首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil depth effects on honey mesquite (Prosopis glandulosa Torr) cover and density and perennial grass standing crop were evaluated over an 11-yr period (1995–2005) on two lightly stocked and two conservatively stocked pastures on the Chihuahuan Desert Rangeland Research Center in south-central New Mexico. These four adjoining pastures have similar size, vegetation, and soils. Soils in these study pastures are primarily light sandy loams varying from a few centimeters to 1 m or more in depth underlain by a calcium carbonate layer. Deep soils had lower perennial grass standing crop and higher honey mesquite cover and density than did shallow soils at both the beginning (1995–1997) and ending (2003–2005) periods of study. Average perennial grass standing crop across the four study pastures dropped 82% between 1995–1997 and 2003–2005 because of drought during the last 5 yr of study. Honey mesquite canopy cover and perennial grass standing crop did not differ between light and conservative grazing treatments at the beginning or end of our study. Honey mesquite canopy cover did not change from 1995–1997 to 2003–2005 but honey mesquite density was higher in 2003–2005 than in 1995–1997. Our study shows that both soil depth and climatic fluctuations have a major influence on vegetation dynamics in desert and semiarid areas.  相似文献   

2.
Grazing management is important for sustaining the productivity and health of rangelands. However, the effects of grazing management on herbage growth and species composition in the tropical savannas of northern Australia are not well known. In this eight-year study the influences of utilization rate and resting pastures from grazing on vegetation dynamics were measured at three sites in northeast Queensland, Australia. The sites had high, medium, and low soil fertility, and there were two land condition classes (States I and II) at each site. Severe drought occurred during the first four years, but above-average rainfall was received in the second half of the study. High utilization rates reduced biomass, perennial grass basal area, and ground cover. The reduction in biomass was due to both higher consumption and decreased primary production. State I condition plots at the high and medium soil fertility sites were initially dominated by decreaser perennial grasses, but these declined at all utilization levels, particularly the high rate. They were largely replaced by exotic perennial grasses. At the low fertility site there were no exotic grasses, and the decreaser grasses increased in all treatments, with the increases greatest in plots with low utilization or medium utilization plus resting. In the State II condition plots at the high and medium fertility sites, low or moderate utilization, led to an increase in both decreaser and exotic perennial grasses; with high utilization the decreaser perennial grasses declined and were replaced largely by exotic perennial grasses. This study clearly demonstrated that either conservative stocking with year-round grazing or a grazing system that includes some wet-season resting will help maintain land in a desirable state or help facilitate the transition from a less desirable ecological state to one more desirable for pastoral production and rangeland condition.  相似文献   

3.
Cow–calf productivity on 2 lightly (25%–30% use) and 2 conservatively grazed pastures (35%–40% use) were evaluated over a 5-year-period (1997 to 2001) in the Chihuahuan Desert of south-central New Mexico. Spring calving Brangus cows were randomly assigned to study pastures in January of each year. Experimental pastures were similar in area (1 098 ± 69 ha, mean ± SE) with similar terrain and distance to water. Use of primary forage species averaged 28.8% ± 4.3% in lightly stocked pastures and 41.8% ± 4.4% on conservatively grazed pastures. Perennial grass standing crop (168.8 ± 86 vs. 173.6 ±  kg·ha-1) and adjusted 205-day calf weaning weights (279.1 ±  vs. 270.7 ±  kg) did not differ among lightly and conservatively grazed pastures. Cow body condition scores in autumn, winter, and spring were similar among grazing levels as were autumn and winter body weights. However, cow body weights tended to be heavier (P < 0.10) in lightly grazed pastures relative to conservatively grazed pastures (524 vs. 502 ± 9.7 kg) in spring. Lightly grazed pastures yielded greater (P < 0.05) kg of calf weaned·ha-1 and calf crop percent than conservatively grazed pastures in 1998 due to destocking of conservatively grazed pastures during that year's drought. Conversely, pregnancy percent tended to be greater (P < 0.1) in conservatively relative to lightly grazed pastures (92.6% vs. 87.7%); however, this advantage is explained by herd management as cows in the conservatively grazed pastures were removed during drought of 1998, avoiding exposure to the drought stress experienced by cows in the lightly grazed pastures. Nonetheless, pregnancy percents from both grazing treatments would be acceptable for most range beef production systems. Results suggest that consistently applying light grazing use of forage is a practical approach for Chihuahuan Desert cow–calf operations to avoid herd liquidation during short term drought.  相似文献   

4.
The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat–fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area of research.  相似文献   

5.
Long-term information on the effects of managed grazing versus excluded grazing effects on vegetation composition of desert rangelands is limited. Our study objectives were to evaluate changes in frequency of vegetation components and ecological condition scores under managed livestock grazing and excluded livestock grazing over a 38-yr period at various locations in the Chihuahuan Desert of southwestern New Mexico. Sampling occurred in 1962, 1981, 1992, 1998, 1999, and 2000. Range sites of loamy (1), gravelly (2), sandy (2), and shallow sandy (2) soils were used as replications. Black grama (Bouteloua eriopoda Torr.) was the primary vegetation component at the seven locations. Dyksterhuis quantitative climax procedures were used to determine trends in plant frequency based on a 1.91-cm loop and rangeland ecological condition scores. Frequency measures of total perennial grass, black grama, tobosa (Hilaria mutica Buckley), total shrubs, honey mesquite (Prosopis glandulosa Torr.), and other vegetation components were similar on both grazed and ungrazed treatments (P > 0.1) at the beginning and end of the study. The amount of change in rangeland ecological condition scores was the same positive increase (14%) for both grazed and ungrazed treatments. Major changes (P < 0.1) occurred within this 38-yr study period in ecological condition scores and frequency of total perennial grasses and black grama in response to annual fluctuations in precipitation. Based on this research, managed livestock grazing and excluded livestock grazing had the same long-term effects on change in plant frequency and rangeland ecological condition; thus, it appears that managed livestock grazing is sustainable on Chihuahuan desert rangelands receiving over 25 cm annual precipitation.  相似文献   

6.
Usable space for northern bobwhites (Colinus virginianus) has declined significantly over the past 3 decades in Texas because non-native grasses have replaced native vegetation. We hypothesized that burning patches in pastures dominated by buffelgrass (Pennisetum ciliare) and Old World bluestems (Bothriochloa spp. and Dichanthium spp.) followed by livestock grazing would increase limiting habitat attributes, thereby increasing usable space and bobwhite demographic parameters and population densities. Our study was conducted during 2009–2011 in LaSalle County, Texas on a ranch dominated by non-native grasses. Our experimental design was composed of 2 blocks with two 240-ha pastures, one control (graze only), and one treatment (patch-burn and graze) in each. We estimated grass standing crop in grazing exclosures (June–September) and habitat attributes along transects (October) 2009–2011. Bobwhites were captured and monitored via radiotelemetry 2–3 times/wk during March–November. Means of vegetation metrics important to bobwhites such as bare ground, traversibility, and forb and subshrub cover were similar between control and treatment units in post-treatment years. However, grass standing crop tended to be lower in treatment (June and August 2010 and September 2011—110.5 ± 26.2 g/m2) compared with control units (June and August 2010 and September 2011—145.5 ± 58.6 g/m2). Plant species richness was also greater (21%) in treatment (4.6 ± 0.4/0.1 m2) compared with control units (3.8 ± 0.4/0.1 m2) during the last year of the study (P ≥ 0.057). Patch heterogeneity was increased in treatment units. There was an increase in bobwhite densities in treatment units, although demographic metrics remained similar between treatment and controls. Patch burning and grazing is a viable tool for managing monotypic non-native grasslands for bobwhites in semiarid environments.  相似文献   

7.
Prescribed fire in rangeland ecosystems is applied for a variety of management objectives, including enhancing productivity of forage species for domestic livestock. In the big sagebrush (Artemisia tridentata Nutt.) steppe of the western United States, fire has been a natural and prescribed disturbance, temporarily shifting vegetation from shrub–grass codominance to grass dominance. There is limited information on the impacts of grazing to community dynamics following fire in big sagebrush steppe. This study evaluated cattle grazing impacts over four growing seasons after prescribed fire on Wyoming big sagebrush (Artemisia tridentata subsp. Wyomingensis [Beetle & Young] Welsh) steppe in eastern Oregon. Treatments included no grazing on burned and unburned sagebrush steppe, two summer-grazing applications after fire, and two spring-grazing applications after fire. Treatment plots were burned in fall 2002. Grazing trials were applied from 2003 to 2005. Vegetation dynamics in the treatments were evaluated by quantifying herbaceous canopy cover, density, annual yield, and perennial grass seed yield. Seed production was greater in the ungrazed burn treatments than in all burn–grazed treatments; however, these differences did not affect community recovery after fire. Other herbaceous response variables (cover, density, composition, and annual yield), bare ground, and soil surface litter did not differ among grazed and ungrazed burn treatments. All burn treatments (grazed and ungrazed) had greater herbaceous cover, herbaceous standing crop, herbaceous annual yield, and grass seed production than the unburned treatment by the second or third year after fire. The results demonstrated that properly applied livestock grazing after low-severity, prescribed fire will not hinder the recovery of herbaceous plant communities in Wyoming big sagebrush steppe.  相似文献   

8.
Understanding the long-term effect of summer grazing date and fall stocking rate on herbage production is critical to extending the grazing season in the Nebraska Sandhills. A study was conducted from 1997 to 2002 at the Gudmundsen Sandhills Laboratory located near Whitman, Nebraska, to determine the herbage production response to summer grazing date and October stocking rate on two different sites. Site 1 was dominated by warm-season grasses and site 2 was dominated by cool-season graminoids. At each site, three 0.37-ha pastures were constructed in each of four blocks before application of summer grazing treatments. Pastures in each block were grazed at 0.5 animal-unit months (AUM) · ha?1 in June or July, or were deferred from summer grazing. Following summer grazing treatments, October stocking rate treatments (no grazing or 1.0, 2.0, or 3.0 AUM · ha?1) were applied to subunits of each summer grazing date pasture during mid-October. Vegetation was sampled in each pasture in mid-June and mid-August and sorted by functional group to determine the effect of 5 yr of grazing treatments on herbage production and residual herbage. Herbage production was not affected by summer or October grazing treatments on the warm-season grass–dominated site. Increasing October stocking rate, however, reduced cool-season graminoid production and subsequent herbage production 25% by year 5 of the study. Residual herbage at both sites at the end of the October grazing periods explained as much as 16% to 34% of subsequent year’s herbage production. Grazing managers in the Nebraska Sandhills can extend the grazing season by lightly stocking pastures in the summer to facilitate additional fall grazing. Heavy stocking in October over several years on cool-season–, but not warm-season–, dominated sites will reduce production of cool-season graminoids on these sites.  相似文献   

9.
Selective grazing can modify the productive capacity of rangelands by reducing competitiveness of productive, palatable species and increasing the composition of more grazing-resistant species. A grazing system (season-long and short-duration rotational grazing) × stocking rate (light: 16 steers · 80 ha-1, moderate: 4 steers · 12 ha-1, and heavy: 4 steers · 9 ha-1) study was initiated in 1982 on northern mixed-grass prairie. Here, we report on the final 16 years of this study (1991–2006). Spring (April + May + June) precipitation explained at least 54% of the variation in peak standing crop. The percentage of variation explained by spring precipitation was similar between stocking rates with short-duration grazing but decreased with increasing stocking rate for season-long grazing. April precipitation explained the greatest percentage of the variation in peak standing crop for the light stocking rate (45%), May precipitation for the moderate stocking rate (49%), and June precipitation for the heavy stocking rate (34%). Peak standing crop was 23%–29% greater with light (1 495 ± 66 kg · ha-1, mean ± 1 SE) compared to moderate (1 218 ± 64 kg · ha-1) and heavy (1 156 ± 56 kg · ha-1) stocking rates, which did not differ. Differences in peak standing crop among stocking rates occurred during average and wet but not dry springs. Neither the interaction of grazing system and stocking rate nor grazing system alone affected standing crop across all years or dry, average, or wet springs. Grazing-induced modification of productive capacity in this northern mixed-grass prairie is attributed to changes in species composition with increasing stocking rate as the less productive, warm-season shortgrass blue grama (Bouteloua gracilis [H.B.K.] Lag. ex Griffiths) increases at the expense of more productive, cool-season midheight grasses. Land managers may need to substantially modify management to offset these losses in productive capacity.  相似文献   

10.
A study was conducted on upland range in the Nebraska Sandhills to determine differences in plant species frequency of occurrence and standing crop at various topographic positions on pastures grazed with short-duration grazing (SDG) and deferred-rotation grazing (DRG). Pastures within each grazing treatment were grazed at comparable stocking rates (SDG = 1.84 animal unit months (AUM) · ha?1; DRG = 1.94 AUM · ha?1) by cow–calf pairs from 1999 to 2005 and cow–calf pairs and spayed heifers from 2006 to 2008. Plant frequency of occurrence data were collected from permanently marked transects prior to, midway through, and at the conclusion of the study (1998, 2003, and 2008, respectively) and standing crop data were collected annually from 2001 to 2008 at four topographic positions (dune top, interdune, north slope, and south slope). Livestock performance data were collected during the last 3 yr of the study (2006 to 2008). Positive change in frequency of occurrence of prairie sandreed (Calamovilfa longifolia [Hook.] Scribn.) was 42% greater on DRG pastures than SDG after 10 yr. Total live standing crop did not differ between DRG and SDG except in 2001 when standing crop was 23% greater on DRG pastures. Standing crop of forbs and sedge was variable between grazing methods on interdune topographic positions depending on year. Average daily gain of spayed heifers (0.84 ±  kg · d?1 SE) did not differ between SDG and DRG. Overall, SDG was not superior to a less intensively managed grazing method (i.e., DRG) in terms of vegetation characteristics and livestock performance.  相似文献   

11.
甘南玛曲夏季牧场欧拉型藏羊牧食行为的研究   总被引:1,自引:0,他引:1  
为研究甘南玛曲夏季牧场草地状况对欧拉型藏羊牧食行为的影响,根据草地植被特征,通过野外调查了解甘南玛曲夏季牧场的草地状况,并采用跟踪观测的方法对欧拉型藏羊的牧食行为进行观察。结果表明:在夏季草场的昼采食时间最长(约450 min),游走时间较长(约80 min);反刍和站立时间基本相近,分别为32 min和28 min;夏季牧场白天的卧息时间非常少,约8 min。采食时间与地上生物量和牧草盖度成正相关(r=0.782, 0.902; P>0.05);昼反刍时间与牧草高度成极显著正相关(r=0.995; P<0.01);昼卧息时间与地上生物量成极显著负相关(r=-0.9994; P<0.01);昼站立时间与牧草高度成显著正相关(r=0.989; P<0.05),与牧草盖度成极显著负相关(r=-0.995; P<0.01);昼游走时间与牧草盖度成负相关(r=-0.905; P>0.05)。随牧草高度的增加,欧拉型藏羊的昼采食时间呈下降趋势,但采食时间占放牧时间的71.4%;由于夏季牧场牧草幼嫩多汁,欧拉型藏羊采食牧草后的反刍和卧息行为较少。  相似文献   

12.
Rangeland scientists struggle with how long rangeland experiments must continue in order to detect treatment effects, particularly in semiarid ecosystems characterized by slow responses and high spatiotemporal variability. We compared changes in eight grass and three shrub categories to grazing systems (yearlong vs. seasonal rotation with equivalent long-term stocking rates), and covariates (precipitation and mesquite [Prosopis velutina] gradients) over 12 yr (1972–1984) and 34 yr (1972–2006) on the Santa Rita Experimental Range, Arizona. We used split-plot analysis of variance, with year as the split, to make these comparisons. Grazing systems did not influence plant dynamics as shown by the lack of grazing system by year effect on all response variables in either time period. The absence of a detectable grazing effect on vegetation changes may be due to overriding influences of grazing intensity, pasture size, precipitation variability, and few replicates. Also, more time may be needed to detect the small accumulating and potentially temporary effects from grazing systems. The grazing system main effects present at the beginning and throughout the study suggest that pastures assigned to each grazing system had different potentials to support vegetation. Nearly twice the number of response variables were related to the precipitation covariate than to mesquite cover, but only about half of all the relationships were consistent between time periods. The struggle to know how long to observe before detecting a grazing system effect was not resolved with the additional 22 yr of observation because we cannot definitively reject that either more time is needed to detect small but cumulative effects or that the two grazing systems are not different.  相似文献   

13.
Holistic Planned Grazing? (HPG) is purported to have positive long-term effects on rangelands, enhancing ecosystem services. Given comparable environmental templates, but different management regimes, vegetation monitoring and landscape function analysis showed the Africa Center for Holistic Management (ACHM) at Dimbangombe had a significantly higher rangeland condition (composition, cover, standing crop and soil health) than adjacent Sizinda (SCR) and Monde (MCR) communal rangelands. Overall grazer density on ACHM is 42% higher than that of SCR (no data for MCR). Finer-scale satellite collar data for ACHM yielded a calculated stocking rate of 0,55 LSU ha-1 y-1 or 24 590 kg km-2, which constitutes high-density grazing. An energy flow estimate shows that the grazing resource would, on average, not be limiting for livestock on ACHM but limiting on SCR. HPG may include an element where kraals are inserted into degraded rangelands for a short period. Overall, ACHM shows stable perennial composition with smaller tufts significantly closer together. A similar result was visible in SCR where maize yields were visibly higher on kraaled areas than on adjacent untreated fields. HPG yields positive long-term effects on ecosystem services (soils and vegetation) and points to the HPG approach enhancing the sustainability of livestock and wildlife in this environment.  相似文献   

14.
Cool-season grass mixtures are rarely evaluated for preference, yield, and persistence under horse grazing. The objectives of this research were to evaluate horse preference, forage yield, and persistence of cool-season grass mixtures under horse grazing. Eight commercially marketed and four experimental perennial cool-season grass mixtures were planted in 2009 in a randomized complete block with five replicates and grazed by four adult horses during 2010, 2011, and 2012. All mixtures contained four to six cool-season perennial grass species. Specie density measurements were taken in each spring and fall, and yield was mechanically measured before each grazing period. After grazing, preference was determined by visually assessing percentage of forage removal on a scale of 0 (no grazing) to 100 (100% of vegetation removed). Data were analyzed using a mixed-model analysis of variance and liner regression. Horses preferred mixtures containing tall fescue, perennial ryegrass, Kentucky bluegrass, and timothy (P < .001). Horses had less preference for mixtures containing ≥30% orchardgrass (P < .001). Mixtures had similar (P = .11) forage yields that ranged from 6,100 to 7,082 kg ha−1. After 2 years of grazing, orchardgrass and tall fescue increased; Kentucky bluegrass remained stable; and festulolium, meadow fescue, and perennial ryegrass had the greatest rate of decline in mixtures. Orchardgrass became the dominate species, regardless of initial percentage in the mixture. Mixtures containing tall fescue, perennial ryegrass, Kentucky bluegrass, and timothy should be planted in midwestern US horse pastures; however, mixtures will likely transition to tall fescue and Kentucky bluegrass–dominated pastures.  相似文献   

15.
A comprehensive understanding of multipaddock, rotational grazing management on rangelands has been slow to develop, and the contribution of adaptive management (Briske et al. 2011) and sufficient scale (Teague and Barnes 2017) have been identified as key omissions. We designed an experiment to compare responses of vegetation and cattle in an adaptively managed, multipaddock, rotational system with that of a season-long, continuous system at scales comparable with those of a working ranch. We hypothesized that 1) year-long rest periods in the adaptively managed, rotational pastures would increase the density and productivity of perennial C3 graminoids compared with continuously grazed pastures and 2) adaptive management, supported with detailed monitoring data, would result in similar cattle performance in the rotational as in the continuously grazed pastures. However, we found little supporting evidence for grazing management effects on C3 graminoid abundance or production under either above-average or below-average precipitation conditions during the 5-yr experiment. Furthermore, adaptive rotational grazing resulted in a 12–16% reduction in total cattle weight gain relative to continuous grazing each year. Our work shows that the implementation of adaptive management by a stakeholder group provided with detailed vegetation and animal monitoring data was unable to fully mitigate the adverse consequences of high stock density on animal weight gain. Under adaptive rotational grazing, C3 perennial grass productivity and stocking rate both increased following above-average precipitation. But when adaptive rotational management was directly compared with continuous grazing with the same increase in stocking rate, continuous grazing achieved similar vegetation outcomes with greater cattle weight gains. We suggest that managers in semiarid rangelands strive to maintain cattle at stock densities low enough to allow for maximal cattle growth rates, while still providing spatiotemporal variability in grazing distribution to enhance rangeland heterogeneity and long-term sustainability of forage production.  相似文献   

16.
Grazing by large mammals alters vegetation physiognomy, consequently changing habitat suitability for small mammal communities. We investigated the response of terrestrial small mammals to grazing by wild and domesticated ungulates at the boundary of a protected area (Telperion Nature Reserve) and surrounding cattle ranches in Mpumalanga, South Africa over two seasons. Fifteen paired grids were set on either side of the boundary fence at which small mammals were trapped in Sherman live traps placed flat on the ground. A total of 11 760 trap nights resulted in the capture of 187 animals belonging to 14 species (11 rodents, two shrews and one elephant shrew). The small mammal communities in grasslands grazed by domesticated or wild ungulates were similar in abundance, species richness, diversity and demographic parameters, likely due to the fact that vegetation structure of the two grazing systems was also similar. We used generalised linear models to show that rock and grass cover were plausible predictors of small mammal abundance in this system. Rock cover showed a positive relationship with small mammal abundance whilst grass cover showed a negative relationship. Our observations suggest that at the scale of our study and with the current stocking densities, wild and domesticated ungulates have similar impacts on the small mammal community.  相似文献   

17.
Statistically defensible information on vegetation conditions is needed to guide rangeland management decisions following disturbances such as wildfire, often for heterogeneous pastures. Here we evaluate sampling effort needed to achieve a robust statistical threshold using > 2 000 plots sampled on the 2015 Soda Fire that burned across 75 pastures and 113 000 ha in Idaho and Oregon. We predicted that the number of plots required to generate a threshold of standard error/mean ≤ 0.2 (TSR, threshold sampling requirement) for plant cover within pasture units would vary between sampling methods (rapid ocular versus grid-point intercept) and among plot sizes (1, 6, or 531 m2), as well as relative to topography, elevation, pasture size, spatial complexity of soils, vegetation treatments (herbicide or seeding), and dominance by exotic annual or perennial grasses. Sampling was adequate for determining exotic annual and perennial grass cover in about half of the pastures. A tradeoff in number versus size of plots sampled was apparent, whereby TSR was attainable with less area searched using smaller plot sizes (1 compared with 531 m2) in spite of less variability between larger plots. TSR for both grass types decreased as their dominance increased (0.5–1.5 plots per % cover increment). TSR decreased for perennial grass but increased for exotic annual grass with higher elevations. TSR increased with standard deviation of elevation for perennial grass sampled with grid-point intercept. Sampling effort could be more reliably predicted from landscape variables for the grid-point compared with the ocular sampling method. These findings suggest that adjusting the number and size of sample plots within a pasture or burn area using easily determined landscape variables could increase monitoring efficiency and effectiveness.  相似文献   

18.
The interaction of resource availability and disturbance can strongly affect plant species richness and the spread of exotic plants. Several ecological theories posit that disturbance mediates the richness-reducing effects of increased competition as resource levels rise. In the low-nutrient serpentine grasslands of the San Francisco Bay Area, the fertilizing effects of atmospheric nitrogen (N) deposition may threaten native species by promoting nitrophilic exotic grasses. Attempts to mitigate these N deposition effects have focused on cattle grazing as a strategy to reduce exotic grass cover. We simulated realistic N deposition increases with low-level fertilization, manipulated grazing with fencing, and monitored grazing intensity using camera traps in a 4 yr factorial experiment to assess the effects of grazing and N deposition on several measures of native and exotic species dynamics in California's largest serpentine grassland. Our results suggest that native species diversity may increase slightly under low-level N deposition with moderate grazing in this system. However, grazing may not be effective at limiting exotic cover as N accumulates in the future. Examination of treatment trajectories using principal response curves indicated that responses to grazing might be determined more by functional group (forb or grass) than origin (native or exotic). Grazing intensity varied dramatically within the single stocking rate used to manage this ecosystem. Given this variation and the contrasting effects of grazing on different functional groups, more targeted management may be required to improve conservation outcomes.  相似文献   

19.
Exclusion of large grazers from rangelands that evolved with significant grazing pressure can alter natural processes and may have legacy effects by changing magnitude or direction of community responses to subsequent disturbance. Three moderately grazed pastures were paired with 12-ha areas with 15 yr of livestock exclusion. Six treatments were assigned to each in a 2 x 3 factorial arrangement of fire (fall fire or no fire) and grazing utilization (0%, 50%, or 75% biomass removal) to determine grazing history effects on rangeland response to subsequent disturbance. Livestock exclusion increased C3 perennial grass (1 232 vs. 980 ± 50 kg ? ha-1) and forbs (173 vs. 62 ± 19 kg ? ha-1) and reduced C4 perennial grass (36 vs. 180 ± 25 kg ? ha-1) with no effect on total current-year biomass. Diversity was greater in pastures than exclosures (H’ = 1.5400 vs. 1.3823 ± 0.0431). Every biomass, cover, and diversity measure, except subshrub biomass, was affected by fire, grazing utilization, or both. Contrary to expectations, grazing history only interacted with fire effects for old standing dead material and interactions with grazing utilization were limited to old dead, bare ground, richness and dominance. Fire by grazing utilization interaction was limited to bare ground. Fire reduced annual grass (64 vs. 137 ± 29 kg ? ha-1), forbs (84 vs. 133 ± 29 kg ? ha-1), and diversity (H’ = 1.3260 vs. 1.5005 ± 0.0537) with no difference in total current-year biomass (1 557 vs. 1 594 ± 66 kg ? ha-1). Grazing to 75% utilization reduced total current-year biomass (1 467 vs. 1 656 ± 66 kg ? ha-1) and dominance (0.4824 vs. 0.5584 ± 0.0279). Grazing history affected starting points for most variables, but changes caused by grazing utilization or fire were similar between pastures and exclosures, indicating management decisions can be made based on independent knowledge of grazing or fire effects.  相似文献   

20.
The ability to adapt to different environments is critical when livestock are moved because of drought or other management considerations. The impact of previous experience on grazing patterns and diet selection of Brangus cows in desert conditions was evaluated. Cows originating from a humid-subtropical environment (Leona, Texas) were brought to the Chihuahuan Desert (naïve) and evaluated against cows that spent their life in the Chihuahuan Desert (native) and cows that were born and raised in the Chihuahuan Desert but were moved to Leona, Texas during the preceding 3 yr (tourist). In addition, native cows with recent experience in desert conditions were compared with naïve cows and tourist cows that had not been in the Chihuahuan Desert for at least 3 yr. All cows were mature and had similar pedigrees (n = 21). Cows from the three groups were tracked in three extensive pastures (> 1 000 ha) for three 8–10-d periods during winter, early summer, and later summer. Cows never grazed in the experimental pastures before the study, but native and tourist cows had grazed adjacent pastures. Fecal near-infrared spectroscopy was used to estimate diet quality. Naïve cows used 335 ha ± 83 standard error (SE) less area (P = 0.06) and were 479 m ± 105 SE closer to water (P = 0.03) than cows born and raised in the Chihuahuan Desert (native and tourist cows pooled) when first evaluated in winter. After pooling all data, native cows were farther (P = 0.06) from water (730 m ± 283 SE) and spent less time at water (10.53% ± 3.93 SE) than cows that did not spend their entire life in the desert (naïve and tourist pooled). During winter and early summer (drought conditions), naïve cows selected diets with lower (P < 0.05) crude protein (CP) than cows born in the desert, but during late summer after abundant precipitation naïve cows selected a diet with higher (P = 0.07) CP. Although Brangus cows are highly adaptable, animals raised in nearby pastures appear to have advantages over naïve animals when grazing Chihuahuan Desert rangeland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号