首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2 × 2 factorial experiment was conducted to assess the effects of presence or absence of rumen protozoa and of dietary coconut oil distillate (COD) supplementation on rumen fermentation characteristics, digesta kinetics and methane production in Brahman heifers. Twelve Brahman heifers were selected to defaunate, with 6 being subsequently refaunated. After defaunation and refaunation, heifers were randomly allocated to COD supplement or no supplement treatments while fed an oaten chaff‐based diet. Methane production (MP; 94.17 v 104.72 g CH4/d) and methane yield [MY; 19.45 v 21.64 g CH4/kg dry matter intake (DMI)] were reduced in defaunated heifers compared with refaunated heifers when measured at 5 weeks after refaunation treatment (p < 0.01). Supplement of COD similarly reduced MP and MY (89.36 v 109.53 g/d and 18.46 v 22.63 g/kg DMI, respectively; p < 0.01), and there were no significant interactions of defaunation and COD effects on rumen fermentation or methane emissions. Concentration of total volatile fatty acid (VFA) and molar proportions of acetate, propionate and butyrate was not affected by defaunation or by COD. Microbial crude protein (MCP; g/d) outflow was increased by defaunation (p < 0.01) in the absence of COD but was unaffected by defaunation in COD‐supplemented heifers. There was a tendency towards a greater average daily gain (ADG) in defaunated heifers (p = 0.09), but COD did not increase ADG (p > 0.05). The results confirmed that defaunation and COD independently reduced enteric MP even though the reduced emissions were achieved without altering rumen fermentation VFA levels or gut digesta kinetics.  相似文献   

2.
Four adult Simmental male cattle (376 ± 9.0 kg initial BW), fitted with permanent rumen cannulas, were used in a 4 × 4 Latin square design to investigate the effects of dietary supplementing tannic acid (TA) on rumen fermentation, methane (CH4) production, rumen microbes, nutrient digestibility and plasma biochemical parameters. Four levels of TA, that is 0, 6.5, 13.0 or 26.0 g/kg dry matter (DM), were added to the basal ration (composed of corn silage and concentrate mixture) as experimental treatments respectively. Each experimental period consisted of a 12‐day adaptation phase followed by a 3‐day sampling phase. The results showed that supplementing TA at 26.0 g/kg DM decreased the relative abundance of protozoa, methanogens and Ruminococcus albus to the total ruminal bacterial 16S rDNA in beef cattle (p < 0.05). The results also showed that supplementing TA at 6.5, 13.0 or 26.0 g/kg DM decreased (p < 0.01) the CH4 production (l/kg DM intake) by 11.1%, 14.7% and 33.6% respectively. Supplementing TA at 13.0 or 26.0 g/kg DM decreased the ratio of acetate to propionate and ammonia nitrogen (NH3–N) (p < 0.05) and tended to decrease the total volatile fatty acid (VFA) concentration of rumen fluid (p = 0.07). Supplementing TA at 26.0 g/kg DM decreased DM and organic matter (OM) digestibility (p < 0.05), supplementing TA at 6.5, 13.0 or 26.0 g/kg DM decreased (p < 0.01) crude protein (CP) digestibility by 5.0%, 8.6% and 15.7%, respectively, and supplementing TA at 6.5, 13.0 or 26.0 g/kg DM increased (p < 0.05) the plasma total antioxidant capability. It was concluded that supplementing TA in the ration of beef cattle decreased the CH4 production and digestibility of CP of beef cattle. Supplementing TA could be an effective option to mitigate CH4 emission form cattle, further research is necessary to study the effects of TA on the performance of cattle.  相似文献   

3.
The effects of supplementing ewe diets with either DL‐methionine (DL‐Met) or 2‐hydroxy‐4 (methylthio) butanoic acid isopropyl ester (HMBi) were investigated on ruminal in situ degradability of grain and forage diets, in vivo digestibility, rumen fermentation, blood metabolites and antioxidant status. Six ruminally cannulated ewes were used in a replicated 3 × 3 Latin square design with 28‐day periods. The dietary treatments were as follows: (i) no supplemental Met (control; CON), (ii) DL‐Met at 1.2 g/kg DM intake and (iii) HMBi at 1.8 g/kg dry matter (DM) intake. Corn grain, barley grain and alfalfa hay were evaluated for their ruminal degradability by both in situ incubation and effective degradability measurements of DM, neutral detergent fibre (NDF) and acid detergent fibre (ADF). Compared to other treatments, HMBi supplementation increased (p < 0.05) the digestibility of organic matter, crude protein and NDF and also tended (p = 0.08) to increase the digestibility of DM and ADF. Moreover, HMBi supplementation increased (p < 0.01) total VFA concentrations, the molar proportions of valerate and iso‐butyrate in the rumen. Compared to the CON treatment, DL‐Met and HMBi treatments tended (p = 0.08) to increase the molar proportion of acetate but decreased (p < 0.05) ruminal ammonia‐N concentration. Ewes supplemented with HMBi and DL‐Met recorded greater (p < 0.05) serum concentrations of glutathione peroxidase, total antioxidant capacity and superoxide dismutase than the CON treatment. Serum concentrations of glucose, total protein, albumin, high‐density lipoprotein and very low‐density lipoprotein were greater (p < 0.01) and serum urea nitrogen (p < 0.05), malonyl dialdehyde and triglyceride were lower (p < 0.02) in the HMBi and DL‐Met animals than in the CON ewes. The results concluded that HMBi is a very effective form of dietary Met supplementation for ewes with a positive effect on digestion, rumen fermentation and serum antioxidant function.  相似文献   

4.
This study evaluated methane (CH4) emission, intake, digestibility, and nitrogen efficiency in sheep fed diets containing replacement levels (0%, 33%, 50%, and 67% of soybean meal with euglena). In this experiment, four Corriedale wether sheep with an initial body weight of 53.8 ± 4.6 were arranged in a 4 × 4 Latin square design. This experiment lasted 84 days, divided into four experimental periods. Each period lasted 21 days, which consists of 14 days of adaptation to the diets, 5 days to collect samples, and 2 days to collect gas emission from sheep. Methane emission expressed as L/kg DM intake or g/kg DM intake reduced by up to 37% and the energy loss via CH4 (% of GE intake) reduced by up to 34%. No differences (> 0.05) were observed in DM and OM intake and whole tract apparent DM digestibility due to substitution of soybean meal with euglena. The total CP loss reduced significantly (linear, < 0.001) and CP efficiency increased linearly (= 0.03) with increasing concentration of euglena. As a result, nitrogen balance and average daily weight gain remained unchanged despite higher nitrogen concentration in soybean supplemented group. In conclusion, substitution of soybean meal with euglena reduced methane emission without affecting the performance of animals.  相似文献   

5.
This study aimed to compare feed intake, digestion, rumen fermentation parameters and bacterial community of 5 beef cows, 12 crossed ewes and 12 goats grazing together in spring–early summer on heather–gorse vegetation communities with an adjacent area of improved pasture. Organic matter intake (OMI) and digestibility (OMD) were estimated using alkane markers. Ruminal fluid samples were collected for measuring fermentation parameters, and studying the bacterial community using terminal restriction fragment length polymorphism (T‐RFLP). Spot samples of urine were taken to determine purine derivative (PD) and creatinine concentrations to estimate microbial protein synthesis in the rumen. Herbaceous species were the main dietary component in all animal species. Cattle had higher (p < 0.05) daily OMI (g/kg LW0.75) and OMD, whereas sheep and goats showed similar values. The highest ammonia concentration was observed in sheep. Total VFA, acetate and butyrate concentrations were not influenced by animal species, while propionate concentrations in goats were 1.8 times lower (p < 0.05) than in sheep. Acetate:propionate ratio was greater (p < 0.05) in goats, whereas cattle excreted more allantoin (p < 0.05). Estimated supply of microbial N was higher in cows (p < 0.01), whereas the efficiency of microbial protein synthesis was lower (p < 0.01) in this animal species. Hierarchical clustering analysis indicated a clear effect of animal species on rumen bacterial structure. Differences among animal species were also observed in the relative frequency of several T‐RFs. Certain T‐RFs compatible with Lachnospiraceae, Proteobacteria and Clostridiales species were not found in goats, while these animals showed high relative frequencies of some fragments compatible with the Ruminococcaceae family that were not detected in sheep and cattle. Results suggest a close relationship between animals’ grazing behaviour and rumen bacterial structure and its function. Goats seem to show a greater specialization of their microbial populations to deal with the greater fibrous and tannin content of their diet.  相似文献   

6.
This study was conducted to evaluate the effects of feeding supplemental illite to Hanwoo steers on methane (CH4) emission and rumen fermentation parameters. An in vitro ruminal fermentation technique was conducted using a commercial concentrate as substrate and illite was added at different concentrations as treatments: 0%, 0.5%, 1.0%, and 2.0% illite. Total volatile fatty acids (VFA) were different (< 0.05) at 24 h of incubation where the highest total VFA was observed at 1.0% of illite. Conversely, lowest CH4 production (< 0.01) was found at 1.0% of illite. In the in vivo experiment, two diets were provided, without illite and with addition of 1% illite. An automated head chamber (GreenFeed) system was used to measure enteric CH4 production. Cattle received illite supplemented feed increased (< 0.05) total VFA concentrations in the rumen compared with those fed control. Feeding illite numerically decreased CH4 production (g/day) and yield (g/kg dry matter intake). Rumen microbial population analysis indicated that the population of total bacteria, protozoa and methanogens were lower (< 0.05) for illite compared with the control. Accordingly, overall results suggested that feeding a diet supplemented with 1% illite can have positive effects on feed fermentation in the rumen and enteric CH4 mitigation in beef cattle.  相似文献   

7.
The objective of this study was to investigate the effect of sundried pistachio by‐products (PBP) as a replacement of alfalfa hay (AH) on blood metabolites, rumen fermentation and populations of rumen bacteria involved in biohydrogenation (BH) in Baluchi sheep. Four adult male Baluchi sheep (41 ± 1.3 kg, BW) fitted with ruminal cannulae were randomly assigned to four experimental diets in a 4 × 4 Latin square design. The dietary treatments were as follows: (i) control, (ii) 12% PBP (0.33 of AH in basal diet replaced by PBP), (iii) 24% PBP (0.66 of AH in basal diet replaced by PBP) and (iv) 36% PBP (all of AH in basal diet replaced by PBP). The basal diet was 360 g/kg dry matter (DM) alfalfa hay, 160 g/kg DM wheat straw and 480 g/kg DM concentrate. The trial consisted of four periods, each composed of 16 days adaptation and 4 days data collection including measurement of blood metabolites, rumen fermentation and population of bacteria. No differences were observed in rumen pH among the treatments, while rumen ammonia‐N concentrations were decreased (p< 0.05) with increasing PBP by up to 36% DM of the diets. Using of 36% PBP in the diet reduced (p < 0.05) total volatile fatty acids (VFA) concentrations and the molar proportion of acetate, while the concentration of propionate, butyrate and acetate to propionate ratio were similar to all other treatments. The concentration of blood urea nitrogen (BUN) decreased (p < 0.01) with increasing PBP by up to 36% DM in the diets of sheep. However, other blood metabolites were not affected by the experimental diets. It was concluded that PBP in replacement of AH had no effects on the relative abundance of Butyrivibrio fibrisolvens and Butyrivibrio proteoclasticus in relation to the control diet.  相似文献   

8.
Two trials were conducted to assess the effects of tributyrin (TB) supplementation on ruminal microbial protein yield and fermentation characteristics in adult sheep. In an in vitro trial, substrate was made to offer TB at 0, 2, 4, 6, and 8 g/kg on a dry matter (DM) basis and incubated for 48 hr. In an in vivo trial, 45 adult ewes were randomly assigned by initial body weight (55 ± 5 kg) to five treatments of nine animals over an 18‐day period. Total mixed ration was made to offer TB to ewes at 0, 2, 4, 6, and 8 g/kg on a DM basis. The in vitro trial showed that TB enhanced apparent degradation of DM (= .009), crude protein (< .001), neutral detergent fiber (= .007) and acid detergent fiber (= .010) and increased methanogenesis (< .001), respectively. The in vivo trial showed that TB decreased DM intake (< .001) and enhanced rumen microbial N synthesis (< .001), respectively. Both in vitro and in vivo trials showed that TB increased total volatile fatty acid concentration and enhanced fibrolytic enzyme activity. The results indicated that TB might exert positive effects on microbial protein yield and fermentation in the rumen.  相似文献   

9.
To clarify the effect of digesta weight in the reticulorumen on diurnal and seasonal fluctuations in herbage intake, six ruminally cannulated, non‐lactating dairy cows were grazed on perennial ryegrass/white clover pasture during morning and evening sessions in spring and autumn. The digesta weight of fresh matter, dry matter (DM) and fiber in the reticulorumen at the beginning and the end of each grazing session was lower in spring than in autumn (P < 0.01). Although the digesta weight was similar between the sessions at the beginning of grazing, it was greater for the evening than for the morning at the end of grazing (P < 0.01). The large particles proportion in the digesta was lower for the morning than the evening (P < 0.01), and it was lower in spring than in autumn (P < 0.01). The concentrations of volatile fatty acids in rumen fluid were generally higher in spring compared with autumn. The herbage DM intake during the evening was greater compared with the morning in both seasons (P < 0.01). However, there was no difference in herbage DM intake between seasons. The results showed that the rumen digesta fill was not the sole factor explaining diurnal and seasonal variation of herbage intake in grazing dairy cows.  相似文献   

10.
Our study investigated the effects of condensed tannins (CT) on rumen in vitro methane (CH4) production and fermentation characteristics by incubating lucerne in buffered rumen fluid in combination with different CT extracts at 0 (control), 40, 80 and 120 g CT/kg of substrate DM. Condensed tannins were extracted from four sainfoin accessions: Rees ‘A’, CPI63763, Cotswold Common and CPI63767. Gas production (GP) was measured using a fully automated GP apparatus with CH4 measured at distinct time points. Condensed tannins differed substantially in terms of polymer size and varied from 13 (Rees ‘A’) to 73 (CPI63767) mean degree of polymerization, but had relatively similar characteristics in terms of CT content, procyanidin: prodelphinidin (PC: PD) and cis:trans ratios. Compared to control, addition of CT from CPI63767 and CPI63763 at 80 and 120 g CT/kg of substrate DM reduced CH4 by 43% and 65%, and by 23% and 57%, respectively, after 24‐h incubation. Similarly, CT from Rees ‘A’ and Cotswold Common reduced CH4 by 26% and 46%, and by 28% and 46% respectively. Addition of increasing level of CT linearly reduced the maximum rates of GP and CH4 production, and the estimated in vitro organic matter digestibility. There was a negative linear and quadratic (p < 0.01) relation between CT concentration and total volatile fatty acid (VFA) production. Inclusion of 80 and 120 g CT/kg of substrate DM reduced (p < 0.001) branched‐chain VFA production and acetate: propionate ratio and was lowest for CPI63767. A decrease in proteolytic activity as indirectly shown by a change in VFA composition favouring a shift towards propionate and reduction in branched‐chain VFA production varied with type of CT and was highest for CPI63767. In conclusion, these results suggest that tannin polymer size is an important factor affecting in vitro CH4 production which may be linked to the CT interaction with dietary substrate or microbial cells.  相似文献   

11.
Effects of NaHCO3 and MgO buffer addition on intake and digestive utilization of a pasture were studied in wethers allowed a restricted time of access to forage. Twelve wethers housed in metabolic cages and fed fresh forage (predominantly Lotus corniculatus) ad libitum for 6 h/d were randomly assigned to one of the following treatments: a control forage without buffer (C) or a forage plus buffer composed of a mixture of 750 g/kg NaHCO3 and 250 g/kg MgO at 20 g/kg dry matter intake (B). Feeding behaviour, feed and water intake and digestibility, urine output, Na urine elimination, kinetics of passage, ruminal pH and ammonia concentration, N balance and ruminal microbial N synthesis were determined in vivo, and the ruminal liquor activity was evaluated in vitro by fermentation of wheat straw. Addition of buffer increased total water intake (p = 0.05), Na urinary output (p = 0.01), purine derivative excretion in urine (p = 0.05) and tended to decrease mean total retention time in the digestive tract (p = 0.09). However, buffer addition increased ruminal pH (p < 0.001) and tended to decrease the ammonia concentration (p = 0.05). That use of buffer decreased ruminal activity was evidenced by a lower volume of gas produced in vitro (p = 0.01) possibly due to a lower microbial concentration in rumen liquor. The higher rumen dilution rate, likely due to a higher water intake, seems to have been the key driver of the actions of buffer supplementation on the rumen environment. Moreover, addition of NaHCO3 led to an increased urinary Na excretion, which should be considered due to its likely negative environmental impacts.  相似文献   

12.
The objectives of the trial were to investigate the effects of supplementing rare earth element (REE) cerium (Ce) on rumen fermentation, nutrient digestibility, methane (CH4) production, nitrogen (N) balance and plasma biochemical parameters in beef cattle. Four Simmental male cattle, aged at 14 months, with initial liveweight of 355 ± 8 kg and fitted with permanent rumen cannulas, were used as experimental animals. The cattle were fed with a total mixed ration (TMR) composed of concentrate mixture and corn silage. Four levels of cerium chloride (CeCl3·7H2O, purity 99.9%), that is 0, 80, 160 and 240 mg CeCl3/kg DM, were added to basal ration in a 4 × 4 Latin square design. Each experimental period lasted 15 days, of which the first 12 days were for pre‐treatment and the last 3 days were for sampling. The results showed that supplementing CeCl3 at 160 or 240 mg/kg DM increased neutral detergent fibre (NDF) digestibility (p < 0.05) and tended to increased acid detergent fibre (ADF) digestibility (p = 0.083). Supplementing CeCl3 at 80, 160 or 240 mg/kg DM decreased the molar ratio of rumen acetate to propionate linearly (p < 0.05). Supplementing CeCl3 at 160 or 240 mg/kg DM decreased total N excretion, urinary N excretion and increased N retention (p < 0.05), increased excretion of total urinary purine derivatives (PD) (p < 0.05) and decreased CH4/kg DMI (p < 0.05). In conclusion, supplementing CeCl3 at 160 or 240 mg/kg DM in the ration of beef cattle increased the digestibility of NDF, decreased the molar ratio of rumen acetate to propionate, increased N retention and microbial N flow and decreased CH4/kg DMI.  相似文献   

13.
The study was conducted to determine the effect of supplementation with rice bran (RB) and /or noug seed (Guizotia abyssinica) meal (NSM) on feed intake, digestibility, and body weight (BW) change in hay based feeding of Farta sheep. Twenty five yearling Farta rams with a mean initial BW of 19.23 ± 0.28 kg were used in randomized complete block design arranged into five blocks of five animals. The five dietary treatments that consisted of hay alone (T1), hay + RB (T2), hay + mixture of RB and NSM at a ratio of 1:2 (T3), hay + mixture of RB and NSM at a ratio of 2:1 (T4) and hay + NSM (T5) were randomly assigned to each sheep within a block. The supplements were daily offered at 300 g dry matter (DM) head−1 in two equal parts at 800 and 1600 h. Supplementation improved the total DM and acid detergent fiber (ADF) intake (P < 0.05), organic matter (OM) intake (P < 0.01), crude protein (CP) intake (P < 0.001). The apparent digestibility of DM in T5 was higher (P < 0.05) than in T1 and T2 and that of T4 was also higher (P < 0.05) than in T1. The apparent digestibility of CP in T5 and T4 were higher (P < 0.001) than in T1 and T2 and that of T3 and T2 were also higher (P < 0.001) than for T1. The BW gain of experimental sheep was improved (P < 0.01) by supplementation with NSC (T5) and/or its mixtures with RB (T3 and T4). The results of the study showed that supplementation with either of both mixtures of NSM and RB at 43% of total DM intake promoted better feed intake, digestibility and BW gain in Farta sheep.  相似文献   

14.
The objectives of the trial were to study the effects of rare earth element (REE) lanthanum (La) on the in vitro rumen methane (CH4) and volatile fatty acid (VFA) production and the microbial flora of feeds. Four feed mixtures with different levels of neutral detergent fibre (NDF), that is 20.0% (I), 31.0% (II), 41.9% (III) and 52.7% (IV), were formulated as substrates. Five levels of LaCl3, that is 0, 0.4, 0.6, 0.8 and 1.0 mmol/kg dry matter (DM), were added to the feed mixtures, respectively, as experimental treatments in a two‐factor 5 × 4 randomized design. The in vitro incubation lasted for 24 h. The results showed that supplementing LaCl3 increased the total gas (p < 0.001) production and tended to increase the total VFA production (p = 0.072) and decreased the CH4 production (p = 0.001) and the ratios of acetate/propionate (p = 0.019) and CH4/total VFA (p < 0.001). Interactions between LaCl3 and NDF were significant in total gas production (p = 0.030) and tended to be significant in CH4 production (p = 0.071). Supplementing LaCl3 at the level of 0.8 mmol/g DM decreased the relative abundance of methanogens and protozoa in the total bacterial 16S rDNA analysed using the real‐time PCR (p < 0.0001), increased F. succinogenes (p = 0.0003) and decreased R. flavefaciens (p < 0.0001) whereas did not affect R. albus and anaerobic fungi (p > 0.05). It was concluded that LaCl3 decreased the CH4 production without negatively affecting feed digestion through manipulating rumen microbial flora when feed mixtures with different levels of NDF were used as substrates.  相似文献   

15.
An in vivo trial was conducted in sheep to investigate the effect of three tropical tannin‐rich plants (TRP) on methane emission, intake and digestibility. The TRP used were leaves of Glyricidia sepium, Leucaena leucocephala and Manihot esculenta that contained, respectively, 39, 75 and 92 g condensed tannins/kg DM. Methane was determined with the sulphur hexafluoride tracer technique. Eight rumen‐cannulated sheep of two breeds (four Texel, four Blackbelly) were used in two 4 × 4 Latin square designs. Four experimental diets were tested. They consisted in a tropical natural grassland hay based on Dichanthium spp. fed alone (C) or in association with G. sepium (G), L. leucocephala (L) or M. esculenta (M) given as pellets at 44% of the daily ration. Daily organic matter intake was higher in TRP diets (686, 984, 1054 and 1186 g/day for C, G, L and M respectively; p < 0.05) while apparent organic matter total tract digestibility was not affected (69.9%, 62.8%, 65.3% and 64.7% for C, G, L and M respectively; p > 0.05). Methane emission was 47.1, 44.9, 33.3 and 33.5 g/kg digestible organic matter intake for C, G, L and M, respectively, and was significantly lower (p < 0.05) for L and M than for G and C. Our results confirm the potential of some TRP to reduce methane production. The strong decrease in methane and the increase in intake with TRPs may be due to their presentation as pellets.  相似文献   

16.
Six ruminal-cannulated nonlactating Holstein Friesian cows (mean body weight:660 ± 42.9 kg) were used to investigate the effect of soybean meal (SBM) supplementation on voluntary rice straw (RS) intake, feed particle size reduction, and passage kinetics in the rumen. They were allocated to two dietary treatments: RS alone or RS supplemented with SBM. Voluntary dry matter intake of RS and total tract fiber digestibility was increased by SBM supplementation (p < 0.05). Supplementation with SBM decreased rumination time per dietary dry matter (DM) and neutral detergent fiber (NDFom) intake (p < 0.01). Particle size distribution in the rumen and total ruminal NDFom digesta weights were not affected by SBM supplementation. However, the disappearance rates of total digesta and large and small particles from the rumen were increased by SBM supplementation (p < 0.01). Moreover, SBM supplementation increased the rate of size reduction in ruminal particles (p < 0.05). In situ disappearance of DM and NDFom of RS in the rumen was greater in SBM-supplemented cows than in nonsupplemented cows (p < 0.05). This study clearly showed that increased ruminal RS particle size reduction, passage, and fermentation due to SBM supplementation accelerated the RS particle clearance from the rumen and resulted in increased voluntary RS intake of dairy cows.  相似文献   

17.
Four rumen‐fistulated dairy steers were used in a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. The main factors were two roughage‐to‐concentrate ratios (R:C, 60:40 and 40:60) and two supplementation levels of rain tree pod meal (RPM) [0 or unsupplemented and 60 g/kg of total dry matter (DM) intake]. Chopped 30 g/kg of urea‐treated rice straw was used as a roughage source. All animals received dietary according to respective R:C ratios at 25 g/kg body weight. The RPM contained condensed tannins and crude saponins at 84 and 143 g/kg of DM respectively. It was found that total volatile fatty acids (VFAs) and propionate concentrations were increased (p < 0.01), while acetate concentration, acetate‐to‐propionate ratio, CH4 production and protozoal numbers were decreased (p < 0.01) when steers were supplemented with RPM and 600 g/kg of concentrate. Allantoin excretion was found different by both R:C ratio and supplementation of RPM, with the highest value at R:C of 40:60 with 60 g/kg RPM (123.6 mmol/day) (p < 0.05). Allantoin absorption and microbial crude protein were increased (p < 0.05) with an increasing concentrate ratio. Moreover, efficiency of microbial protein synthesis was increased (p < 0.05) by feeding a higher ratio of concentrate (R:C 40:60) and supplementation of RPM. Based on this study, it is suggested that supplementation of RPM was beneficial for dairy cows fed on high roughage ratio, which could improved rumen fermentation by reducing fermentation gas loss, thus improving VFA profiles and thus enhancing efficiency of microbial protein synthesis.  相似文献   

18.
The aim of this study was to estimate the prevalence of subacute ruminal acidosis (SARA) in Polish high‐yielding dairy herds. Also, the relationships between the chemical composition of the diet and the feed particle size, ruminal pH and the occurrence of this metabolic disease and the fermentation profile were determined. Rumen fluid samples were obtained from a total of 213 cows from nine dairy herds (≥20 cows per herd) via rumenocentesis. Almost 14% (30/213) of cows as acidotic (pH<5.6) were found, which is indicative of SARA. Moreover, 44% of the herds were classified as SARA‐positive and 56% as SARA‐negative. Results of the current study suggested that the physically effective NDF (NDF>1.18 mm)‐to‐starch ratio could be better indices than peNDF>1.18 mm to preventing the occurrence of SARA, and their level should not be lower than 1.00. Also, linear negative relationships between rumen fluid pH and concentration of propionate, valerate and total VFA were determined. According to the herd's SARA status and rumen fluid biochemical indices, there were significant differences between the pH of rumen fluid (p ≤ 0.01), concentrations of acetate (p ≤ 0.05), propionate (p ≤ 0.05), n‐butyrate (p ≤ 0.01), n‐valerate (p ≤ 0.01), the sum of VFA (p ≤ 0.01) and ammonia (p ≤ 0.05) in SARA‐positive herds compared to SARA‐negative herds. The better understanding the strategy of ruminant nutrition to coordinate energy conversion and the role of the ruminal pH in regulating N‐NH3 production, absorption through rumen mucosa, urea secretion, the more successfully we can utilize these processes with due recognition of animal needs and welfare, as well as prevention of SARA occurrence.  相似文献   

19.
The purpose of this study was to determine the diurnal composition and concentration of volatile fatty acids (VFA) and to determine VFA composition and concentration differences between stomach compartment 1 (C1) and caecum of alpacas fed grass and alfalfa hay. The study was divided into two experiments. In Experiment 1 (EXP 1), 10 male alpacas (3+ years old, 65 kg BW) were divided into two groups, housed in drylot pens, provided ad libitum water and fed alfalfa (AH) or grass hay (GH) for 30 days. The alpacas were slaughtered and the digestive tract collected, divided into sub‐tract sections, weighed and digesta sampled for pH, dry matter (DM) and NDF. Volatile fatty acid composition and concentration were determined on C1 and caecal material. Four adult male (3+ years old, 60 kg BW), C1 fistulated alpacas were housed in metabolism crates and divided into two forage groups for Experiment 2 (EXP 2). Alpacas were fed the forages as in EXP 1. Diurnal C1 VFA samples were drawn at 1, 3, 6, 9, 12, 18 and 24 h post‐feeding. There were no differences between forages for tract weight, C1 and caecum digesta DM or NDF. Differences were noted (p < 0.05) for pH between forages and sub‐tract site. Volatile fatty acids concentrations were different (p < 0.05) for forage and site, and total VFA was higher for AH than GH (110.6 and 79.1 mm ) and C1 than caecum (40.7 and 27.6 mm ). Proportion of VFA was significant (p < 0.05) for forage and site, C1 acetate highest for GH (84.8 vs. 74.0 mm ) and caecum acetate 83.7 and 76.2 mm for GH and AH respectively. These data demonstrate the level of VFA produced in C1 and the caecum of alpacas and the diurnal VFA patterns. Composition of VFA is similar to other ruminant species.  相似文献   

20.
This study consisted of two experiments with the following objectives: to evaluate the effects of tannins from the tropical legume macrotiloma (Macrotyloma axillare) on total gas and methane (CH4) production, as well as on ruminal fermentation parameters by performing an in vitro bioassay, with samples incubated with and without polyethylene glycol (PEG) in a semi‐automatic system; and secondly in a 17 day in vivo experiment, to determine apparent total tract digestibility (ATTD) of dietary nutrients and ruminal fermentation parameters of 12 intact 8‐ to 9‐month‐old Santa Inês (averaging 24.95 ± 1.8 kg body weight) ewes fed tropical grass hay supplemented with macrotiloma hay. The ewes were divided into two treatment groups depending on their diet: chopped aruana grass hay (Panicum maximum cv. Aruana) (control—CON); and aruana grass hay supplemented with chopped macrotiloma hay (macrotiloma—MAC). The animals were kept for 5 consecutive days in metabolic cages for the ATTD assay, and at the end of this period, samples of rumen fluid were collected from each ewe to determine ammoniacal nitrogen (NH3‐N) and short‐chain fatty acid (SCFA) production, and protozoa count. For the in vitro assay, a decrease in total gas and CH4 production was observed for samples incubated without PEG (< .05). No differences were observed for the other parameters evaluated (> .05). In the in vivo experiment, increased intake and ATTD of crude protein were observed for the animals fed MAC when compared to CON (< .05). For rumen fermentation parameters, increased NH3‐N, total SCFA and isobutyrate concentrations, as well as reduced protozoa count were observed for MAC when compared to CON (< .05). The results observed here indicated the potential of macrotiloma for use as a ruminant feed, and antimethanogenic potential of this plant was noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号