,为构建区域一体化、技术绿色化的农林草业重大病虫害精准监测预警和全程防控综合技术体系,“十四五”期间,国家重点研发计划设立了“重大病虫害防控综合技术研发与示范”重点专项。此专项以保障农林生产安全、农产品质量安全和农林生态安全为根本目标,以草地贪夜蛾Spodoptera frugiperda、柑橘黄龙病菌Liberbacter asianticum、松材线虫Bursaphelenchus xylophilus、东亚飞蝗Locusta migratoria manilensis等农作物和森林草原重大病虫害防控科技创新为首要任务,旨在建立覆盖全国的农林草业重大病虫害精准监测预警网络,系统揭示重大病虫害区域性灾变机理,为农业绿色高质量发展提供科技支撑。该文综述了该专项的研发背景、专项定位、研究内容、任务布局、实施机制、政策保障,以期为植物保护领域相关科研人员、推广机构、政府部门、技术用户等提供参考。  相似文献   

20.
Abstract

Field trials were conducted against the major pests of jute from 1972–74. Endrin, endosulfan, phosalone, fenitrothion, carbaryl + molasses and fenitrothion + malathion were applied five times at 15 day intervals against Apion corchori, Anomis sabulifera and Polyphagotarsonemus latus. Three years data was pooled and analysed statistically. Endosulfan 0.075% a.i. proved superior to all other treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号