首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the long-term effect of summer grazing date and fall stocking rate on herbage production is critical to extending the grazing season in the Nebraska Sandhills. A study was conducted from 1997 to 2002 at the Gudmundsen Sandhills Laboratory located near Whitman, Nebraska, to determine the herbage production response to summer grazing date and October stocking rate on two different sites. Site 1 was dominated by warm-season grasses and site 2 was dominated by cool-season graminoids. At each site, three 0.37-ha pastures were constructed in each of four blocks before application of summer grazing treatments. Pastures in each block were grazed at 0.5 animal-unit months (AUM) · ha?1 in June or July, or were deferred from summer grazing. Following summer grazing treatments, October stocking rate treatments (no grazing or 1.0, 2.0, or 3.0 AUM · ha?1) were applied to subunits of each summer grazing date pasture during mid-October. Vegetation was sampled in each pasture in mid-June and mid-August and sorted by functional group to determine the effect of 5 yr of grazing treatments on herbage production and residual herbage. Herbage production was not affected by summer or October grazing treatments on the warm-season grass–dominated site. Increasing October stocking rate, however, reduced cool-season graminoid production and subsequent herbage production 25% by year 5 of the study. Residual herbage at both sites at the end of the October grazing periods explained as much as 16% to 34% of subsequent year’s herbage production. Grazing managers in the Nebraska Sandhills can extend the grazing season by lightly stocking pastures in the summer to facilitate additional fall grazing. Heavy stocking in October over several years on cool-season–, but not warm-season–, dominated sites will reduce production of cool-season graminoids on these sites.  相似文献   

2.
3.
Growth studies of long-lived shrubs are uncommon. In semi-arid rangelands, livestock and wildlife grazing influence growth processes and may interact with changing climate. Tierberg-LTER, excluded from livestock since 1987, and two adjacent ranches allowed for a comparative growth study of three shrub species (Osteospermum sinuatum – palatable, Pteronia empetrifolia – moderately palatable, and P. pallens – unpalatable) across contrasting present ungulate herbivory (none in exclosures, wildlife only, or livestock and wildlife combined) and past livestock herbivory (moderate and overgrazed). Marked individuals were measured at irregular intervals over 25 years. Stem basal diameter (mm), height (m) and two canopy diameters (m) were measured at the onset of the study and in 2014. Mean basal diameter growth (mm y?1) varied between species and treatments. Change in mean attribute values was influenced by interactions with grazing history and treatments. Some historical and grazing treatments had a negative effect on the palatable O. sinuatum and no significant effect on moderately palatable P. empetrifolia or unpalatable P. pallens. The age of the originally marked individuals are unknown but >70% of these individuals survived over the 25-year period. Our results support previous findings that dwarf shrubs in deserts are slow growing and long lived, and that grazing regime affects plant growth.  相似文献   

4.
We evaluated elk (Cervus elaphus), mule deer (Odocoileus hemionus), cattle (Bos taurus), and domestic sheep (Ovis aries) diet composition, diet overlap, and forage selection on aspen (Populus tremuloides Michaux)–sagebrush (Artemisia spp. L.) summer range in northeastern Nevada to understand potential for forage competition to provide better information for managing these communities. Diets were determined through microhistological fecal analysis from 1998 to 2000, and forage selection was evaluated at feeding sites in aspen and sagebrush communities in 1999 and 2000. Elk spring diets were the most diverse in composition; summer elk diets were dominated by forbs (59%–78%); deer consumed mostly woody browse (64%–72%); and cattle and sheep ate mostly graminoids. Lupines (Lupinus spp. L.) constituted ≥ 11% of elk, deer, and sheep diets in summer. Spurred lupine (Lupinus caudatus Kellogg) was the lupine typically selected in feeding sites and greatest consumption occurred in summer when total alkaloid levels were lowest. Highest diet overlap was between cattle and sheep in 1999 (68%) and lowest between deer and cattle in 2000 (3%). Summer elk and deer diets overlapped moderately (45%–59%). Diets did not differ between elk in spring with sheep, elk in summer with deer and sheep, or cattle with sheep. Cattle foraged selectively on forbs in aspen communities (68%) and on graminoids in sagebrush communities (88%), reflecting relative forage availabilities. We detected no differences among elk, cattle, and sheep for forage selection in aspen communities. Electivity indices indicated elk preferred forbs in aspen and sagebrush communities; cattle preferred graminoids in sagebrush; and foraging sheep preferred forbs in aspen. Our results suggest potential for forage competition among ungulates on aspen–sagebrush summer range is highest for forbs in aspen communities. Monitoring productivity and use of key forage species, particularly forbs in aspen communities, should complement management objectives on shared aspen–sagebrush summer range.  相似文献   

5.
Although Magellanic meadows have been subject to ungulate herbivory for a long time; they have suffered severe grazing by domestic sheep since the end of the 19th century. We hypothesized that, if protected from grazing, the present dominant dwarf forms would be replaced by taller competitive forms, mainly grasses. We then monitored floristic composition along a gradient of soils over periods of 5 to 16  on seven meadow sites under grazing and, in five, also on exclosures. Initial and final floristic samples were classified with TWINSPAN and ordinated with Detrended Correspondence Analysis (DCA). We also tracked cover changes in life-forms (grasses, dwarf sedges/rushes, rhizomatous helophytes, and cushion shrubs). At the end of the study, we assessed floristic similarity between paired grazed and exclosed treatments, and compared their life-form cover, diversity, biomass, and soil compaction with Student's t and Mann-Whitney's tests. Temporal displacements of composition in ordination space showed the effect of a long drought (DCA axis 1) and of grazing removal (DCA axis 2). Grazing exclusion had a much greater impact in wet meadows–where grasses became the dominant life-form–than in dry meadows. The effect of drought was shown in 1) the expansion of the cushion shrub Azorella trifurcata (Gaertn.) Pers. in both grazed and nongrazed treatments of the drier wetlands; 2) the decrease in Caltha sagittata Cav. in riparian meadows, and its encroachment under grazing in the wettest spring meadow; and 3) the large increase in Poa pratensis L. in exclosed wet meadows. Despite this strong response to environmental conditions, overall results supported the idea that these wetlands are equilibrium systems. Although the drier meadows have crossed an irreversible threshold, the Caltha-encroached wet meadows returned to a grass state in about 4  when protected from grazing. Their resilience suggests that they could be partly restored with rest-rotation grazing.  相似文献   

6.
Awareness of herbivore diet composition is an essential element of rangeland stewardship. Objectives of our experiment were to characterize diet selection by yearling steers and mature ewes grazing native tallgrass prairie, changes in dietary preferences that occurred with advancing season, and overlap in selection patterns between ewes and steers. Eight contiguous native tallgrass pastures (31 ± 3.3 ha) were grazed by yearling beef steers (n = 279 per yr) from 15 April to 15 July for two grazing seasons. Mature ewes (n = 813 per yr) subsequently grazed four of the eight pastures (0.15 ha per ewe) from 1 August to 1 October each year. Beginning 1 May, five fresh fecal pats were collected along four permanent transects per pasture at 2-wk intervals until steers were removed on 15 July. Subsequently, fecal grab samples were collected from 25 designated ewes per pasture on 15 August and 15 September. Microhistological analyses were conducted on fecal samples to estimate dietary botanical composition, using 17 grass, forb, and browse species from the experimental site as reference standards. Botanical composition of pastures was estimated annually in October. Diet selection was evaluated using Kulcyznski’s Similarity Index. The proportions of total graminoids and total forbs in steer diets were not different (P = 0.37) among sampling periods. Steer diets were dominated by graminoids (≥ 88.4% of diets) throughout the experiment. Steers and ewes exhibited strong preference for Bouteloua gracilis, Buchloe dactyloides, Dalea purpurea, and Liatris punctata. Ewes also demonstrated strong preferences for Vernonia baldwinii and Ambrosia artemisiifolia. Steers avoided Lespedeza cuneata and Symphyotrichum ericoides, whereas ewes did not avoid any of the reference standards. Ewes selected approximately equal proportions of graminoids and forbs (58% and 42% of diets, respectively), and proportions did not differ (P = 0.67) between sampling periods. Diet selection by mature ewes and yearling steers overlapped by 65% under the conditions of our experiment.  相似文献   

7.
Catchment characteristics and disturbances control the conditions and processes found in stream ecosystems. We examined nutrient cycling linkages between riparian soils and adjacent streams and the impacts of the removal of ungulate grazing on these ecosystems and processes at six grazing exclosure sites in the Valles Caldera National Preserve, NM, USA. The exclusion of native and domestic ungulate grazers for 3 yr significantly increased the riparian aboveground biomass of standing vegetation (273 ± 155 in grazed vs. 400 ± 178 g . m-2 in exclosures) and litter (58 ± 75 in grazed vs. 110 ± 76 g . m-2 in exclosures) (P = 0.003 and 0.006, respectively). Except for an increase in total soil phosphorous (P) at three of the six sites, soil nutrient values were minimally affected by grazing after five growing seasons. Within the six sites studied, no connection was found between 0–15-cm depth soils, which were P-limited based on stoichiometric ratios, and stream nutrient availability or limitation, which were nitrogen limited. Stream geomorphology was not significantly altered by 5 yr of grazing exclusion. The elimination of grazing suppressed instream nutrient processing with significantly longer NH4 uptake lengths (P = 0.003). These results suggest the exclusion of ungulate grazing impacts terrestrial characteristics (increased standing vegetative biomass) that are linked to ecosystem services provided by adjacent aquatic ecosystems (reduced N-uptake). Management plans should carefully balance the positive effect of grazing on stream nutrient processing and retention reported here with the well-documented grazing-related loss of other ecosystem services such as decreased fish and aquatic invertebrate habitat and effects on water-quality parameters such as turbidity and water temperature.  相似文献   

8.
9.
We determined whether cows in low (LBC) or high body condition (HBC) would consume different amounts of green pine needles (Pinus ponderosa). Cows (mature; open Hereford and Hereford x Angus) were fed a maintenance basal diet (alfalfa pellets) for Exp. 1 and 2; during Exp. 3 and 4, cows were fed high-protein and high-energy diets, respectively. Experiment 5 was a grazing study on rangeland during winter in South Dakota; diets were determined by using bite counts. Mean BCS (1 = emaciated, 9 = obese) was 7.5 for HBC cows and <4.0 for LBC cows during the experiments. During Exp. 1, LBC cows consumed more (P = 0.001) pine needles than did HBC cows (5.5 +/- 0.25 vs. 1.0 +/- 0.14 g/kg of BW daily, respectively). During Exp. 2, there was a day x treatment interaction (P = 0.001) as LBC cows consumed variable, but greater, amounts of pine needles than did HBC cows (3.7 +/- 0.19 vs. 1.3 +/- 0.12 g/kg of BW daily, respectively). When fed a high-protein/low-energy diet, LBC cows ate more (P = 0.04) pine needles than did HBC cows. When fed a low-protein/high-energy diet, there was a day x treatment interaction (P = 0.001) because LBC cows consumed more pine needles than did HBC cows for the first 3 d of the study, and then consumption by LBC animals decreased during the last 4 d. These experiments suggest that the protein:energy ratio may be an important factor in the ability of cows to tolerate terpenes, and that cows were not able to sustain an increased quantity of needle consumption on a low-protein diet. During the 25-d grazing study, there was a day x treatment interaction (P = 0.001) as LBC animals selected more pine needles (up to 25% of daily bites) on some days compared with HBC cows. Weather influenced pine needle consumption because pine needle bites by LBC cows were related (r(2) = 0.60; P = 0.001) to days of greater snow depth and lower minimum daily temperatures. Both LBC and HBC cows increased selection of pine needles from trees during cold, snowy weather, but the magnitude of the increase was greater for LBC cows. The LBC cows consumed more pine needles than did HBC cows in all experiments, except when cows were fed a low-protein diet. This study indicates that both body condition and protein intake are important factors in pine needle consumption.  相似文献   

10.
Comparisons of stocking rates across sites can be facilitated by calculating grazing pressure. We used peak standing crop and stocking rates from six studies in the North American Great Plains (Cheyenne, Wyoming; Cottonwood, South Dakota; Hays, Kansas; Nunn, Colorado; Streeter, North Dakota; and Woodward, Oklahoma) to calculate a grazing pressure index and develop relationships for harvest efficiency, utilization, grazing efficiency, and animal performance and production. Average grazing pressures for heavy, moderate, and light stocking across the study sites were 40, 24, and 14 animal unit days · Mg?1, respectively. These grazing pressures resulted in average harvest efficiency values of 38%, 24%, and 14% and grazing efficiencies of 61%, 49%, and 39% for heavy, moderate, and light stocking rates, respectively. Utilization increased quadratically as grazing pressure index increased, whereas grazing and harvest efficiencies exhibited a linear increase with grazing pressure. The latter indicates that nonlivestock forage losses (e.g., weathering, senescence, wildlife, insects) were disproportional across stocking rates. Average daily gain of livestock decreased linearly as grazing pressure index increased across study sites. Prediction equations reaffirm assumptions of 50% grazing efficiency and 25% harvest efficiency associated with moderate stocking. Novel here, however, is that harvest and grazing efficiencies increased at high grazing pressures and decreased at low grazing pressures. Use of grazing pressure index to “standardize” stocking rates across rangeland ecosystems in the North American Great Plains should improve communication among scientists, resource managers, and the public, and thus better achieve both production and conservation goals on these lands.  相似文献   

11.
Knowledge of herbivory tolerance of dominant plant species and their responses to varying grazing intensity is required for sustainable grazing management in semiarid rangeland ecosystems. In a field experiment, we studied the effects of simulated grazing 0%, 30%, 50%, and 80% leaf removal (control, partial, intermediate, and heavy leaf removal) of three dominant perennial legumes: Astragalus cyclophyllon, Astragalus effuses, and Hedysarum criniferum in semiarid rangelands of southwestern Iran for 2 yr and tested 1) differential herbivory tolerance in terms of regrowth ability of belowground and aboveground biomass (AGB), fecundity, and nonstructural carbohydrate reserves; and 2) trade-off between forage quantity and quality—less defoliated plants produce larger amount of biomass with less forage quality and vice versa. The results showed a reduction in AGB and reproduction in each of the three plants. However, three forbs exhibited some sort of variations in shoot and root growth, reproduction and forage quality under intermediate and heavy leaf removal. Leaf removal in individuals of A. effusus and H. criniferum are more likely to compensate for tissue loss by allocating the available resources to the expansion of root biomass, at the cost of AGB and reproductive effort. Leaf removal also led to an increase in forage quality in each of the three forb species, depending on the level of height removal. The control plant had a higher amount of biomass production and lower amount of crude protein compared with heavy leaf removal treatments (i.e., 80%), by contrasting responses of acid detergent fiber and neutral detergent fiber, indicating a trade-off between forage quality and forage quantity. The results indicate that there is a balance among forage quantity, quality, and regrowth ability of belowground and aboveground tissues in intermediate leaf removal treatments of these forb species. This balance is used to develop principles for grazing management of steppe rangelands because such a regime meets different criteria including forage quantity, quality, and nonstructural carbohydrate reserves.  相似文献   

12.
Prescribed (or targeted) sheep grazing can effectively suppress the invasive perennial forb spotted knapweed (Centaurea stoebe L. ssp. micranthos [Gugler] Hayek). Some ranchers and other natural resource managers, however, resist using this weed management tool over concerns that sheep may consume too much of the graminoid standing crop, thereby decreasing its availability to cattle and wildlife and possibly harming graminoids with excessive defoliation. One potential approach to address these concerns is to graze spotted knapweed infestations first with cattle, immediately followed by sheep. We evaluated this sequential grazing strategy on foothill rangeland in western Montana, comparing sequential grazing at a moderate stocking rate in mid June (spotted knapweed in bolting stage) vs. mid July (spotted knapweed in late-bud/early flowering stage). Pastures (0.81 ha) were grazed with three yearling cattle for 7 d, immediately followed with 7 d of grazing by seven yearling sheep. Combined relative (i.e., utilization) of graminoids by cattle and sheep averaged 40% in June and July, safely within sustainable grazing use levels recommended for the site. Combined relative use of spotted knapweed by cattle and sheep also did not differ between June and July, averaging 62%. Previous research indicates that this degree of use is sufficient to suppress spotted knapweed. Our results indicate that prescribed sheep grazing can be applied immediately following cattle grazing in either June or July to suppress spotted knapweed without overusing desirable graminoids. Cattle and sheep will eat less graminoids and more spotted knapweed if cattle and sheep graze sequentially when spotted knapweed is in its late-bud/early flowering stage (mid July) rather than its bolting stage (mid June).  相似文献   

13.
Over a 3-yr period, the qualitative assessment protocol “Interpreting Indicators of Rangeland Health” was used to evaluate the status of three ecosystem attributes (soil/site stability, hydrologic function, and biotic integrity) at over 500 locations in and adjacent to Grand Staircase–Escalante National Monument (Utah). Objectives were to provide data and interpretations to support the development of site-specific management strategies and to investigate broad-scale patterns in the status of different rangeland ecological sites. Quantitative data on ground cover, plant community composition, and soil stability were collected to aid the evaluation of qualitative attributes and improve consistency of the assessment process. Ecological sites with potential vegetation dominated by varieties of big sagebrush (Artemisia tridentata Nuttall) had the highest frequencies (46.7%–75.0%) of assessments with low ratings (moderate or greater departure from expected reference conditions) for all three ecosystem attributes. In contrast, sites with potential vegetation characterized by Utah juniper (Juniperus osteosperma [Torrey] Little) and/or Colorado pinyon (Pinus edulis Engelmann) had low frequencies (0.0%–7.8%) of assessments with low ratings for all attributes. Several interacting factors likely contributed to the development of patterns among ecological sites, including 1) potential primary production and thus long-term exposure to production-oriented land uses such as livestock grazing; 2) the presence of unpalatable woody plants capable of increasing and becoming persistent site dominants due to selective herbivory, absence of fire, or succession; 3) soil texture through effects on hydrologic responses to livestock grazing, trampling, and other disturbances; and 4) past management that resulted in high livestock use of ecological sites with sensitive fine-loamy soils following treatments designed to increase forage availability. This case study illustrates an extensive application of an assessment technique that is receiving increasing use worldwide, and results contribute to an understanding of factors contributing to patterns and processes of rangeland degradation.  相似文献   

14.
Expert opinion was sought on 2 issues relating to herbivory: seasonal sheep preferences for plant species and seasonal plant response to grazing. Expert opinion is commonly used to parameterize models: it is therefore important to assess its quality. Understanding the limitations of expert knowledge can allow prioritization of future research. Nine experts in plant or grazing ecology from Scotland/Northern England were individually interviewed. The experts ranked sheep preferences for species in 4 rangeland vegetation types and provided categorical information on plant response to grazing. For both issues, seasonal information was collected. Uncertainty (unanswered questions) on plant responses was much higher than uncertainty on sheep preferences. Uncertainty on sheep preference was significantly negatively correlated with plant species commonness, but not with quantity of scientific literature. Uncertainty on plant responses was significantly negatively correlated with both plant commonness and literature. There was agreement among experts on sheep preferences; standardized seasonal information for selected plant species is presented. In general, experts considered graminoids to be preferred over dwarf shrubs, with forbs and other species groups intermediate. Seasonal variation in sheep preference was greater for heath and mire than for grasslands. There was limited agreement among experts on seasonal plant responses. Some experts considered grazing in summer to affect growth more than grazing in winter, whereas others thought season had little effect. Sufficient agreement was found at the species level to present results on plant responses. Experts considered graminoids more resilient to grazing than dwarf shrubs. Experts agreed on sheep preference at different times of year, and on the overall resilience of plant species to grazing. However, the experts held 2 paradigms on the impact of seasonal grazing. Further research is required to explore this, because seasonal grazing regimes are currently promoted as conservation management tools.  相似文献   

15.
A grazing trial was conducted at the Kokstad Agricultural Station to compare the dry matter digestibility (DMD) and crude protein content (CP) of diets selected by four fistulated cattle which were continuously and rotationally grazing sourveld. Two stocking rates of 1,0 and 2,3 animals/ha (0,5 and 1,2 LSU/ha) were applied under each grazing method. The mean DMD and CP values of diets selected in the continuous and rotational grazing treatments, respectively, were: DMD=64,3%, 62,3%; CP=6,63%, 6,88%. The effect of stocking rate on the quality of the diet selected varied between the two grazing methods. DMD and CP of diets selected under rotational grazing decreased with time during the week‐long period of stay in each paddock. On average, DMD and CP values on the first and sixth day respectively, were: DMD=66,6%, 60,5%; CP=8,37%, 6,01%. These differences were more pronounced at the higher than at the lower stocking rate. It was concluded that, although some of the treatment differences were small, grazing method differences in the DMD of diets might at least partially account for observed differences in livemass gains under the two grazing systems.  相似文献   

16.
Despite a shift from yr-round bison grazing throughout the Great Plains before European settlement to extensive seasonal cattle grazing, little is known about ungulate grazing impacts on grassland streams. In this study we 1) determine whether grazing management is a significant driver of grassland stream morphology within the Flint Hills Ecoregion (Kansas, United States); 2) determine if yr-round bison grazing (the precolonial condition) and seasonal cattle grazing (the currently dominant grazing practice in the region) result in distinct stream morphology; and 3) determine if the introduction of cattle into ungrazed watersheds produces significant changes to channel morphology. We use a replicated watershed-scale study design and survey 17 streams across four grazing treatments (ungrazed, long-term bison grazed [yr-round], long-term cattle grazed [seasonal], and newly cattle grazed [seasonal]). Baseline geomorphic surveys were completed in 2010 following consistent grazing management since 1992, and resurveys were completed in 2011 and 2013 to determine short-term grazing impacts. Under the conditions of the experiment, we did not detect significant differences (P > 0.10) in channel morphology or stream bed substrate size among grazing treatments following nearly 2 decades of consistent grazing management. Cattle introduction into ungrazed watersheds resulted in modest (P < 0.05) stream widening (0.19 m, 3.9%) following two grazing seasons. Bison grazed watersheds also experienced modest (P < 0.05) stream widening (0.20 m, 5.1%) during the resurvey period. Stream widening from 2010 to 2013 within newly cattle-grazed and long-term bison-grazed treatments indicates that cattle and bison are capable of producing moderate alterations to grassland stream morphology over short time periods. However, longer time periods containing more diverse hydrologic conditions may be necessary to generate larger geomorphic changes between surveys. Although we detected modest changes to stream morphology in response to grazing over short time periods, overall, stream morphology does not vary among grazing treatments in the study area.  相似文献   

17.
Achieving economically optimum livestock production on rangelands can conflict with conservation strategies that require lower stocking rate to maintain wildlife habitat. Combining the spatial and temporal interaction of fire and grazing (pyric–herbivory) is a conservation-based approach to management that increases rangeland biodiversity by creating heterogeneous vegetation structure and composition. However, livestock production under pyric–herbivory has not been reported. In both mixed-grass prairie and tallgrass prairie, we compared livestock production in pastures with traditional fire and grazing management (continuous grazing, with periodic fire on tallgrass prairie and without fire on mixed-grass prairie) and conservation-based management (pyric–herbivory applied through patch burning) at a moderate stocking rate. Stocker cattle weight gain, calf weight gain, and cow body condition score did not differ (P > 0.05) between traditional and conservation-based management at the tallgrass prairie site for the duration of the 8-yr study. At the mixed-grass prairie site, stocker cattle gain did not differ in the first 4 yr, but stocker cattle gained more (P ≤ 0.05) on conservation-based management and remained 27% greater for the duration of the 11-yr study. Moreover, variation among years in cattle performance was less on pastures under conservation management. Traditional management in mixed-grass prairie did not include fire, the process that likely was associated with increased stocker cattle performance under conservation management. We conclude that pyric–herbivory is a conservation-based rangeland management strategy that returns fire to the landscape without reduced stocking rate, deferment, or rest.  相似文献   

18.
Little information is available to help managers of cool-season dominated semiarid rangelands determine when to begin and end grazing in the spring and fall. Therefore, we evaluated the effects of clipping spring and fall growth on subsequent-year yield of needle-and-thread (Hesperostipa comata [Trin. & Rupr.] Barkworth) and threadleaf sedge (Carex filifolia Nutt.) (USDA-NRCS 2012) using a randomized complete block, split-plot experimental design with fall moisture regimes (ambient or supplemental water) applied to main plots and defoliation treatments applied to subplots. Two combinations of spring defoliation, one for each fall moisture regime, were composed of a factorial array of three spring clipping dates (early May, late May, mid-June) and three levels of defoliation (0%, 40%, 80%). A third combination of treatments was composed of the supplemental water regime and an array of a single spring clipping date (late May), a single fall clipping date (late September, after regrowth), and three levels of defoliation (0%, 40%, 80%) in the same year. Ambient fall moisture was low, leading to continued senescence of needle-and-thread and threadleaf sedge, whereas the application of 10 cm of supplemental water in mid-August stimulated fall growth. The study was replicated with two sets of main plots at four sites in consecutive years, 2002 and 2003. Yield data were collected in mid-June of the year following treatment. Subsequent-year yield of needle-and-thread was not affected by defoliation under average plant-year precipitation conditions (2003) (P > 0.05); however, it was reduced following heavy (80%) late spring (late May or June) defoliation during a drought year (2002) (P > 0.05). Subsequent-year yield of threadleaf sedge was not affected by defoliation in either year (P > 0.05). Because it is difficult to predict when drought will occur, avoiding heavy late-spring grazing in needle-and-thread–dominated pastures in consecutive years would be prudent.  相似文献   

19.
Pine needle abortion in cattle: a review and report of 1973-1984 research   总被引:1,自引:0,他引:1  
Research has verified field observations that cows grazing ponderosa pine needles may abort. The incidence and nature of the abortions produced experimentally simulate very closely those reported by livestock producers and veterinarians. The incidence of experimentally-produced abortions varied markedly from year to year even though the needles were collected in the same general area each year. This suggests that the abortifacient compound(s) in the needles vary from year to year, probably due to environmental and site conditions. The impact of stress (cold and nutrition) as a factor in the abortions was examined. It was concluded that the only effects would be on the willingness of cows to eat the needles. The pine needle abortion problem, what is known of the etiology, and mechanisms of the abortion are reviewed. The usefulness of bioassay systems to study pine needle abortions is discussed.  相似文献   

20.
Anecdotal reports suggest that abortion occurs in New Zealand cattle after ingestion of macrocarpa (Cupressus macrocarpa). The clinical signs observed are similar to those seen in abortions caused by ponderosa pine (Pinus ponderosa Laws). Isocupressic acid has been identified as an abortifacient component of the needles of ponderosa pine. Macrocarpa collected from the Palmerston North area contained 0.89% and 1.24% isocupressic acid, compared to 1.70% isocupressic acid in Ponderosa pine needles from Oregon in the United States as analysed by the USDA-ARS Poisonous Plant Research Laboratory. These findings support observations that macrocarpa causes abortion in late gestation cattle in New Zealand and suggest the causal agent is probably isocupressic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号