首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Degradation of shrublands around the world from altered fire regimes, overutilization, and anthropogenic disturbance has resulted in a widespread need for shrub restoration. In western North America, reestablishment of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) is needed to restore ecosystem services and function. Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment is a serious threat to mountain big sagebrush communities in the northern Great Basin and Columbia Plateau. Juniper trees can be controlled with fire; however, sagebrush recovery may be slow, especially if encroachment largely eliminated sagebrush before juniper control. Short-term studies have suggested that seeding mountain big sagebrush after juniper control may accelerate sagebrush recovery. Longer-term information is lacking on how sagebrush recovery progresses and if there are trade-offs with herbaceous vegetation. We compared seeding and not seeding mountain big sagebrush after juniper control (partial cutting followed with burning) in fully developed juniper woodlands (i.e., sagebrush had been largely excluded) at five sites, 7 and 8 yr after seeding. Sagebrush cover averaged ~ 30% in sagebrush seeded plots compared with ~ 1% in unseeded plots 8 yr after seeding, thus suggesting that sagebrush recovery may be slow without seeding after juniper control. Total herbaceous vegetation, perennial grass, and annual forb cover was less where sagebrush was seeded. Thus, there is a trade-off with herbaceous vegetation with seeding sagebrush. Our results suggest that seeding sagebrush after juniper control can accelerate the recovery of sagebrush habitat characteristics, which is important for sagebrush-associated wildlife. We suggest land manager and restoration practitioners consider seeding sagebrush and possibly other shrubs after controlling encroaching trees where residual shrubs are lacking after control.  相似文献   

2.
In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.  相似文献   

3.
Fire plays a large role in structuring sagebrush ecosystems; however, we have little knowledge of how vegetation changes with time as succession proceeds from immediate postfire to mature stands. We sampled at 38 sites in southwest Montana dominated by 3 subspecies of big sagebrush (Artemisia tridentata Nutt.). At each site we subjectively located 1 sample plot representing the burned area and an unburned macroplot in similar, adjacent, unburned vegetation. Canopy cover of sagebrush was estimated, and plants were counted in 10 microplots. Age and height of randomly chosen sagebrush plants in each size class were determined from 5 microplots. Average postfire time to full recovery of mountain big sagebrush (ssp. vasseyana [Rydb.] Beetle) canopy cover was 32 years, shorter for basin (ssp. tridentata) and much longer for Wyoming (ssp. wyomingensis Beetle & Young) big sagebrush. Height recovered at similar rates. There was no difference in canopy cover or height recovery between prescribed fires and wildfires in stands of mountain big sagebrush. We found no relationship between mountain big sagebrush canopy cover recovery and annual precipitation, heat load, or soil texture. Nearly all unburned sagebrush macroplots were uneven-aged, indicating that recruitment was not limited to immediate postfire conditions in any of the subspecies. Average canopy cover of three-tip sagebrush (A. tripartita Rydb.) did not increase following fire, and many three-tip sagebrush plants established from seed instead of sprouting. Our results suggest that the majority of presettlement mountain big sagebrush stands would have been in early to midseral condition in southwest Montana assuming a mean fire interval of 25 years. Only long fire-return intervals will allow stands dominated by Wyoming big sagebrush to remain on the landscape in our study area. We speculate that effects of site-specific factors conducive to sagebrush recovery are small compared to stochastic effects such as fire.  相似文献   

4.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis [Beetle & A. Young] S.L. Welsh) plant communities with degraded native herbaceous understories occupy vast expanses of the western United States. Restoring the native herbaceous understory in these communities is needed to provide higher-quality wildlife habitat, decrease the risk of exotic plant invasion, and increase forage for livestock. Though mowing is commonly applied in sagebrush communities with the objective of increasing native herbaceous vegetation, vegetation response to this treatment in degraded Wyoming big sagebrush communities is largely unknown. We compared mowed and untreated control plots in five Wyoming big sagebrush plant communities with degraded herbaceous understories in eastern Oregon for 3 yr posttreatment. Native perennial herbaceous vegetation did not respond to mowing, but exotic annuals increased with mowing. Density of cheatgrass (Bromus tectorum L.), a problematic exotic annual grass, was 3.3-fold greater in the mowed than untreated control treatment in the third year posttreatment. Annual forb cover, largely consisting of exotic species, was 1.8-fold greater in the mowed treatment compared to the untreated control in the third year posttreatment. Large perennial grass cover was not influenced by mowing and remained below 2%. Mowing does not appear to promote native herbaceous vegetation in degraded Wyoming big sagebrush plant communities and may facilitate the conversion of shrublands to exotic annual grasslands. The results of this study suggest that mowing, as a stand-alone treatment, does not restore the herbaceous understory in degraded Wyoming big sagebrush plant communities. We recommend that mowing not be applied in Wyoming big sagebrush plant communities with degraded understories without additional treatments to limit exotic annuals and promote perennial herbaceous vegetation.  相似文献   

5.
A decrease in fire frequency and past grazing practices has led to dense mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) stands with reduced herbaceous understories. To reverse this trend, sagebrush-reducing treatments often are applied with the goal of increasing herbaceous vegetation. Mechanical mowing is a sagebrush-reducing treatment that commonly is applied; however, information detailing vegetation responses to mowing treatments generally are lacking. Specifically, information is needed to determine whether projected increases in perennial grasses and forbs are realized and how exotic annual grasses respond to mowing treatments. To answer these questions, we evaluated vegetation responses to mowing treatments in mountain big sagebrush plant communities at eight sites. Mowing was implemented in the fall of 2007 and vegetation characteristics were measured for 3 yr post-treatment. In the first growing season post-treatment, there were few vegetation differences between the mowed treatment and untreated control (P > 0.05), other than sagebrush cover being reduced from 28% to 3% with mowing (P < 0.001). By the second growing season post-treatment, perennial grass, annual forb, and total herbaceous vegetation were generally greater in the mowed than control treatment (P < 0.05). Total herbaceous vegetation production was increased 1.7-fold and 1.5-fold with mowing in the second and third growing seasons, respectively (P < 0.001). However, not all plant functional groups increased with mowing. Perennial forbs and exotic annual grasses did not respond to the mowing treatment (P > 0.05). These results suggest that the abundance of sagebrush might not be the factor limiting some herbaceous plant functional groups, or they respond slowly to sagebrush-removing disturbances. However, this study suggests that mowing can be used to increase herbaceous vegetation and decrease sagebrush in some mountain big sagebrush plant communities without promoting exotic annual grass invasion.  相似文献   

6.
Dominant plant species are often used as indicators of site potential in forest and rangelands. However, subspecies of dominant vegetation often indicate different site characteristics and, therefore, may be more useful indicators of plant community potential and provide more precise information for management. Big sagebrush (Artemisia tridentata Nutt.) occurs across large expanses of the western United States. Common subspecies of big sagebrush have considerable variation in the types of sites they occupy, but information that quantifies differences in their vegetation characteristics is lacking. Consequently, wildlife and land management guidelines frequently do not differentiate between subspecies of big sagebrush. To quantify vegetation characteristics between two common subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Half of the sampled plant communities were Wyoming big sagebrush (A. tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) plant communities, and the other half were mountain big sagebrush (A. tridentata subsp. vaseyana [Rydb.] Beetle) plant communities. In general, mountain big sagebrush plant communities were more diverse and had greater vegetation cover, density, and biomass production than Wyoming big sagebrush plant communities. Sagebrush cover was, on average, 2.4-fold higher in mountain big sagebrush plant communities. Perennial forb density and cover were 3.8- and 5.6-fold greater in mountain compared to Wyoming big sagebrush plant communities. Total herbaceous biomass production was approximately twofold greater in mountain than Wyoming big sagebrush plant communities. The results of this study suggest that management guidelines for grazing, wildlife habitat, and other uses should recognize widespread subspecies as indicators of differences in site potentials.  相似文献   

7.
Prescribed fire in rangeland ecosystems is applied for a variety of management objectives, including enhancing productivity of forage species for domestic livestock. In the big sagebrush (Artemisia tridentata Nutt.) steppe of the western United States, fire has been a natural and prescribed disturbance, temporarily shifting vegetation from shrub–grass codominance to grass dominance. There is limited information on the impacts of grazing to community dynamics following fire in big sagebrush steppe. This study evaluated cattle grazing impacts over four growing seasons after prescribed fire on Wyoming big sagebrush (Artemisia tridentata subsp. Wyomingensis [Beetle & Young] Welsh) steppe in eastern Oregon. Treatments included no grazing on burned and unburned sagebrush steppe, two summer-grazing applications after fire, and two spring-grazing applications after fire. Treatment plots were burned in fall 2002. Grazing trials were applied from 2003 to 2005. Vegetation dynamics in the treatments were evaluated by quantifying herbaceous canopy cover, density, annual yield, and perennial grass seed yield. Seed production was greater in the ungrazed burn treatments than in all burn–grazed treatments; however, these differences did not affect community recovery after fire. Other herbaceous response variables (cover, density, composition, and annual yield), bare ground, and soil surface litter did not differ among grazed and ungrazed burn treatments. All burn treatments (grazed and ungrazed) had greater herbaceous cover, herbaceous standing crop, herbaceous annual yield, and grass seed production than the unburned treatment by the second or third year after fire. The results demonstrated that properly applied livestock grazing after low-severity, prescribed fire will not hinder the recovery of herbaceous plant communities in Wyoming big sagebrush steppe.  相似文献   

8.
Treatments to reduce shrub cover are commonly implemented with the objective of shifting community structure away from shrub dominance and toward shrub and perennial grass codominance. In sagebrush (Artemisia L.) ecosystems, shrub reduction treatments have had variable effects on target shrubs, herbaceous perennials, and non-native annual plants. The factors mediating this variability are not well understood. We used long-term data from Utah’s Watershed Restoration Initiative project to assess short-term (1  4 yr post-treatment) and long-term (5  12 yr post-treatment) responses of sagebrush plant communities to five shrub reduction treatments at 94 sites that span a range of abiotic conditions and sagebrush community types. Treatments were pipe harrow with one or two passes, aerator, and fire with and without postfire seeding. We analyzed effect sizes (log of response ratio) to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush (A. tridentata Nutt. ssp. wyomingensis Beetle & Young) communities, but in mountain big sagebrush (ssp. vaseyana [Rydb.] Beetle) communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses (largely invasive cheatgrass, Bromus tectorum L.) increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.  相似文献   

9.
The role of fire in restoration of sagebrush plant communities remains controversial mainly because of paucity of information from long-term studies. Here, we examine 15-year post-fire responses of big sagebrush (Artemisia tridentata ssp wyomingensis) and broom snakeweed (Gutierrezia sarothrae), the two most abundant native shrubs at the John Day Fossil Beds National Monument, a protected area in north-central Oregon, USA. Fire effects were studied along gradients of topography and community type through time post-burn. Community types were distinguished as brush, plots dominated by big sagebrush and woodland, plots with a significant presence of Western juniper (Juniperus occidentalis) trees. Fire reduced big sagebrush cover in brush plots up to 100% and in woodland plots up to 86%. Broom snakeweed cover declined by 92% and 73% in brush plots and woodland plots, respectively. Big sagebrush did not show signs of recovery 15 years after burning regardless of topography and community type while broom snakeweed populations were clearly rebounding and prospering beyond pre-burn levels. Our results showed that an area initially dominated by big sagebrush (cover of big sagebrush 10-20%, cover of broom snakeweed 2-4%) dramatically shifted to an area dominated by broom snakeweed (cover of big sagebrush < 1%, cover of broom snakeweed 5%) in brush-dominated plots. Our results indicated that brush-dominated plots at lower elevation and southern exposures are the least post-fire resilient. We also observed a declining population of big sagebrush on unburned areas, suggesting the lack of post-fire recovery on burned areas was perhaps a result of low seeding potential by extant populations. Although more years of observation are required, these data indicate that recovery time, the encroachment of opportunistic competing shrubs, and the initial condition of vegetation are essential considerations by land managers when prescribing fire in big sagebrush communities.  相似文献   

10.
Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S.L. Welsh) plant communities of the Intermountain West have been greatly reduced from their historic range as a result of wildfire, agronomic practices, brush control treatments, and weed invasions. The impact of prescribed fall burning Wyoming big sagebrush has not been well quantified. Treatments were sagebrush removed with burning (burned) and sagebrush present (control). Treatments were applied to 0.4-ha plots at 6 sites. Biomass production, vegetation cover, perennial herbaceous vegetation diversity, soil water content, soil inorganic nitrogen (NO-3, NH+4), total soil nitrogen (N), total soil carbon (C), and soil organic matter (OM) were compared between treatments in the first 2 years postburn. In 2003 and 2004, total (shrub and herbaceous) aboveground annual biomass production was 2.3 and 1.2 times greater, respectively, in the control compared to the burned treatment. In the upper 15 cm of the soil profile, inorganic N concentrations were greater in the burned than control treatment, while soil water, at least in the spring, was greater in the control than burned treatment. Regardless, greater herbaceous aboveground annual production and cover in the burned treatment indicated that resources were more available to herbaceous vegetation in the burned than the control treatment. Exotic annual grasses did not increase with the burn treatment. Our results suggest in some instances that late seral Wyoming big sagebrush plant communities can be prescribed fall burned to increase livestock forage or alter wildlife habitat without exotic annual grass invasion in the first 2 years postburn. However, long-term evaluation at multiple sites across a larger area is needed to better quantify the effects of prescribed fall burning on these communities. Thus, caution is advised because of the value of Wyoming big sagebrush plant communities to wildlife and the threat of invasive plants.  相似文献   

11.
Restoration of non-sprouting shrubs after wildfire is increasingly becoming a management priority. In the western U.S., Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) restoration is a high priority, but sagebrush establishment from seed is sporadic. In contrast, planting seedlings often successfully restores sagebrush, but is expensive and time consuming. After planting, hence, there is a need to protect the investment from disturbances such as fire that will erase gains in sagebrush recovery. Grazing is likely the only tool that can be applied feasibly across the landscape to decrease wildfire probability, but there are concerns that grazing and associated activities (e.g. trampling) may negatively impact sagebrush seedlings. We investigated effects of grazing by cattle, applied as a fine fuel management strategy, on planted sagebrush seedlings at five blocks for five years. Grazing substantial reduced exotic annual grasses, large perennial bunchgrasses, and total herbaceous cover, thus achieving fuel management goals. Sagebrush cover and reproductive efforts were almost 2-fold greater in grazed compared to non-grazed areas in the final year of the study. This suggests that grazing favored sagebrush, a generally unpalatable shrub, recovery, likely by reducing competition from highly palatable herbaceous vegetation. Density of sagebrush, however, was similar between grazed and non-grazed areas. This research demonstrates that grazing can be strategically applied to reduce the probability of wildfire in areas with planted sagebrush seedlings; thereby, protecting the investment in sagebrush recovery. With more refinement, it also appears that grazing can be utilized to accelerate the recovery of sagebrush and potentially other woody vegetation habitat by modifying the competitive relationship between herbaceous and woody vegetation.  相似文献   

12.
Both fire and conifer encroachment can markedly alter big sagebrush communities and thus habitat quality and quantity for wildlife. We investigated how conifer encroachment and spring prescribed burning affected forage and cover resources for a sagebrush specialist, the pygmy rabbit. We studied these dynamics at spring prescribed burns in southwestern Montana and eastern Idaho during the summer of 2011. Within each spring prescribed burn, we established plots that described the habitat conditions for pygmy rabbits (forage plant biomass and habitat components that influence predation risk) in areas that were burned, adjacent areas of conifer encroachment, and areas that were neither burned nor encroached. We analyzed the data for significant differences in habitat conditions between the paired reference and encroachment plots and modeled when the burned areas would approximate the conditions on the paired reference plots. Biomass of forage plants and habitat components that reduce predation risk differed between undisturbed reference plots and areas that were either burned or encroached with > 30% conifer canopy. Our models estimated that 13–27 yr were required for a spring prescribed burn to provide levels of cover and forage resources similar to sagebrush steppe reference plots. We documented that vegetation composition was associated with the plot designations (burn, reference, or conifer encroachment), but not with other abiotic factors, such as soil texture, aspect, or study site; this suggested that the documented differences in habitat were related to the treatments, rather than being site-specific characteristics. The information from this study can contribute to habitat management plans for high-elevation mountain big sagebrush sites where conifer encroachment is altering habitat for sagebrush-dependent wildlife species.  相似文献   

13.
Crested wheatgrass (Agropyron cristatum [L] Gaertm. and Agropyron desertorum [Fisch.] Schult.), an introduced bunchgrass, has been seeded on millions of hectares of sagebrush steppe. It can establish near-monocultures; therefore, reestablishing native vegetation in these communities is often a restoration goal. Efforts to restore native vegetation assemblages by controlling crested wheatgrass and seeding diverse species mixes have largely failed. Restoring sagebrush, largely through planting seedlings, has shown promise in short-term studies but has not been evaluated over longer timeframes. We investigated the reestablishment of Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis [Beetle & A. Young] S.L. Welsh) in crested wheatgrass communities, where it had been broadcast seeded (seeded) or planted as seedlings (planted) across varying levels of crested wheatgrass control with a herbicide (glyphosate) for up to 9 yr post seeding/planting. Planting sagebrush seedlings in crested wheatgrass stands resulted in full recovery of sagebrush density and increasing sagebrush cover over time. Broadcast seeding failed to establish any sagebrush, except at the highest levels of crested wheatgrass control. Reducing crested wheatgrass did not influence density, cover, or size of sagebrush in the planted treatment, and therefore, crested wheatgrass control is probably unnecessary when using sagebrush seedlings. Herbaceous cover and density were generally less in the planted treatment, probably as a result of increased competition from sagebrush. This trade-off between sagebrush and herbaceous vegetation should be considered when developing plans for restoring sagebrush steppe. Our results suggest that planting sagebrush seedlings can increase the compositional and structural diversity in near-monocultures of crested wheatgrass and thereby improve habitat for sagebrush-associated wildlife. Planting native shrub seedlings may be a method to increase diversity in other monotypic stands of introduced grasses.  相似文献   

14.
Much interest lies in long-term recovery rates of sagebrush communities after fire in the western United States, as sagebrush communities comprise millions of hectares of rangelands and are an important wildlife habitat. Little is known about postfire changes in sagebrush canopy cover over time, especially at a landscape scale. We studied postfire recovery of shrub canopy cover in sagebrush-steppe communities with the use of spectral mixture analysis. Our study included 16 different fires that burned between 1937 and 2005 and one unburned site at the US Sheep Experiment Station in eastern Idaho. Spectral mixture analysis was used with September 2006 Systeme Pour l’Observation de la Terre-5 (SPOT-5) satellite imagery to estimate percent shrub canopy cover within pixels. Very large-scale aerial (VLSA) imagery with 24-mm resolution was used for training and validation. SPOT-5 image classification was successful and the spectral mixture analysis estimates of percent shrub canopy cover were highly correlated with the shrub canopy cover estimates in the VLSA imagery (R2 = 0.82; P < 0.0001). Additional accuracy assessment of shrub classification produced 85% overall accuracy, 98% user’s accuracy, and 78% producer’s accuracy. This successful application of spectral mixture analysis has important implications for the monitoring and assessment of sagebrush-steppe communities. With the use of the percent shrub canopy cover estimates from the classified SPOT-5 imagery, we examined shrub canopy recovery rates since different burn years. With the use of linear-plateau regression, it was determined that shrub cover in mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) communities recovered approximately 27 yr after fire, with an average shrub cover of 38%. These results are consistent with other field-based studies in mountain big sagebrush communities.  相似文献   

15.
16.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic, annual grass invading sagebrush steppe rangelands in the western United States. Medusahead invasion has been demonstrated to reduce livestock forage, but otherwise information comparing vegetation characteristics of medusahead-invaded to noninvaded sagebrush steppe communities is limited. This lack of knowledge makes it difficult to determine the cost–benefit ratio of controlling and preventing medusahead invasion. To estimate the impact of medusahead invasion, vegetation characteristics were compared between invaded and noninvaded Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) steppe communities that had similar soils, topography, climate, and management. Noninvaded plant communities had greater cover and density of all native herbaceous functional groups compared to medusahead-invaded communities (P < 0.01). Large perennial grass cover was 15-fold greater in the noninvaded compared to invaded plant communities. Sagebrush cover and density were greater in the noninvaded compared to the medusahead-invaded communities (P < 0.01). Biomass production of all native herbaceous functional groups was higher in noninvaded compared to invaded plant communities (P < 0.02). Perennial and annual forb biomass production was 1.9- and 45-fold more, respectively, in the noninvaded than invaded communities. Species richness and diversity were greater in the noninvaded than invaded plant communities (P < 0.01). The results of this study suggest that medusahead invasion substantially alters vegetation characteristics of sagebrush steppe plant communities, and thereby diminishes wildlife habitat, forage production, and ecosystem functions. Because of the broad negative influence of medusahead invasion, greater efforts should be directed at preventing its continued expansion.  相似文献   

17.
18.
A key goal in land management is to prevent ecosystem shifts that affect human well-being. Like other types of sagebrush shrublands, large areas dominated by the common but little-studied mountain silver sagebrush may have shifted to a less productive shrub-dominated alternate state under heavy livestock grazing in the 19th century. The goals of this study are to 1) describe long-term vegetation change in a silver sagebrush mountain park and 2) evaluate evidence that these changes constitute alternate states. We examined vegetation change over the last 57 yr in California Park, Colorado, USA, using monitoring data from 15 permanent transects at six sites. We analyzed change in species composition over time and related it to management and climatic drivers using nonmetric multidimensional scaling. We found that management practices influenced species composition. Spraying herbicides resulted in decreases of sagebrush and a dominant, unpalatable forb (Wyethia amplexicaulis), but sagebrush recovered. Spraying also triggered a temporary increase in native palatable grasses and forbs. Native grasses have since decreased again, coinciding with increases in the cattle stocking rate and elk population. The nonnative pasture grass Phleum pratense has increased to become one of the dominant grasses in 2010. Sagebrush and herbaceous understory dynamics were not consistent with a shrub-dominated alternate state: changes were gradual and not persistent. However, historic Wyethia dominance and the widespread increase in the nonnative grass Phleum were persistent and may represent alternate states. We used these findings to update a state-and-transition model of high-elevation silver sagebrush shrubland dynamics for land management decision making. Our analysis differentiated gradual, nonpersistent changes from potentially irreversible changes, as is necessary for identifying alternate states that are important for land management and ecosystem function. The gradual but persistent increase in the nonnative grass Phleum reinforces others' observations that even incremental changes may lead to irreversible shifts.  相似文献   

19.
The Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis [Beetle & A. Young] S.L. Welsh) alliance is the most extensive of the big sagebrush complex in the Intermountain West. There is a lack of information describing vegetation characteristics, diversity, and heterogeneity of the Wyoming big sagebrush alliance. We annually sampled 48 Wyoming big sagebrush plant communities over 10 yr to delineate major vegetation associations and describe their major vegetation characteristics including canopy cover, density, species richness, and yield. Six associations were identified on the basis of dominant or codominant perennial bunchgrass species, using MRPP analysis, and they included ARTRW8 (Wyoming big sagebrush)/PSSP6 (Pseudoroegneria spicata [Pursh] A. Löve, bluebunch wheatgrass), ARTRW8/ACTH7 (Achnatherum thurberianum [Piper] Barkworth, Thurber’s needlegrass), ARTRW8/FEID (Festuca idahoensis Elmer, Idaho fescue), ARTRW8/HECO26 (Hesperostipa comata [Trin. & Rupr.] Barkworth, needle-and-thread), ARTRW8/PSSP6-ACTH7, and ARTRW8/PSSP6-FEID-ACTH7. On average, PSSP6 and FEID associations had the highest total herbaceous cover and annual yields and the HECO26 and ACTH7 associations had the lowest. Perennial forb cover averaged over 5% in PSSP6 and FEID associations and ranged from 0.3% to 3.5% in the other associations. Sagebrush cover was greatest in ACTH7 and PSSP6-ACTH7 and lowest in FEID and HECO26 associations. Habitat suitability criteria for sage-grouse indicated that Wyoming big sagebrush associations at the stand/site level will generally not meet breeding habitat requirements and only attain suitable habitat requirements for other life stages about 50% of the time.  相似文献   

20.
The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a “recipe” for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the best chance managers have for arresting woodland expansion and cheatgrass invasion that may accelerate in a future warming climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号