首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eastern Bering Sea fishery for pollock, Theragra chalcogramma, yields a first wholesale value over $1 billion; it is the premier US fishery. While there is general agreement that this fishery is managed under principles that foster sustainability, the stock is not wholly contained within the US Exclusive Economic Zone. Management of straddling stocks can be highly contentious, particularly when, as is the case for pollock, the spatial distribution varies considerably. When the center of pollock abundance shifts to the northwest, an increased portion of the stock is exposed to harvest by vessels operating in the Russian Federation Exclusive Economic Zone. The lack of coordination in the management of this transboundary stock presents a risk that is not reflected in current management strategies. We use a multiple product/multiple market bioeconomic model to characterize optimal cooperative and non-cooperative harvest management strategies from the perspective of US and Russian pollock fisheries under environmentally induced changes in pollock abundance and the distribution of that abundance.  相似文献   

2.
Acoustic survey data were used to estimate the abundance and distribution of age-0 walleye pollock and zooplankton near the Pribilof Islands, Bering Sea, nursery area at two time periods in two consecutive years: the beginning of August, and mid-September, of 1996 and 1997. The 1996 pollock year class ultimately produced a large adult cohort in the eastern Bering Sea, while the 1997 year class produced a below-average adult cohort. Acoustic densities of age-0 pollock were significantly lower in August – and declined more strongly from August to September – in 1997 than in 1996, indicating that the trend to adult cohort strength was already set by August. Diet composition analyses revealed that age-0 pollock ate a much higher proportion of euphausiids in 1997 than in 1996, despite lower acoustic abundance of euphausiids in 1997. We infer that in 1996, age-0 pollock experienced greater feeding success by August, with high concentrations of copepods available for smaller fish to consume, and high concentrations of euphausiids available for larger individuals. In 1997, age-0 pollock had lower body condition in August and may have been limited by the availability of small (<2 mm) copepods. Bioenergetic modeling of prey consumption did not indicate a likelihood that age-0 pollock would begin to deplete euphausiids until late August in 1996, and not at all between August and mid-September in 1997.  相似文献   

3.
Interannual variability in growth of walleye pollock, Theragra chalcogramma, was examined. Adult walleye pollock were collected from the central Bering Sea (Aleutian Basin) from 1978 to 1999. Average fork lengths were found to be approximately 47 cm during the 1970–80s, this increased to 56 cm in the late 1990s. Age was determined for 4805 individuals using the otolith break and burn method. Ages ranged from 5–23 years and the year classes of 1978 and 1989 were dominant in the 1980s and the 1990s, respectively. Fish had significantly larger length-at-age in the 1990s compared to the 1970–80s, and interannual variability in age–length relationship was clearly observed. Taking into consideration a recent decrease of the walleye pollock biomass in the central Bering Sea, density-dependent growth was supported as one possibility of the growth variability. At the same time, we could not rule out the possibility that oceanographic variability affected the growth of walleye pollock in the area.  相似文献   

4.
Between 1988 and 1993, 12 satellite-tracked buoys were deployed in four eddies in the south-eastern Bering Sea. Our success in finding eddies resulted from placing buoys in high concentrations of walleye pollock (Them-gra chalcogramma) larvae. We utilize data from hydro-graphic surveys, satellite-tracked buoys and moored current meters to describe the eddies. Small (< 25 km diameter) eddies likely transit along the slope of the eastern Bering Sea every 45–60 days. In previous studies such small features were not observed because their size fell within typical separation of hydrographic stations and the weak sea surface temperature gradients are not resolved by satellite-borne infrared imagery.  相似文献   

5.
Shifts in climate regime are prominent features of the physical environment of the eastern Bering Sea and in recent years have been documented in approximately 1977 and 1989. Average snow crab (Chionoecetes opilio) recruitment decreased sharply after the 1989 fertilization year. Models in which control of snow crab recruitment shifts between drivers dependent on climate ‘regime’ are presented. These models are evaluated using cross‐validation and retrospective analysis, both of which indicate that the relationships are relatively robust to varying levels of information. Larval survival as influenced by food availability in the pelagic phase and advection to suitable nursery grounds are the hypothesized mechanisms driving recruitment dynamics.  相似文献   

6.
Forecasting distribution shifts under novel environmental conditions is a major task for ecologists and conservationists. Researchers forecast distribution shifts using several tools including: predicting from an empirical relationship between a summary of distribution (population centroid) and annual time series (“annual regression,” AR); or fitting a habitat‐envelope model to historical distribution and forecasting given predictions of future environmental conditions (“habitat envelope,” HE). However, surprisingly little research has estimated forecast skill by fitting to historical data, forecasting distribution shifts and comparing forecasts with subsequent observations of distribution shifts. I demonstrate the important role of retrospective skill testing by forecasting poleward movement over 1‐, 2‐ or 3‐year periods for 20 fish and crab species in the Eastern Bering Sea and comparing forecasts with observed shifts. I specifically introduce an alternative vector‐autoregressive spatio‐temporal (VAST) forecasting model, which can include species temperature responses, and compare skill for AR, HE and VAST forecasts. Results show that the HE forecast has 30%–43% greater variance than predicting that future distribution is identical to the estimated distribution in the final year (a “persistence” forecast). Meanwhile, the AR explains 2%–6% and VAST explains 8%–25% of variance in poleward movement, and both have better performance than a persistence forecast. HE and AR both generate forecast intervals that are too narrow, while VAST models with or without temperature have appropriate width for forecast intervals. Retrospective skill testing for more regions and taxa should be used as a test bed to guide future improvements in methods for forecasting distribution shifts.  相似文献   

7.
Infectious pathogens figure prominently among those factors threatening marine wildlife. Mass mortality events caused by pathogens can fundamentally alter the structure of wild fish stocks and depress recruitment rates and yield. In the most severe instances, this can precipitate stock collapses resulting in dramatic economic losses to once valuable commercial fisheries. An outbreak of a herpes‐like virus among commercially fished abalone populations in the south‐west fishery of Victoria, Australia, during 2006–2007, has been associated with high mortality rates among all cohorts. Long‐term records from fishery‐independent surveys of blacklip abalone Haliotis rubra (Leach) enabled abundance from pre‐ and post‐viral periods to be analysed to estimate stock density and biomass. The spatial distribution of abundance in relation to physical habitat variables derived from high‐resolution bathymetric LiDAR data was investigated. Significant differences were observed in both measures between pre‐ and post‐viral periods. Although there was some limited evidence of gradual stock improvement in recent years, disease‐affected reefs have remained below productivity rates prior to the disease outbreak suggesting a reduction in larval availability or settlement success. This was corroborated by trends in sublegal sized blacklip abalone abundance that has yet to show substantial recovery post‐disease. Abundance data were modelled as a function of habitat variables using a generalised additive model (GAM) and indicated that high abundance was associated with complex reef structures of coastal waters (<15 m). This study highlights the importance of long‐term surveys to understand abalone recovery following mass mortality and the links between stock abundance and seafloor variability.  相似文献   

8.
Recruitment of the northern Japan Sea stock (JSS) of walleye pollock has been decreasing since around 1990. In this study, I analyzed the factors causing this decrease in recruitment by investigating the relationship between recruitment, spawning stock biomass (SSB) and environmental factors using a generalized additive model (GAM). GAM fit to the data showed the importance of SSB, sea surface temperature (SST), ocean current strength (Tsushima Warm Current) and wind intensity (Asian monsoon) in determining the recruitment. Of these, the relationship between SSB and recruitment was positive and not negatively density‐dependent. On the other hand, the recruitment was negatively related to SST and ocean current strength, and a dome‐shaped relationship was observed between wind intensity and recruitment. Since around 1990, the values of SST and ocean current strength have mostly been high and that of wind intensity mostly low. In addition, SSB has been decreasing since the late 1990s. It is likely that the recruitment decline of JSS after approximately 1990 has been caused by warm water temperature, strong Tsushima Warm Current and weak Asian monsoon, and that the recent decrease in SSB has amplified this recruitment decline. According to the model’s estimation, a recruitment recovery due to environmental improvement will be highly restricted as long as SSB remains at its current low level. Significant recovery of SSB is urgently needed for JSS.  相似文献   

9.
Concern about impacts of climate change in the Bering Sea prompted several research programs to elucidate mechanistic links between climate and ecosystem responses. Following a detailed literature review, Hunt et al. (2011) (Deep‐Sea Res. II, 49, 2002, 5821) developed a conceptual framework, the Oscillating Control Hypothesis (OCH), linking climate‐related changes in physical oceanographic conditions to stock recruitment using walleye pollock (Theragra chalcogramma) as a model. The OCH conceptual model treats zooplankton as a single box, with reduced zooplankton production during cold conditions, producing bottom‐up control of apex predators and elevated zooplankton production during warm periods leading to top‐down control by apex predators. A recent warming trend followed by rapid cooling on the Bering Sea shelf permitted testing of the OCH. During warm years (2003–06), euphausiid and Calanus marshallae populations declined, post‐larval pollock diets shifted from a mixture of large zooplankton and small copepods to almost exclusively small copepods, and juvenile pollock dominated the diets of large predators. With cooling from 2006–09, populations of large zooplankton increased, post‐larval pollock consumed greater proportions of C. marshallae and other large zooplankton, and juvenile pollock virtually disappeared from the diets of large pollock and salmon. These shifts in energy flow were accompanied by large declines in pollock stocks attributed to poor recruitment between 2001 and 2005. Observations presented here indicate the need for revision of the OCH to account for shifts in energy flow through differing food‐web pathways due to warming and cooling on the southeastern Bering Sea shelf.  相似文献   

10.
Abstract The scallop fishery in southern Tasmania is one of the oldest in the world with harvest records dating back for over a century. This fishery has been plagued by episodic boom and bust cycles, a feature common to many fisheries targeting sessile marine invertebrates. In 2005, after a closure of 12 years, the fishery was once again opened to harvest, but access was only granted to recreational fishers and conservative management arrangements were implemented with an expectation of providing longer‐term sustainability for the fishery. This study used dive surveys combined with telephone surveys of licenced fishers to monitor the fishery and resource status over between 2005 and 2009. Results indicated that, despite the conservative management approach, scallop stocks declined markedly over the study period, in part because of serial depletion of dense beds by recreational diving effort. This was set against the perception by the majority of divers who had participated in the fishery for multiple years that the stock levels had been maintained if not improved over the 4 years. This misperception reflects a shifting baseline phenomenon whereby divers progressively moved into new areas and switched target species, overlooking the lack of scallops in areas fished previously.  相似文献   

11.
Research has estimated associations between water temperature and the spatial distribution of marine fishes based upon correlations between temperature and the centroid of fish distribution (centre of gravity, COG). Analysts have then projected future water temperatures to forecast shifts in COG, but often neglected to demonstrate that temperature explains a substantial portion of historical distribution shifts. We argue that estimating the proportion of observed distributional shifts that can be attributed to temperature vs. other factors is a critical first step in forecasting future changes. We illustrate this approach using Gadus chalcogrammus (Walleye pollock) in the Eastern Bering Sea, and use a vector‐autoregressive spatiotemporal model to attribute variation in COG from 1982 to 2015 to three factors: local or regional changes in surface and bottom temperature (“temperature effects”), fluctuations in size‐structure that cause COG to be skewed towards juvenile or adult habitats (“size‐structured effects”) or otherwise unexplained spatiotemporal variation in distribution (“unexplained effects”). We find that the majority of variation in COG (including the north‐west trend since 1982) is largely unexplained by temperature or size‐structured effects. Temperature alone generates a small portion of primarily north–south variation in COG, while size‐structured effects generate a small portion of east–west variation. We therefore conclude that projections of future distribution based on temperature alone are likely to miss a substantial portion of both the interannual variation and interdecadal trends in COG for this species. More generally, we suggest that decomposing variation in COG into multiple causal factors is a vital first step for projecting likely impacts of temperature change.  相似文献   

12.
A general linear model (GLM) was used to standardize catch per unit effort (CPUE) data for Alaska walleye pollock (Theragra chalcogramma) from the Bering Sea fleet for the years 1995–1999. Data were stratified temporally by year and season and spatially by area using either Alaska Department of Fish and Game (ADF&G) or National Marine Fisheries Service (NMFS) reporting areas. Four factors were used: vessel identification (ID) number, vessel speed, percentage of pollock by weight in the haul (a measure of targeting), and whether most of the haul took place before or after sunset. At least 29 combinations of main effects, quadratic covariates, and interactions were tested for each year/area/season stratum. GLM models explained from 31 to 48% of the total sums of squares. Vessel identification number was included in all models and explained the most variability. Of the remaining factors, the square of the percentage of pollock in the haul was included in most models, following an F-test to determine parsimony. Analysis of the vessel identification number coefficients indicated that larger vessels tended to have higher CPUEs; and that this relationship differed between dedicated catcher vessels and offshore catcher processors. Coefficient estimates and response surfaces generally indicated increased CPUEs with the percentage of pollock in the haul and showed mixed results with vessel speed. The vessel identification number incorporated most vessel characteristics, leaving vessel speed primarily as a fitting variable with less biological meaning. The year/area/season stratification procedure was found to be necessary due to the unbalanced design, which otherwise would have factor levels with no data in a large combined model. In addition, the stratification procedure reduced the variability in CPUE substantially.  相似文献   

13.
Walleye pollock (Gadus chalcogrammus) supports one of the largest commercial fisheries in the world. Juvenile pollock are important forage fish in the eastern Bering Sea (EBS) ecosystem, often representing the largest fraction in the diets of major Bering Sea piscivores. Large variability in the EBS pollock stock biomass in recent years has been attributed primarily to fluctuations in recruitment. It has been hypothesized that predation rates on forage fishes increase when the cold pool (a body of cold water < 2°C) is extensive and covers much of the middle continental shelf, which tends to concentrate larger predatory fishes in the outer shelf and slope regions. In contrast, young pollock appear to tolerate colder temperatures than older fish and can stay in the cold pool, thereby reducing predation. We used a multispecies modeling approach to examine the effects of the cold pool size on predation of juvenile pollock. We found that predation on age‐1 pollock by age‐3+ pollock decreased, and predation on age‐1 and age‐2 pollock by arrowtooth flounder increased with increasing bottom temperature, which was used as a proxy for the cold pool size. These results suggest that the cold pool creates spatial separation between juvenile pollock and arrowtooth flounder, but not between adult and juvenile pollock. The model developed in this study could be used to examine the effects of other covariates on interspecific interactions, help explain observed changes in fish communities, and understand implications of climate change on ecosystems and their productivity.  相似文献   

14.
Previous studies have shown that Pacific herring populations in the Bering Sea and north-east Pacific Ocean can be grouped based on similar recruitment time series. The scale of these groups suggests large-scale influence on recruitment fluctuations from the environment. Recruitment time series from 14 populations were analysed to determine links to various environmental variables and to develop recruitment forecasting models using a Ricker-type environmentally dependent spawner–recruit model. The environmental variables used for this investigation included monthly time series of the following: southern oscillation index, North Pacific pressure index, sea surface temperatures, air temperatures, coastal upwelling indices, Bering Sea wind, Bering Sea ice cover, and Bering Sea bottom temperatures. Exploratory correlation analysis was used for focusing the time period examined for each environmental variable. Candidate models for forecasting herring recruitment were selected by the ordinary and recent cross-validation prediction errors. Results indicated that forecasting models using air and sea surface temperature data lagged to the year of spawning generally produced the best forecasting models. Multiple environmental variables showed marked improvements in prediction over single-environmental-variable models.  相似文献   

15.
We examined recruitment and average weight-at-age time series for Pacific herring ( Clupea pallasi ) populations from the Bering Sea and north-east Pacific Ocean to determine similarities. Statistical correlation and multivariate clustering methods indicated Pacific herring populations form large-scale groups. Large year classes occur synchronously among several Pacific herring populations. Multivariate cluster analyses of recruitment and weight-at-age data indicated that Bering Sea herring populations are distinct from north-east Pacific Ocean populations. Within the NE Pacific Ocean, there appear to be three groups of herring populations: a British Columbia group, a south-east Alaska coastal group, and an outer Gulf of Alaska group. Jackknife and randomization tests indicate these groups are robust and not the result of random chance. Deviations from observed herring population groups were examined for indications of anthropogenic perturbations. The Prince William Sound herring populations did not show any strong deviations corresponding to the oil spill of 1989. There might not yet be enough data since the spill to detect changes in the recruitment or weight-at-age data since that time, particularly if oil spill effects were concentrated on the early life history stages.  相似文献   

16.
Conditions affecting distributions of larval walleye pollock ( Theragra chalcogramma ) were examined at Shelikof Strait, Alaska, during springtime, 1986 and 1987. Abundance and distribution of larval pollock southwest of the Strait's southern entrance was determined with oblique plankton tows taken each year in May. Infrared images of sea surface temperature patterns were derived from AVHRR scenes obtained by NOAA satellites during each April and May. Pattern displacements between 24-hour-interval images were used to estimate surface motion. Each spring, measurements were taken by remote weather stations and ships, and a nearsurface current meter record was obtained during 1987. Treated as quasi-synoptic, spatial relations between sets of surface temperature, surface flow, and larval pollock distributions show coincidences between submesoscale physical and biological features. The highest larval abundances occurred as patches within a cold plume (1986) and an eddy (1987). These confirm that physical features can retain larval pollock on the continental shelf. Observations are examined for evidence of physical and biological events that jointly can cause such coincidences and foster alternatives for survival during transport to nursery grounds. Explanations for presence of cohorts observed within the 1987 eddy are given in terms of spatial and temporal relationships evident between spawning and hatching areas, hatch date distributions, meanders, eddy generation and movement, background flow, and advection times. The observations, analyses, and results are consistent with the concept of a coupled, fluctuating biophysical process that can emulate variations in larval abundance and provide a multiplicity of system pathways for early-life stages representations.  相似文献   

17.
对黄海中部、长江口邻近海域和闽浙沿岸海域47个站位的表层沉积物样品及6个站位的柱状沉积物样品的鱼鳞沉积量(SDA)进行了调查,揭示了我国典型渔业海域鱼鳞沉积信息及空间分布,并证明了应用鱼鳞沉积速率(SDR)追溯鱼类种群动态变化的方法在我国海域的可行性.结果表明,黄海中部的鱼鳞组成种类比较单一,主要由鳀和小黄鱼组成,以鳀占绝对多数.平面分布中缇占75.0%,小黄鱼占25.0%,发现鱼鳞的站位基本处在黄海中部的西北与东南边缘,10594 站位(34°59.9′N,122°29.9′E)、12694 站位(33°59.9′N,123°59.0′E)鱼鳞沉积量较高.黄海中部3个站位的鱼鳞沉积量随深度增加表现出不均匀的垂直分布,具有较为一致的变化趋势,并出现了明显而统一的高峰段.长江口单位体积的鱼鳞沉积量低于黄海中部,鱼鳞组成种类复杂.平面分布中有68.1%的鱼鳞被甄别出,数量较多的鱼种分别为小黄鱼29.2%,发光鲷12.5%,鳀8.3%.发现鱼鳞的站位基本沿舟山渔场中心延伸并与海岸平行分布,以H-28站位(28°09.1′N,122°55.3′E)鱼鳞沉积量较高.长江口3个站位的鱼鳞沉积量垂直分布由较多的鱼种组成,呈不规则变化,但未出现具有连续变化趋势的优势鱼种和相似的变化趋势.相比较而言,黄海中部是更理想的研究区域.  相似文献   

18.
Walleye pollock Theragra chalcogramma (pollock hereafter) is a key ecological and economic species in the eastern Bering Sea, yet detailed synthesis of the spatial and temporal patterns of pollock ichthyoplankton in this important region is lacking. This knowledge gap is particularly severe considering that egg and larval distribution are essential to reconstructing spawning locations and early life stages drift pathways. We used 19 yr of ichthyoplankton collections to determine the spatial and temporal patterns of egg and larval distribution. Generalized additive models (GAMs) identified two primary temporal pulses of pollock eggs, the first occurring from 20 February to 31 March and the second from 20 April to 20 May; larvae showed similar, but slightly lagged, pulses. Based on generalized cross‐validation and information theory, a GAM model that allowed for different seasonal patterns in egg density within three unique areas outperformed a GAM that assumed a single fixed seasonal pattern across the entire eastern Bering Sea. This ‘area‐dependent’ GAM predicted the highest densities of eggs (i.e., potential spawning locations) in three major areas of the eastern Bering Sea: near Bogoslof Island (February–April), north of Unimak Island and the Alaska Peninsula (March–April), and around the Pribilof Islands (April–August). Unique temporal patterns of egg density were observed for each area, suggesting that pollock spawning may be more spatially and temporally complex than previously assumed. Moreover, this work provides a valuable baseline of pollock spawning to which future changes, such as those resulting from climate variability, may be compared.  相似文献   

19.
Northern rock sole recruitment in the eastern Bering Sea has been hypothesized to (a) depend on wind‐driven surface currents linking spawning and nursery areas, (b) be density‐dependent, and (c) be negatively impacted by cold bottom temperatures over a large nursery area during the first summer of life. A suite of models was developed to test these hypotheses. Data included 32 years of recruitment and spawning biomass estimates derived from a stock assessment model and wind and temperature indices customized to the environmental exposure of age‐0 northern rock sole in the eastern Bering Sea. The predictive ability of the models was evaluated, and the models were used to forecast recruitment to age‐4 for recent year classes which are poorly retained by the standard multi‐species bottom trawl survey gear. Models which included wind and temperature indices performed better than a naïve forecast based on the running mean. The best‐performing model was a categorical model with wind and temperature thresholds, which explained 49% of the variation in recruitment. Ricker models performed more poorly than models without a spawning biomass term, providing no evidence that recruitment is related to stock size. The models forecast higher recruitment for the most recent year classes (2015–2018) than for prior year classes with observed poor recruitment (2006–2013). These environment‐based recruitment forecasts may improve recruitment estimates for the most recent year classes and facilitate study of the effects of future climate change on northern rock sole population dynamics.  相似文献   

20.
Analyses of climate effects often ignore differences in life history for individual species. We analyzed a 34‐year time series of eastern Bering Sea fish surveys to evaluate changes in distribution by length and between cold and warm shelf‐wide average water temperatures for 20 species over inhabited depth, temperature, and location. All species showed evidence of ontogenetic migration. Differences in distribution between years with warm and years with cold shelf‐wide water temperatures varied among species and within species at different lengths. For species where shelf‐wide temperature effects were detected, the mid‐sized fish were most active in changing spatial distribution. For aquatic organisms ontogenetic migration occurs because life history stages have different environmental requirements. This study illustrates the need to consider species responses to climate change over different life history stages, and that studies on ecosystem responses should take ontogenetic differences into consideration when assessing impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号