首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) infection. FCoV can be divided into serotypes I and II. The virus that causes FIP (FIPV) is believed to occur sporadically and spread infrequently from cat to cat. Recently, an FIP outbreak from an animal shelter was confirmed in Taiwan. FCoV from all the cats in this shelter were analyzed to determine the epidemiology of this outbreak. Thirteen of 46 (28.2%) cats with typical signs of FIP were identified. Among them, seven cats were confirmed by necropsy and/or histopathological examinations. Despite the fact that more than one FCoV was identified in this multi-cat environment, the eight FIP cats were invariably found to be infected with a type II FCoV. Sequence analysis revealed that the type II FIPV detected from fecal samples, body effusions and granulomatous tissue homogenates from the cats that succumbed to FIP all harbored an identical recombination site in their S gene. Two of the cats that succumbed to FIP were found to harbor an identical nonsense mutation in the 3c gene. Fecal shedding of this type II virus in the effusive form of FIP can be detected up to six days before death. Taken together, our data demonstrate that horizontal transmission of FIPV is possible and that FIP cats can pose a potential risk to other cats living in the same environment.  相似文献   

2.
Feline coronaviruses (FCoV) vary widely in virulence causing a spectrum of clinical manifestations reaching from subclinical course to fatal feline infectious peritonitis (FIP). Independent of virulence variations they are separated into two different types, type I, the original FCoV, and type II, which is closely related to canine coronavirus (CCV). The prevalence of FCoV types in Austrian cat populations without FIP has been surveyed recently indicating that type I infections predominate. The distribution of FCoV types in cats, which had succumbed to FIP, however, was fairly unknown. PCR assays have been developed amplifying parts of the spike protein gene. Type-specific primer pairs were designed, generating PCR products of different sizes. A total of 94 organ pools of cats with histopathologically verified FIP was tested. A clear differentiation was achieved in 74 cats, 86% of them were type I positive, 7% type II positive, and 7% were positive for both types. These findings demonstrate that in FIP cases FCoV type I predominates, too, nonetheless, in 14% of the cases FCoV type II was detected, suggesting its causative involvement in cases of FIP.  相似文献   

3.
The long-term safety of a temperature-sensitive feline infectious peritonitis (FIP) vaccine was evaluated. Five hundred eighty-two healthy cats of various age groups were vaccinated with 2 doses of the vaccine. Seventy-eight percent, or 453 cats, were available for follow-up. The mean follow-up period was 541 days. At the end of the follow-up period, 427 cats (94%) were alive. FIP was not diagnosed in any cat during the follow-up period, but 1 cat died of FIP after completion of the follow-up period. Fifty cats (11%) presented with a problem during the follow-up period, but there were typical of those seen in a feline practice. The temperature-sensitive FIP vaccine appears to be safe for use in the general cat population. It does not appear to sensitize cats to develop FIP, nor do there appear to be any other systemic problems associated with use of the vaccine.  相似文献   

4.
This case report describes the disease progression of a male cat with pericardial effusion. Clinical signs (dyspnea, lethargy, and weakness) started very acutely. The initial laboratory profile showed only an increase in alanine aminotransferase enzyme activity. Diagnostic imaging revealed pericardial effusion. Effusion analysis showed a Rivalta-positive, modified transudate. Detection of feline coronavirus antigen in macrophages was negative. General condition and laboratory parameters dramatically worsened within seven days. Therefore, the owners decided to euthanize the cat. Even if effusion variables are macroscopically and microscopically suspicious for FIP, a definitive diagnosis of FIP could only be made by histology (including immunhistochemical staining).  相似文献   

5.
This report describes a case of feline infectious peritonitis (FIP) in a castrated cat which first presented with the unusual sign of priapism. Laboratory examinations showed increased serum protein content and decreased albumin/globulin ratio. Serum electrophoresis revealed increased alpha 2- and gamma-globulin content. One month after the first examination, the cat died. At necropsy, histopathological evaluation of organs showed inflammatory granulomatous lesions compatible with non-effusive FIP and coronavirus-specific polymerase chain reaction confirmed the diagnosis. FIP antigen was demonstrated immunohistochemically in penile tissue.  相似文献   

6.
The objective of this study was to determine whether patient signalment (age, breed, sex and neuter status) is associated with naturally-occurring feline infectious peritonitis (FIP) in cats in Australia. A retrospective comparison of the signalment between cats with confirmed FIP and the general cat population was designed. The patient signalment of 382 FIP confirmed cases were compared with the Companion Animal Register of NSW and the general cat population of Sydney. Younger cats were significantly over-represented among FIP cases. Domestic crossbred, Persian and Himalayan cats were significantly under-represented in the FIP cohort, while several breeds were over-represented, including British Shorthair, Devon Rex and Abyssinian. A significantly higher proportion of male cats had FIP compared with female cats. This study provides further evidence that FIP is a disease primarily of young cats and that significant breed and sex predilections exist in Australia. This opens further avenues to investigate the role of genetic factors in FIP.  相似文献   

7.
A closed household of 26 cats in which feline coronavirus (FCoV), feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) were endemic was observed for 10 years. Each cat was seropositive for FCoV on at least one occasion and the infection was maintained by reinfection. After 10 years, three of six surviving cats were still seropositive. Only one cat, which was also infected with FIV, developed feline infectious peritonitis (FIP). Rising anti-FCoV antibody titres did not indicate that the cat would develop FIP. The FeLV infection was self-limiting because all seven of the initially viraemic cats died within five years and the remainder were immune. However, FeLV had the greatest impact on mortality. Nine cats were initially FIV-positive and six more cats became infected during the course of the study, without evidence of having been bitten. The FIV infection did not adversely affect the cats' life expectancy.  相似文献   

8.
A 10-year-old cat was diagnosed with chyloperitoneum based on the effusion characteristics. Feline coronavirus serology was positive. The owner declined further evaluation and elected euthanasia. Necropsy revealed vasculitis with multifocal areas of necrosis and lymphocytic-plasmacytic inflammation in multiple solid organs, most likely due to feline infectious peritonitis (FIP). Immunohistochemistry was negative for FIP antigen. Notwithstanding, the final diagnosis of FIP was based on the characteristic histopathological lesions. Underlying causes of chyloperitoneum in cats and humans are discussed, and possible pathogenesis of the chyloperitoneum in association with a vasculitis such as FIP is discussed.  相似文献   

9.
Two cats previously challenge-exposed and seropositive to feline infectious peritonitis virus (FIPV) were evaluated for delayed-type hypersensitivity (DTH) skin responses to intradermal FIPV. Before testing, cat 1 (FIP-resistant) had survived a severe experimental FIPV challenge-exposure and had remained asymptomatic, whereas cat 2 (FIP-susceptible) developed acute fulminant FIP after a considerably smaller virus challenge-exposure. Cat 1 developed a focal thickened plaque at the FIPV-injected skin site at 48 hours after injection. Histological examinations of serial punch biopsies from virus-inoculated skin revealed perivascular and diffuse dermal infiltrations of macrophages, lymphocytes and polymorphonuclear leucocytes which were maximal at 48 to 72 hours after injection. In contrast, cat 2 did not react grossly and showed only very mild dermal infiltrates at 72 hours after injection. The present findings of strong DTH responses to FIPV in a resistant cat and minimal responses in a cat with acute fulminant FIP suggest that certain in vivo cellular immune reactions may be associated with disease resistance.  相似文献   

10.
Feline infectious peritonitis (FIP) is the most frequent lethal infectious disease in cats. However, understanding of FIP pathogenesis is still incomplete. Mutations in the ORF 3c/ORF 7b genes are proposed to play a role in the occurrence of the fatal FIPV biotype. Here, we investigated 282 tissue specimens from 28 cats that succumbed to FIP. Within one cat, viral sequences from different organs were similar or identical, whereas greater discrepancies were found comparing sequences from various cats. Eleven of the cats exhibited deletions in the 3c gene, resulting in truncated amino acid sequences. The 7b gene was affected by deletions only in one cat. In three of the FIP cats, coronavirus isolates with both intact 3c genes as well as 7b genes of full length could also be detected. Thus, deletions or stop codons in the 3c sequence seem to be a frequent but not compelling feature of FIPVs.  相似文献   

11.
This report describes a clinical case of feline infectious peritonitis (FIP) with multisystemic involvement, including multiple nodular cutaneous lesions, in a cat that was co-infected with feline coronavirus and feline immunodeficiency virus. The skin lesions were caused by a pyogranulomatous-necrotising dermal phlebitis and periphlebitis. Immunohistology demonstrated the presence of coronavirus antigen in macrophages within these lesions. The pathogenesis of FIP involves a viral associated, disseminated phlebitis and periphlebitis which can arise at many sites. Target organs frequently include the eyes, abdominal organs, pleural and peritoneal membranes, and central nervous tissues, but cutaneous lesions have not previously been reported.  相似文献   

12.
13.
A population of Persian cats experienced an epidemic of feline infectious peritonitis (FIP) over 2 years. Twelve cases of FIP occurred in litters born during this period. Cats contracting FIP were all genetically related through the sire. Feline coronavirus (FCoV) genomic RNA was detected consistently in this study in biologic samples from adult cats, kittens suffering from FIP, and their siblings. Analysis of viral 7a/7b open reading frame (ORFs) were analyzed and revealed two distinct virus variants circulating in the population, one with an intact 7a ORF and one with two major deletions in the 7a ORF. The 7b ORFs were intact and similar among all virus isolates, although point mutations resulting in amino acid changes were present. The sire was determined to be infected with both variants, and was persistently virus-infected. We speculate the deletion variant arose from the non-deletion variant during viral replication in this population, possibly in the sire.  相似文献   

14.
A new monoclonal antibody (mAb), CCV2-2, was compared with the widely used FIPV3-70 mAb, both directed against canine coronavirus (CCoV), as a diagnostic and research tool. Western blot showed that both anti-CCoV mAbs only reacted with a protein of 50 kD, a weight consistent with the feline coronavirus (FCoV) viral nucleocapsid. A competitive inhibition enzyme-linked immunosorbent assay showed that the 2 recognized epitopes are distinct. Preincubation of CCV2-2 mAb with FCoV antigen suppressed the immunostaining. Formalin-fixed, paraffin-embedded sections from brains of 15 cats with the dry form of feline infectious peritonitis (FIP) were examined by immunohistochemistry. Immunohistochemistry was performed with both anti-CCoV mAbs, either on consecutive or on the same sections. A myeloid-histiocytic marker, MAC 387, was also used to identify FIP virus-infected cells. In all regions where MAC 387-positive cells were present, positive staining with the CCV2-2 mAb was systematically detected, except at some levels in 1 cat. In contrast, none or only a few cells were positive for the FIPV3-70 mAb. Double immunostaining showed macrophages that were immunopositive for either CCV2-2 alone or alternatively for CCV2-2 and FIPV3-70 mAbs. This reveals the coexistence of 2 cohorts of phagocytes whose FIP viral contents differed by the presence or absence of the FIPV3-70-recognized epitope. These findings provide evidence for antigenic heterogeneity in coronavirus nucleocapsid protein in FIP lesions, a result that is in line with molecular observations. In addition, we provide for the first time morphologic depiction of viral variants distribution in these lesions.  相似文献   

15.
A 7-month-old-intact male domestic shorthair cat was presented with fever, anterior uveitis in the right eye and respiratory distress when handled. These signs along with mild changes in serum protein levels and the exclusion of other potential causes were suggestive of feline infectious peritonitis (FIP). As the disease progressed, more clinical signs consistent with FIP, including renal involvement and later pleural effusion, became evident. Non-pruritic cutaneous lesions, characterized by slightly raised intradermal papules over the dorsal neck and over both lateral thoracic walls, were recognized at the end stage of the disease. The identification of papules in well-haired skin was difficult, and clipping of the fur facilitated their detection. Definitive diagnosis of FIP was made by histopathology and by immunohistochemical demonstration of coronavirus antigen in macrophages within kidney and skin lesions. The case was classified as a mixed form of FIP. Recognition of associated cutaneous lesions may facilitate a diagnosis of FIP in suspicious cases.  相似文献   

16.
Feline infectious peritonitis (FIP), caused by feline coronavirus (FCoV) infection, is a highly lethal disease without effective therapy and prevention. With an immune-mediated disease entity, host genetic variant was suggested to influence the occurrence of FIP. This study aimed at evaluating cytokine-associated single nucleotide polymorphisms (SNPs), i.e., tumor necrosis factor alpha (TNF-α), receptor-associated SNPs, i.e., C-type lectin DC-SIGN (CD209), and the five FIP-associated SNPs identified from Birman cats of USA and Denmark origins and their associations with the outcome of FCoV infection in 71 FIP cats and 93 FCoV infected non-FIP cats in a genetically more diverse cat populations. A promoter variant, fTNFA - 421 T, was found to be a disease-resistance allele. One SNP was identified in the extracellular domain (ECD) of fCD209 at position +1900, a G to A substitution, and the A allele was associated with FIP susceptibility. Three SNPs located in the introns of fCD209, at positions +2276, +2392, and +2713, were identified to be associated with the outcome of FCoV infection, with statistical relevance. In contrast, among the five Birman FIP cat-associated SNPs, no genotype or allele showed significant differences between our FIP and non-FIP groups. As disease resistance is multifactorial and several other host genes could involve in the development of FIP, the five genetic traits identified in this study should facilitate in the future breeding of the disease-resistant animal to reduce the occurrence of cats succumbing to FIP.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-014-0123-6) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
OBJECTIVE: To determine proportions of cats in which feline infectious peritonitis (FIP) was diagnosed on an annual, monthly, and regional basis and identify unique characteristics of cats with FIP. DESIGN: Case-control study. SAMPLE POPULATION: Records of all feline accessions to veterinary medical teaching hospitals (VMTH) recorded in the Veterinary Medical Data Base between January 1986 and December 1995 and of all feline accessions for necropsy or histologic examination at 4 veterinary diagnostic laboratories. PROCEDURE: Proportions of total and new feline accessions for which a diagnosis of FIP was recorded were calculated. To identify characteristics of cats with FIP, cats with FIP were compared with the next cat examined at the same institution (control cats). RESULTS: Approximately 1 of every 200 new feline and 1 of every 300 total feline accessions at VMTH in North America and approximately 1 of every 100 accessions at the diagnostic laboratories represented cats with FIP. Cats with FIP were significantly more likely to be young, purebred, and sexually intact males and significantly less likely to be spayed females and discharged alive than were control cats. The proportion of new accessions for which a diagnosis of FIP was recorded did not vary significantly among years, months, or regions of the country. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that FIP continues to be a clinically important disease in North America and that sexually intact male cats may be at increased risk, and spayed females at reduced risk, for FIP. The high prevalence of FIP and lack of effective treatment emphasizes the importance of preventive programs, especially in catteries.  相似文献   

19.
Feline infectious peritonitis (FIP) is a fatal, immune-augmented, and progressive viral disease of cats associated with feline coronavirus (FCoV). Viral genetic determinants specifically associated with FIPV pathogenesis have not yet been discovered. Viral gene signatures in the spike, non-structural protein 3c, and membrane of the coronavirus genome have been shown to often correlate with disease manifestation. An "in vivo mutation transition hypothesis" is widely accepted and postulates that de novo virus mutation occurs in vivo giving rise to virulence. The existence of "distinct circulating avirulent and virulent strains" is an alternative hypothesis of viral pathogenesis. It may be possible that viral dynamics from both hypotheses are at play in the occurrence of FIP. Epidemiologic data suggests that the genetic background of the cat contributes to the manifestation of FIP. Further studies exploring both viral and host genetic determinants of disease in FIP offer specific opportunities for the management of this disease.  相似文献   

20.
Eight cats were immunized with an avirulent strain of feline infectious peritonitis virus (FIPV)-UCD1, then challenge-exposed to a highly virulent cat passaged strain (FIPV-UCD8). Th1 and Th2 cytokine profiles in the peripheral blood mononuclear cells (PBMCs) were measured throughout in the experiment. No clinical signs of FIP were evident in the experimental cats after immunization. After challenge, the immunized cats demonstrated one of four clinical outcomes: (1) classical effusive FIP; (2) accelerated FIP; (3) non-effusive FIP, or (4) resistance to challenge. Only minor cytokine changes were observed following immunization, however, several cytokine changes occurred following challenge-exposure. The most noteworthy changes were in tumor necrosis factor-alpha (TNF-alpha) and interferon gamma (IFN-gamma) levels. Our preliminary findings suggest that immunity against FIP is associated with TNF-alpha and IFN-gamma response imbalance, with high TNF-alpha/low IFN-gamma mRNA responses favouring disease and low TNF-alpha/high IFN-gamma mRNA responses being indicative of immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号