首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Fixation of the ammonium ion (NH4 +) by clay minerals is an alternate way of building the nitrogen (N) pool in soil to optimize N crop recovery and minimize losses. Clay minerals (illite, montmorillonite, and vermiculite) and an illitic Portnoeuf soil were used to compare NH4 + fixation abilities. Total N determination and X‐ray diffraction analysis were performed on each of the minerals and the Portnoeuf soil controls, and NH4 + saturated batches were subsequently desorbed by potassium chloride (KCl) after 4096 hours. Total N was determined for each employing either Kjeldahl digestion only, or pretreating with hydrofluoric‐hydrochloric acid (HF‐HCl) before the Kjeldahl digestion. The total N for the soil was 38% more after pretreatment with HF‐HCl. The total N determined after pretreatment with HF‐HCl for the NH4 + saturated and subsequently KCl desorbed minerals was found to be highest in vermiculite. The cation exchange acapacity (CEC) of each of the minerals was determined, and highest CEC was found in montmorillonite [83.07 cmol(+)/kg]. X‐ray diffraction analysis revealed collapse of the vermiculitic clay lattice from an initial d‐spacing of 13.1 angstrom to 10.4 angstrom after desorprion by KCl. This suggested the existence of sequestered NH4 + between the 2: 1 vermiculitic clay interlayer lattice.  相似文献   

2.
To understand the process and the kinetics of potassium release from the clay interlayer in natural and arable soils in more detail, I tested the hypotheses that large, monovalent cations, especially NH4+ and Cs+, can reduce the release rates of K+ which is exchanged by Ca2+, even if these monovalent cations are present in concentrations of only a few μm . Percolation experiments were carried out with different illitic soil materials, some containing vermiculite, with 5 m m CaCl2 at pH 5.8 and 20°C, in some cases for over 7000 h. NH4+ and Cs+ both caused a large decrease in the rate at which K+ was released, Cs+ especially. Suppression began at 5 μm NH4+ Blocking by 20 μm NH4+ was easily reversible: the release rates readily increased when NH4+ was omitted from the exchange solution. Blocking by 2 μm Cs+ was equal to approximately 90% of that at 10 μm Cs+. Larger concentrations of Cs+ than 10 μm did not further reduce release but rather caused a slight increase, probably because of enhanced exchange of K+ by Cs+ without exfoliation of the interlayer space. Blocking by Cs+ was not reversible within > 7000 h of percolation by 5 m m CaCl2. The blocking effect was reproduced in several different soil materials using 10 μm Cs+ but was most pronounced in vermiculite-rich samples. As NH4+ is present in most arable soils, at least in concentrations of a few μm , I conclude that the observed effects are of significance in the K dynamics processes in soils, for example near the roots of plants. Further, very small concentrations of Cs+ in exchange solutions containing a large background of Ca2+ appear to be useful for suppressing K+ release from the interlayer in laboratory studies, probably without significantly altering the exchange at outer mineral surfaces.  相似文献   

3.
The effects of temperature, moisture content and the addition of pig slurry on nitrification in two soils were studed. There was no accumulation of NO2?-N under the incubation conditions investigated and the accumulation of NO3?-N was linear for additions of 50–250 μg NH4+-N g? soil, either as ammonium sulphate or as pig slurry. Nitrate formation was treated as a single step, zero order process to enable a rate constant to be calculated. Nitrification rate increased with increasing moisture content up to the highest level tested, soil water potential ?8.0 kPa, corresponding to approximately 60% of water holding capacity in both soils. Measurable nitrification was found in both soils at the lowest moisture content (soil water potential ?1.5 MPa) and temperature (5° C) tested. The nitrification rate constant in soils treated with 50 μg NH4+-N g? soil was not significantly affected (P = 0.05) by the form of ammonium added. Addition of 250 μg NH4+-N as ammonium sulphate caused a marked inhibition of nitrification at all moisture contents and temperatures. Addition of 250 μg NH4+-N as pig slurry caused a marked increase in nitrification rate, the increase being greater at the higher temperatures and moisture contents.  相似文献   

4.
Sandy loam soil, with added glucose, was incubated anaerobically under N2 and subjected to repeated 1-h C2H2 reduction assays. In the presence of 1% glucose the addition of 50 μg NH4+ ?N/g or of 20 μg NO?3 N/g (untreated soil contained 1.2 μg NH+4?N and 7.10 μg NO?3-N/g) caused at least some suppression of nitrogenase activity. Activity developed when the KCl-extractable soil inorganic nitrogen concentration dropped below 35 μg/g. In the presence of 0.1 or 0.05% glucose the addition of 5 μg NH+4?N/g caused some suppression of nitrogenase activity. However, activity developed when the soil NH4+-N concentration dropped below about 4 μg/g. With 0.1% glucose and 5 μg added NO?2 N/g, activity did not develop until the soil NO?2 -N concentration dropped to zero. Added NO?3 N was rapidly reduced and denitrified to NO?2- N, N2O-N and NH+4 N and furthermore caused some inhibition of CO2 evolution. The data from NH4?-addition experiments are consistent with a nitrogenase repression/ derepression threshold of 4 and 35μg NH+4-N/g at 0.05 and 1% glucose concentrations, respectively. The data from NO?2- and NO?3-addition experiments suggest a combination of repression and toxicity effects in the presence of added NO?3 N.  相似文献   

5.
[目的]研究砂姜黑土区采煤塌陷坡耕地动态过程中表层土壤NH+4—N和有效磷(AP)的时空分布,揭示氮磷随地表径流流失的雨强和坡度变化特征。[方法]选择淮北平原砂姜黑土区两类不同煤矿井工开采方式引发的地表塌陷坡耕地,动态监测表层土壤中NH+4—N和AP含量,并在实验室应用人工模拟降雨,测定2种雨强和3种坡度处理的地表径流中可溶态及颗粒态NH+4—N,AP含量。[结果](1)充填开采地表塌陷坡耕地表层土壤中NH+4—N含量为16.5~72.0mg/kg,AP为26.0~63.5mg/kg,非充填开采分别为9.08~67.2 mg/kg和22.4~82.1 mg/kg,未塌陷区域为83.5~162 mg/kg和38.7~86.5mg/kg;(2)两种开采方式地表塌陷坡地土壤NH+4—N和AP含量与未塌陷区域相比,均显著降低(p0.05),NH+4—N含量自坡顶至坡底逐渐增加。随时间推移,NH+4—N和AP含量未显著降低,AP含量反而有增加迹象;(3)强降雨时NH+4—N和AP的流失量是弱降雨的3~5倍,颗粒态NH+4—N和AP流失量占总流失量的60%以上。坡度越大,NH+4—N和AP的流失量越多,流失量突变的坡度为5°~10°之间。[结论]砂姜黑土区采煤塌陷坡耕地土壤氮磷流失显著增加,颗粒态NH+4—N和AP为径流流失的主要形式。  相似文献   

6.
Extensive use of chemical fertilizers in agriculture can induce high concentration of ammonium nitrogen(NH4+-N) in soil. Desorption and leaching of NH4+-N has led to pollution of natural waters. The adsorption of NH4+-N in soil plays an important role in the fate of the NH4+-N. Understanding the adsorption characteristics of NH4+-N is necessary to ascertain and predict its fate in the soil-water environment, and pedotransfer functions(PTFs) could be a convenient method for quantification of the adsorption parameters. Ammonium nitrogen adsorption capacity, isotherms, and their influencing factors were investigated for various soils in an irrigation district of the North China Plain. Fourteen agricultural soils with three types of texture(silt, silty loam, and sandy loam) were collected from topsoil to perform batch experiments. Silt and silty loam soils had higher NH4+-N adsorption capacity than sandy loam soils.Clay and silt contents significantly affected the adsorption capacity of NH4+-N in the different soils. The adsorption isotherms of NH4+-N in the 14 soils fit well using the Freundlich, Langmuir, and Temkin models. The models’ adsorption parameters were significantly related to soil properties including clay,silt, and organic carbon contents and Fe2+ and Fe3+ ion concentrations in the groundwater. The PTFs that relate soil and groundwater properties to soil NH4+-N adsorption isotherms were derived using multiple regressions where the coefficients were predicted using the Bayesian method. The PTFs of the three adsorption isotherm models were successfully verified and could be useful tools to help predict NH4+-N adsorption at a regional scale in irrigation districts.  相似文献   

7.
钱泽澍  闵航  莫文英 《土壤学报》1985,22(2):144-149
本试验观察了在杭州生态条件下土壤中不同NH4+-N水平对水稻根际固氮活性的影响。试验的结果表明:1.NH4+-N肥在一定时间内对水稻根际固氮活性具有明显的抑制效应,施用量越大,其抑制作用越严重。土壤速效氮浓度与水稻根际固氮活性之间呈高度(或中度)负相关,不同生育期两者的相关系数r值在-0.4288—0.9945之间。2.土壤速效氮对水稻土柱固氮活性抑制的起始浓度为20ppm。3.NH4+-N对水稻根际固氮活性的抑制时间随施用量而不同,低氮区在20天左右,中氮区和高氮区在25—30天左右。此后施氮区对水稻根际固氮活性具有促进作用。  相似文献   

8.
Many farmlands are periodically flooded or ponded by excessive precipitation resulting in changes to soil chemical and biochemical properties. In this study, one set (eight treatments with four replications) of field-moist surface soils (0–15 cm) and their air-dried counterparts obtained from a long-term liming experiment were incubated at 30 °C under waterlogged conditions for 10 days, and the amounts of net NH4 +-N released (soluble and exchangeable) were determined after extraction with 4 M KCl. Another set of three surface soils were used to evaluate the effect of six heavy metals on the NH4 +-N release under waterlogged conditions. Results showed that increasing the liming rate from 0 to 17,930 kg ha?1 effective calcium carbonate equivalent increased the average soil pH from 4.98 to 7.06, averages of the amounts of NH4 +-N released ranged from 1.6 to 5.2 mg N kg?1 field-moist soil, and the corresponding amounts released in air-dried soils ranged from 18.9 to 32.9 mg N kg?1 soil. This increase of the amount NH4 +-N released in air-dried soil samples is presumably due to a slaking effect. At 5 mmol kg?1 soil, all six heavy metals inhibited the NH4 +-N released. The relative effectiveness of the heavy metals in inhibition of the NH4 +-N released varied among the three soils. Lead(II) was the most effective inhibitor of NH 4 +-N release in Clarion and Harps soils and Cd(II) in Harps soil. Cobalt(II), Cu(II), and Cd(II) were the least effective inhibitors of NH4 +-N release in Clarion, Harps, and Okoboji soils, respectively.  相似文献   

9.
The large use and the bad management of fertilizers that are applied to soil for improving crop production have dramatically impaired soil, water, and air quality. To meet the requirements to reduce nitrogen (N) losses and all the related negative impacts on the environment and food production, it is mandatory to substitute or at least partially substitute the use of inefficient and unsustainable fertilizers with more efficient alternatives. The aim of this paper was to address the amount and speciation of the N released by a sandy soil fertilized with “slow-release fertilizers” and traditional fertilizers (urea and liquid digestate) by means of a series of column leaching experiments. The slow-release alternatives were represented by NH4-enriched zeolitic tuff and struvite, both obtained by recovering the N from liquid digestate. The treatments consisted of sandy soil fertilized with (i) urea (U) (ii) liquid digestate (LD), (iii) NH4-enriched zeolitic tuff (N-CHA) and (iv) struvite (STRV). Eight different flushing events were performed over 38 days, leachates were collected and analysed for total Kjeldahl N, organic-N, NH4+-N, NO3-N, NO2-N and pH. U and LD lost the majority of N within the first 2 flushing events as organic N and NH4+-N, respectively. On the other hand, STRV and N-CHA lost less N over the whole course of the experiment and with more balanced speciation. The mass balance outlined that after the experiment, native soil N was mined in U and LD treatments while in N-CHA and STRV a fraction of N from the fertilizers was still present. The results showed a slow release of N which can be used more efficiently in agricultural applications, minimizing the N losses.  相似文献   

10.
生物质炭对铵根的吸附解吸影响着土壤的固氮效果,为探讨茶渣生物质炭对茶园土吸附—解吸NH_4~+—N性能的影响,减少土壤中氮素的淋失,提高氮素利用效率,通过模拟培养试验,采用平衡吸附法及HCL解吸法,研究了不同热解温度下制备的茶渣生物质炭在不同添加比例(0.35%,0.70%,1.40%,2.80%)下,茶园土对NH_4~+—N吸附解吸的特性。结果表明:施用生物质炭能有效增强茶园土对NH_4~+—N的吸附,并随生物质炭添加量的增加而增强。同一生物质炭添加量下,4种生物质炭处理下茶园土对NH_4~+—N的吸附量大小表现为BC400BC300BC500BC600。生物质炭的CEC含量是影响土壤吸附NH_4~+—N能力的主要因素。土壤对NH_4~+—N的吸附过程均以Langmuir方程拟合达到显著水平(0.953 7R~20.995 5),以单层吸附为主。施用生物质炭后,土壤产生了解吸滞后,有效降低了茶园土对NH_4~+—N的解吸率,BC400的解吸率最低。茶渣生物质炭能够增强土壤对NH_4~+—N的吸附,降低对NH_4~+—N的解吸,有利于提高土壤对氮素的吸持能力,其中BC400,2.80%处理下效果最佳。  相似文献   

11.
Simple and rapid chemical indices of soil nitrogen (N)-supplying capacity are necessary for fertilizer recommendations. In this study, pot experiment involving rice, anaerobic incubation, and chemical analysis were conducted for paddy soils collected from nine locations in the Taihu Lake region of China. The paddy soils showed large variability in N-supplying capacity as indicated by the total N uptake (TNU) by rice plants in a pot experiment, which ranged from 639.7 to 1,046.2 mg N pot−1 at maturity stage, representing 5.8% of the total soil N on average. Anaerobic incubation for 3, 14, 28, and 112 days all resulted in a significant (P < 0.01) correlation between cumulative mineral NH4+-N and TNU, but generally better correlations were obtained with increasing incubation time. Soil organic C, total soil N, microbial C, and ultraviolet absorbance of NaHCO3 extract at 205 and 260 nm revealed no clear relationship with TNU or cumulative mineral NH4+-N. Soil C/N ratio, acid KMnO4-NH4+-N, alkaline KMnO4-NH4+-N, phosphate–borate buffer extractable NH4+-N (PB-NH4+-N), phosphate–borate buffer hydrolyzable NH4+-N (PBHYDR-NH4+-N) and hot KCl extractable NH4+-N (HKCl−NH4+-N) were all significantly (P < 0.05) related to TNU and cumulative mineral NH4+-N of long-term incubation (>28 days). However, the best chemical index of soil N-supplying capacity was the soil C/N ratio, which showed the highest correlation with TNU at maturity stage (R = −0.929, P < 0.001) and cumulative mineral NH4+-N (R = −0.971, P < 0.001). Acid KMnO4-NH4+-N plus native soil NH4+-N produced similar, but slightly worse predictions of soil N-supplying capacity than the soil C/N ratio.  相似文献   

12.
In cultivated soils, total soil N, organic C and C-to-N ratios were in the range of 0.24–0.49%, 3.1–5.8% and 10.7–15.0, respectively in the surface horizons and decreased with depth. Native fixed NH+4-N accounted for 2.3–3.0% of total soil N in surface horizons but while the quantities of fixed NH+4-N decreased with depth, the proportion to total soil N increased. Exchangeable NH+4-N ranged from 15 to 32 and NO?3-N from 26 to 73 μg g?1 soil in surface horizons, and both decreased with depth. Exchangeable-N accounted for 1.1–2.4% of total soil N. Over 97% of total soil N was organically bound.Of the total soil N in the surface horizons, 29.0–79.0% was acid hydrolysable and 21.0–71.0% was nonhydrolysable. The range of proportions of each of hydrolysable NH+4-N, hexosamine-N, serine plus threonine α-amino acid-N, identified-N, and unidentified-N to total soil N in the surface horizons were 14.5–22.4, 4.8–9.2, 0.2–5.8, 4.0–16.7, 23.3–48.8, and 0.3–41.5%, respectively. Hydrolysable NH+4-N constituted the largest proportion of the identified-N fraction. Distribution patterns of the organic-N fractions in the profiles varied from soil to soil. Sixteen amino acids were identified which accounted for 82–100% of the α-amino acid-N fraction in the soils; glycine and alanine alone accounted for 35–40%. All the organic-N fractions were transformed to varying degree during aerobic incubation.  相似文献   

13.
The amount of interlayer NH 4 + -N and net mineralization of organic N were measured at periodic intervals, over a period of 10 months, in soil samples collected from a peach orchard which had been subjected to different rates of N fertilizer application. Two different groups of soil samples, designated sampling 1 and sampling 2 were collected. Soils of sampling 1 were collected from sites where the soil was heavily penetrated by tree roots and those of sampling 2 were collected from sites where the soil remained free from tree roots. In sampling 1, during the 10-month period, the concentration of interlayer NH 4 + -N showed significant variations, while in sampling 2 no significant variation was found. In sampling 1 the amount of NH 4 + -N released from the interlayers of the clay minerals were not influenced by the N fertilizer application rate. Changes in the interlayer NH 4 + -N concentrations were related to variation in net N mineralization and immobilization rates as well as to plant uptake N. It is concluded that, in our experiment, the dynamics of interlayer NH 4 + -N in soil were influenced by the spatial distribution of the tree roots and organic N mineralization, while N application influenced seasonal variation but not the total interlayer NH 4 + -N released during the experiment.  相似文献   

14.
Extraction of soil nitrate nitrogen (NO3 ?-N) and ammonium nitrogen (NH4 +-N) by chemical reagents and their determinations by continuous flow analysis were used to ascertain factors affecting analysis of soil mineral N. In this study, six factors affecting extraction of soil NO3 ?-N and NH4 +-N were investigated in 10 soils sampled from five arable fields in autumn and spring in northwestern China, with three replications for each soil sample. The six factors were air drying, sieve size (1, 3, and 5 mm), extracting solution [0.01 mol L?1 calcium chloride (CaCl2), 1 mol L?1 potassium chloride (KCl), and 0.5 mol L?1 potassium sulfate (K2SO4)] and concentration (0.5, 1, and 2 mol L?1 KCl), solution-to-soil ratio (5:1, 10:1, and 20:1), shaking time (30, 60, and 120 min), storage time (2, 4, and 6 weeks), and storage temperature (?18 oC, 4 oC, and 25 oC) of extracted solution. The recovery of soil NO3 ?-N and NH4 +-N was also measured to compare the differences of three extracting reagents (CaCl2, KCl, and K2SO4) for NO3 ?-N and NH4 +-N extraction. Air drying decreased NO3 ?-N but increased NH4 +-N concentration in soil. Soil passed through a 3-mm sieve and shaken for 60 min yielded greater NO3 ?-N and NH4 +-N concentrations compared to other treatments. The concentrations of extracted NO3 ?-N and NH4 +-N in soil were significantly (P < 0.05) affected by extracting reagents. KCl was found to be most suitable for NO3 ?-N and NH4 +-N extraction, as it had better recovery for soil mineral N extraction, which averaged 113.3% for NO3 ?-N and 94.9% for NH4 +-N. K2SO4 was not found suitable for NO3 ?-N extraction in soil, with an average recovery as high as 137.0%, and the average recovery of CaCl2 was only 57.3% for NH4 +-N. For KCl, the concentration of extracting solution played an important role, and 0.5 mol L?1 KCl could fully extract NO3 ?-N. A ratio of 10:1 of solution to soil was adequate for NO3 ?-N extraction, whereas the NH4 +-N concentration was almost doubled when the solution-to-soil ratio was increased from 5:1 to 20:1. Storage of extracted solution at ?18 °C, 4 °C, and 25 °C had no significant effect (P < 0.05) on NO3 ?-N concentration, whereas the NH4 +-N concentration varied greatly with storage temperature. Storing the extracted solution at ?18 oC obtained significantly (P < 0.05) similar results with that determined immediately for both NO3 ?-N and NH4 +-N concentrations. Compared with the immediate extraction, the averaged NO3 ?-N concentration significantly (P < 0.05) increased after storing 2, 4, and 6 weeks, respectively, whereas NH4 +-N varied in the two seasons. In conclusion, using fresh soil passed through a 3-mm sieve and extracted by 0.5 mol L?1 KCl at a solution-to-soil ratio of 10:1 was suitable for extracting NO3 ?-N, whereas the concentration of extracted NH4 +-N varied with KCl concentration and increased with increasing solution-to-soil ratio. The findings also suggest that shaking for 60 min and immediate determination or storage of soil extract at ?18 oC could improve the reliability of NO3 ?-N and NH4 +-N results.  相似文献   

15.
Relationship between the N uptake of plants and the mobilization of nonexchangeable NH4-N In a pot experiment with ryegrass (Lolium multiflorum) the relationship between the release of nonexchangeable NH4+ and the N uptake of plants was studied. For this purpose the surface soil of an alluvial soil and of a grey brown podsolic soil was labelled with 15NH4-N. The following results were obtained: After treating the soil with 15-N the alluvial soil contained 4,55 mg and the grey brown podsolic soil 1,64 mg nonexchangeable 15NH4-N/100 g soil. In the alluvial soil 72% and in the grey brown podsolic soil 66% of the nonexchangeable 15NH4+ had been released during the growing season when ryegrass was planted. However, without plants there was no change in the content of labelled nonexchangeable NH4+ in the alluvial soil or only a slight decrease in the grey brown podsolic soil. A highly significant correlation was found between the 15NH4-N released and the 15N uptake of ryegrass in the alluvial soil (r = 0,78+++) as well as in the grey brown podsolic soil (r = 0,98+++).  相似文献   

16.
坡缕石包膜对尿素氮行为的影响   总被引:2,自引:1,他引:2  
采用静态吸收和土柱淋溶试验方法,分析对比了3种不同用量坡缕石包膜尿素与普通尿素施入土壤后对尿素氮行为的影响,结果表明:在土壤中施用坡缕石包膜尿素较普通尿素减少10.38%~26.24%的氨挥发损失,减少5.88%~27.74%的氮素(NO3--N+NH4+-N)淋溶损失,20%的坡缕石包膜尿素能显著提高土柱土壤NH4+-N含量,3种坡缕石包膜尿素都能极显著提高土柱土壤NO3--N含量.坡缕石包膜后能减少尿素氨的挥发,降低NH4+-N和NO3--N的淋失,提高土壤NH4+-N和NO3--N含量,以20%的坡缕石包膜尿素的综合生态效应最好.  相似文献   

17.
减氮配施有机物质对土壤氮素淋失的调控作用   总被引:2,自引:1,他引:1  
采用室内土柱模拟试验方法,研究不同氮肥施用下1m土体中氮素的分布和移动特征,揭示土壤氮素动态变化规律。结果表明:FN(农民习惯施无机氮用量)、RN(根据土壤养分供应和作物需求确定的推荐无机氮用量)显著增加了土壤上层NH_4^+-N和NO_3^--N向下层淋失。RN+HA(与推荐无机氮纯养分相等的锌腐酸尿素)和RN40%+OMB(推荐无机氮肥减60%基础上配施自制有机调理物质)可延长上层土壤NH_4^+-N峰值出现时间,降低下层NH_4^+-N。淋溶结束后,等氮量下增施HA较RN降低60cm以下NH_4^+-N残留29.7%~54.2%;降低60—80cm NO_3^--N累积17.4%。RN40%+OMB处理无机氮肥用量最小,0—20cm的NH_4^+-N最高,40—100cm稳定在2.0mg/kg左右;0—20,20—40cm土层NO_3^--N较RN+HA增加12.3%和2.0%,显著降低40cm以下NO_3^--N残留。RN+HA和RN40%+OMB较RN的土壤总无机氮残留分别减少7.4%和20.2%,降低表观淋失率。因此,RN40%+OMB可较好地抑制氮素下移,降低氮素淋失风险,为减少氮素淋失、明确合理氮肥施用方式提供科学依据。  相似文献   

18.
The short-term effects of excessive NH4+-N on selected characteristics of soil unaffected (low annual N inputs) and affected (high annual N inputs) by cattle were investigated under laboratory conditions. The major hypothesis tested was that above a theoretical upper limit of NH4+ concentration, an excess of NH4+-N does not further increase NO3 formation rate in the soil, but only supports accumulation of NO2-N and gaseous losses of N as N2O. Soils were amended with 10 to 500 μg NH4+-N g−1 soil. In both soils, addition of NH4+-N increased production of NO3-N until some limit. This limit was higher in cattle-affected soil than in unaffected soil. Production of N2O increased in the whole range of amendments in both soils. At the highest level of NH4+-N addition, NO2-N accumulated in cattle-affected soil while NO3-N production decreased in cattle-unaffected soil. Despite being statistically significant, observed effects of high NH4+-N addition were relatively weak. Uptake of mineral N, stimulated by glucose amendment, decreased the mineral N content in both soils, but it also greatly increased production of N2O.  相似文献   

19.
Soil NH+4-N and NO?3-N at five soil depths (0–10, 10–20, 20–40, 40–60, 60–80 cm) and some environmental variables were measured in a field trial under fallow and wheat for 9 months.Significant linear and quadratic relationships were obtained relating soil NH+4-N, NO?3-N, NH+4-N + NO?3-N, and NH+4-N + NO?3 + total-N uptake by wheat to soil heat accumulation (temperature), moisture, and rainfall. R2 values generally decreased with soil depth and the maximum value (37%) was obtained for NO?3-N changes in the topsoil (0–10 cm).Although a considerable amount of variation in the inorganic values recorded is not included in the equations, our results suggest that the development of the above relationships particularly of the quadratic type are useful to predict crop requirements for N by measurement of environmental variables in the field.  相似文献   

20.
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4+-N + NO3--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4+-N fixation or volatilization in the soil during the fertigation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号