首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developing sustainable ranch management systems requires integrated research that examines interrelations among ecological and economic factors. In south central Florida, where phosphorus (P) loading is an overriding environmental concern, we established an interdisciplinary experiment to address the effects of cattle stocking density and pasture type on P loading and other ecological and economic factors in subtropical Florida ranchlands through a partnership including ecologists, agricultural faculty, agency personnel, and producers. Here we present an overview of all project components detailed in 3 accompanying papers in this issue of Rangeland Ecology & Management. We describe the experimental design, which included 2 replicates of 4 different cattle stocking density treatments (control, low, middle, and high [0, 15, 20, and 35 cow–calf pairs per pasture]) maintained on 8 improved summer pastures (∼ 20 ha each), and 8 seminative winter pastures (∼ 32 ha each) from 1998 to 2003. Stocking densities did not significantly affect P loads and concentrations in surface runoff, soil chemistry, or soil nematode communities, but did affect cattle production and economic performance. Cattle production was greater at the high than at the middle or low stocking density; economic performance declined significantly with decreasing stocking density (break-even was $1.89·kg-1 for high and $2.66·kg-1 for low density). Pasture type significantly affected environmental factors; average P runoff from improved summer pastures (1.71 kg P·ha-1·y-1) was much greater than from seminative winter pastures (0.25 kg P·ha-1·y-1), most likely because of past P fertilizer use in improved pastures. We integrate results from all the papers within the context of a conceptual model and a P budget, and emphasize that management practices targeted at specific environmental factors on beef cattle ranches, such as nutrient loading, must include consideration of economic impacts and broader ecosystem implications.  相似文献   

2.
The presence of grazing cattle near open waterways has created environmental concerns related to the potential for water contamination. In Florida the removal of cattle from grazing landscapes or decreasing stocking density is being investigated as one option to improve the quality of surface water runoff draining into Lake Okeechobee, Florida. The objective of this study was to determine the effects of stocking rate on cow-calf performance, forage availability and quality, and ranch economic performance. Experimental pastures were established on a southern Florida cow-calf operation with stocking rates of 0.58, 1.01, and 1.35 ha·cow-1 on summer pastures and 0.93, 1.62, and 2.16 ha·cow-1 on winter pastures, corresponding to high, medium, and low rates, respectively. The study was conducted over 4 consecutive production years. Cow body condition scores (BCS), pregnancy rate, and calf average daily gain were used as measures of animal performance. Forage utilization was estimated by measuring the difference between forage yield inside and outside grazing exclusion cages and forage quality by crude protein and in vitro organic matter digestibility. Forage yield, utilization, and quality were not significantly affected by stocking rate. Although statistically not significant (P = 0.17), cattle in the high stocking rate experienced a numerically greater loss of BCS following the winter grazing period, but stocking rate did not affect pregnancy rate or calf gains. Production (kg weaned calves·ha-1) was increased (P < 0.01) for a high stocking rate compared with medium and low stocking rates. Overall ranch profitability will decrease as stocking rates decline. Ranch revenues decrease one-for-one as stocking rates decrease. At the same time, unit cow costs increase at an increasing rate as fewer brood cows are left to support the ranch's fixed cost structure.  相似文献   

3.
Monoculture and mixed pastures in Florida provide habitat for a variety of resident and migratory bird species. The objectives of this study were to investigate the effects of grazing on vegetation structure and bird species richness and abundance in grazed monoculture and mixed pastures. Study pasture units were subject to four cattle grazing intensities: 0 = nongrazed (control), 15 = low, 20 = medium, or 35 = high animal units (AU) per pasture unit (no cattle, 1.3, 1.0, and 0.6 ha · AU?1, on monoculture pastures and no cattle, 2.1, 1.6, and 0.9 ha · AU?1, on mixed pastures). Monoculture pastures displayed a greater decrease in spatial heterogeneity of the vegetative community in the presence of grazing than mixed pastures. An increase in grazing intensity led to declines in total avian species richness and abundance and species richness within short-distance migrant, neotropical migrant, and permanent resident guilds on monoculture pastures. Declines in total species richness and abundance and neotropical migrant guild species richness and abundance were observed on mixed pastures subject to increasing grazing intensity. However, species richness within short-distance migrant and urban guilds and abundance within the grassland guild increased on this pasture type in the presence of grazing. Loss of spatial heterogeneity typically results in a lack of suitable habitat for birds that occupy the extremes of the vegetation structure gradient. This can lead to a loss of species richness and abundance. For the majority of avian guilds, a low grazing intensity of 1.3 ha · AU?1 and 2.1 ha · AU?1 on monoculture and mixed pasture, respectively, is recommended to maintain abundance. However, these grazing intensities may result in declines in species richness. Ultimately, if a range of avian species are to be supported on monoculture and mixed pastures, spatial heterogeneity of plant structure and composition must be maintained.  相似文献   

4.
Grazing at high stocking rates may increase sediment and nutrient loading of pasture streams through transport in precipitation runoff and bank erosion. A 3-yr (2007–2009) grazing study was conducted on 13 cool-season grass pastures to quantify effects of stocking rate and botanical composition on forage sward height, proportions of bare and manure-covered ground, and bank erosion adjacent to streams. Pastures ranged from 2 ha to 107 ha with stream reaches of 306 m to 1 778 m that drained watersheds of 253 ha to 5 660 ha. Bare and manure-covered ground were measured at a 15.2-m distance perpendicular to the stream at 30.5-m intervals at up to 30 locations on each side of the stream by the line transect method in May, July, September, and November of each year. At the midpoint of the 15.2-m line, forage sward height was measured with a falling plate meter (4.8 kg · m-2) and plant species identified. In November 2006, fiberglass pins (1.6 × 76.2 cm) were driven 73.7 cm into the stream bank at 1-m intervals from the streambed to the top of the bank along 10 equidistant transect locations on each side of the stream to measure bank erosion during spring, summer, and fall of each year. Increasing pasture stocking rates increased manure-covered ground and decreased sward height, but did not affect proportions of bare ground. The greatest, intermediate, and least net soil erosion rates occurred during the winter/early spring, late spring/early summer, and late summer/fall seasons. Stocking rates between measurements, expressed as cow-days · m-1 stream, were not related to bank erosion. Increasing stocking rates per unit of stream length will increase manure cover and decrease forage sward height, but not affect proportions of bare ground or bank erosion rates adjacent to pasture streams. Therefore, managing stocking rates may reduce nutrient loading of pasture streams.  相似文献   

5.
An experiment was conducted to evaluate the influence of forest fuels reduction on diet quality, botanical composition, relative preference, and foraging efficiency of beef cattle grazing at different stocking rates. A split plot factorial design was used, with whole plots (3 ha) being fuel reduced or no treatment (control), and split plots (1 ha) within whole plots were grazed to three levels of forage utilization; (low) 3 heifers · ha?1, (moderate) 6 heifers · ha?1, (high) 9 heifers · ha?1, with a 48-h grazing duration. Grazing treatments were applied in August of 2005 and 2006. Cattle diet composition and masticate samples were collected during 20-min grazing bouts using six ruminally cannulated cows in each experimental unit. Relative preference indices indicated a strong preference for grass regardless of treatment and stocking rate. Grass consumption was lower in control pastures (P < 0.05) and tended (P < 0.095) to decrease with increased stocking rates. Shrub use was higher in control pastures displaying a quadratic effect (P < 0.05) due to stocking, whereas shrub use increased with stocking rate across all treatments. Cattle grazing control pastures consumed diets higher in crude protein compared to cattle grazing treated pastures (P < 0.05). In vitro dry matter digestibility values were lower (P < 0.05) in control sites and tended (P = 0.10) to decrease with increased stocking rates. In both control and treated pastures, bites per minute and grams consumed per minute declined (P = 0.003) with increased stocking, indicating foraging efficiency of cattle decreases with increased stocking rates. Our data indicated cattle grazing late season grand fir habitat types have a strong preference for grasses regardless of treatment or stocking rate. However, as stocking rate increased in both control and treated pastures, grass consumption decreased, shrub consumption increased, and foraging efficiency decreased.  相似文献   

6.
Rangelands and hayfields provide a large portion of remaining surrogate habitat for many species of declining grassland birds in North America. We compared late-cut hayfields and continuously grazed pastures at low to moderate cattle densities for providing suitable breeding habitat in eastern Canada for the nationally threatened Bobolink (Dolichonyx oryzivorus). To examine the quality of both habitats, we conducted point counts and monitored 87 nests during the 2015 and 2016 breeding seasons. Bobolink abundance and daily survival rate (DSR) of nests were modeled sequentially by habitat and sex as a function of vegetation structure, prey availability, and agricultural management. Year and habitat were the strongest predictors of abundance. When analyzed separately for pastures and hayfields, vegetation height was most important for female abundance in pastures while pasture size was most important for males. Nests in hayfields had significantly higher daily survival (DSR = 0.98 ± 0.01) than nests in pastures (DSR = 0.94 ± 0.01). Nesting success was highest in hayfields with taller vegetation, while in pastures, no microhabitat variable showed a clear relationship with DSR. Within pastures, cattle stocking densities of ≤ 1 animal units (AU) · ha? 1 were not related to DSR. This study provides evidence that late-cut hay is of highest quality, but that small-scale beef farms with low to moderate stocking densities are suitable targets for conservation efforts of Bobolinks in eastern North America.  相似文献   

7.
Because of concerns about the impact of grazing management on surface water quality, a 3-yr study was conducted to determine grazing management and microclimate impacts on cattle distribution relative to a pasture stream and shade. Three treatments, continuous stocking with unrestricted stream access (CSU), continuous stocking with restricted stream access (CSR), and rotational stocking (RS), were evaluated on six 12.1-ha cool-season grass pastures stocked with 15 fall-calving Angus cows (Bos taurus L.) from mid-May through mid-October of each year. On 2 d · mo?1 from May through September of each year, a trained observer in each pasture recorded cattle position and activity every 10 min from 0600 to 1800 hours. In years 2 and 3, position of one cow per pasture was recorded with a Global Positioning System (GPS) collar at 10-min intervals 24 h · d?1 for 2 wk · mo?1 from May through September. In week 2 of collar deployment in May, July, and September, cattle had access to off-stream water. Ambient temperature, black globe temperature, relative humidity, and wind speed were recorded at 10-min intervals and temperature humidity (THI), black globe temperature humidity (BGTHI), and heat load (HLI) indices were calculated. Based on GPS collars, mean percentage of time cows in CSU pastures were in the stream (1.1%) and streamside zone (10.5%) were greater (P < 0.05) than cows in CSR (0.2% and 1.8%) or RS (0.1% and 1.5%) pastures. Based on GPS collar data, off-stream water did not affect the percentage of time cattle in CSU or CSR pastures spent in the stream. Probabilities that cattle in CSU and CSR pastures were in the stream or riparian zones increased (P < 0.05) as ambient temperature, black globe temperature, THI, BGTHI, and HLI increased. Rotational stocking and restricted stream access were effective strategies to decrease the amount of time cattle spent in or near a pasture stream.  相似文献   

8.
Cattle weight gain responses to seasonal weather variability are difficult to predict for rangelands because few long-term (>20 yr) studies have been conducted. However, an increased understanding of temperature and precipitation influences on cattle weight gains is needed to optimize stocking rates and reduce enterprise risk associated with climatic variability. Yearling steer weight gain data collected at the USDA-ARS High Plains Grasslands Research Station at light, moderate, and heavy stocking rates for 30 years (1982–2011) were used to examine the effects of spring (April–June) and summer (July–September) temperature and precipitation, as well as prior-growing-season (prior April–September) and fall/winter (October–March) precipitation, on beef production (kg · ha?1). At heavier stocking rates, steer production was more sensitive to seasonal weather variations. A novel finding was that temperature (relatively cool springs and warm summers) played a large predictive role on beef production. At heavier stocking rates, beef production was highest during years with cool, wet springs and warm, wet summers, corresponding to optimum growth conditions for this mixed C3–C4 plant community. The novelty and utility of these findings may increase the efficacy of stocking rate decision support tools. The parsimonious model structure presented here includes three-month seasonal clusters that are forecasted and freely available from the US National Oceanic and Atmospheric Administration up to a year in advance. These seasonal weather forecasts can provide ranchers with an increased predictive capacity to adjust stocking rates (in advance of the grazing season) according to predicted seasonal weather conditions, thereby reducing enterprise risk.  相似文献   

9.
Our objective was to evaluate a replicated (n = 2) Midwestern year-round grazing system's hay needs and animal production compared with a replicated (n = 2) conventional (minimal land) system over 3 yr. Because extended grazing systems have decreased hay needs for the beef herd, it was hypothesized that this year-round system would decrease hay needs without penalizing animal production. In the minimal land (ML) system, two replicated 8.1-ha smooth bromegrass-orchardgrass-birdsfoot trefoil (SB-OG-BFT) pastures were rotationally stocked with six mature April-calving cows and calves and harvested as hay for winter feeding in a drylot. After weaning, calves were finished on a high-concentrate diet. Six mature April-calving cows, six mature August-calving cows, and their calves were used in the year-round (YR) grazing system. During the early and late summer, cattle grazed two replicated 8.1-ha SB-OG-BFT pastures by rotational stocking. In mid-summer and winter, April- and August-calving cows grazed two replicated 6.1-ha, endophyte-free tall fescue-red clover (TF-RC) and smooth bromegrass-red clover (SB-RC) pastures, respectively, by strip-stocking. In late autumn, spring-calving cows grazed 6.1-ha corn crop residue fields by strip-stocking. Calves were fed hay with corn gluten feed or corn grain over winter and used as stocker cattle to graze SB-OG-BFT pastures with cows until early August the following summer. First-harvest forage from the TF-RC and SB-RC pastures was harvested as hay. Body condition scores of April-calving cows did not differ between grazing systems, but were lower (P < or = 0.03) than those of August-calving cows from mid-gestation through breeding. Preweaning calf BW gains were 47 kg/ha of perennial pasture (P < 0.01) and 32 kg/cow (P = 0.01) lower in the YR grazing system than in the ML system. Total BW gains ofpreweaning calf and grazing stocker cattle were 12 kg/ha of perennial pasture less (P = 0.07), but 27 kg/cow greater (P = 0.02) in pastures in the YR grazing system than in the ML system. Amounts of hay fed to cows in the ML system were 1,701 kg DM/cow and 896 kg DM/cow-stocker pair greater (P < 0.05) than in the YR grazing system. Extended grazing systems in the Midwest that include grazing of stocker cattle to utilize excess forage growth will decrease stored feed needs, while maintaining growing animal production per cow in April- and August-calving herds.  相似文献   

10.
Understanding the long-term effect of summer grazing date and fall stocking rate on herbage production is critical to extending the grazing season in the Nebraska Sandhills. A study was conducted from 1997 to 2002 at the Gudmundsen Sandhills Laboratory located near Whitman, Nebraska, to determine the herbage production response to summer grazing date and October stocking rate on two different sites. Site 1 was dominated by warm-season grasses and site 2 was dominated by cool-season graminoids. At each site, three 0.37-ha pastures were constructed in each of four blocks before application of summer grazing treatments. Pastures in each block were grazed at 0.5 animal-unit months (AUM) · ha?1 in June or July, or were deferred from summer grazing. Following summer grazing treatments, October stocking rate treatments (no grazing or 1.0, 2.0, or 3.0 AUM · ha?1) were applied to subunits of each summer grazing date pasture during mid-October. Vegetation was sampled in each pasture in mid-June and mid-August and sorted by functional group to determine the effect of 5 yr of grazing treatments on herbage production and residual herbage. Herbage production was not affected by summer or October grazing treatments on the warm-season grass–dominated site. Increasing October stocking rate, however, reduced cool-season graminoid production and subsequent herbage production 25% by year 5 of the study. Residual herbage at both sites at the end of the October grazing periods explained as much as 16% to 34% of subsequent year’s herbage production. Grazing managers in the Nebraska Sandhills can extend the grazing season by lightly stocking pastures in the summer to facilitate additional fall grazing. Heavy stocking in October over several years on cool-season–, but not warm-season–, dominated sites will reduce production of cool-season graminoids on these sites.  相似文献   

11.
Grazing distribution can be improved by using adapted cattle breeds that travel to distant areas of extensive pastures. A 2-yr study was conducted to evaluate grazing distribution and diet quality of Angus, Brangus, and Brahman cows (seven cows per breed group) in the Chihuahuan Desert during three seasons (winter, early summer, and late summer) using three pastures. Two GPS collars were randomly assigned to each breed group and cow positions were logged every 10 min for 10- to 14-d periods in each pasture (3 periods · season-1). In 2008, breed groups were evaluated in separate pastures and data were analyzed as a 3 × 3 Latin square design. In 2009, all breed groups were evaluated at the same time in the same pastures. Fecal samples were collected in 2008 and analyzed using near infrared spectroscopy (NIRS) to estimate diet quality. If positions recorded when cows were resting were excluded, Brahman cows traveled greater distances per day than Angus cows throughout the study and greater (P ≤ 0.10) than Brangus cows in all but one season during 2009. No differences in average distance to water were detected (P &spigt; 0.10) among breed groups. During early summer in 2008 and early and late summer in 2009, Angus cows maintained a more linear grazing path (P ≤ 0.10) than Brangus or Brahman cows. Brahman cows displayed more sinuous grazing paths (P ≤ 0.10) than other breeds during early and late summer seasons in 2009. In 2008, no differences in crude protein content of diets were detected (P &spigt; 0.10) among breed groups during all seasons. Spatial movement patterns of Brahman cows appeared to differ from Angus and Brangus cows; however, there was no evidence to suggest that there was any advantage in use of areas far from water by any breed group.  相似文献   

12.
Cow–calf productivity on 2 lightly (25%–30% use) and 2 conservatively grazed pastures (35%–40% use) were evaluated over a 5-year-period (1997 to 2001) in the Chihuahuan Desert of south-central New Mexico. Spring calving Brangus cows were randomly assigned to study pastures in January of each year. Experimental pastures were similar in area (1 098 ± 69 ha, mean ± SE) with similar terrain and distance to water. Use of primary forage species averaged 28.8% ± 4.3% in lightly stocked pastures and 41.8% ± 4.4% on conservatively grazed pastures. Perennial grass standing crop (168.8 ± 86 vs. 173.6 ±  kg·ha-1) and adjusted 205-day calf weaning weights (279.1 ±  vs. 270.7 ±  kg) did not differ among lightly and conservatively grazed pastures. Cow body condition scores in autumn, winter, and spring were similar among grazing levels as were autumn and winter body weights. However, cow body weights tended to be heavier (P < 0.10) in lightly grazed pastures relative to conservatively grazed pastures (524 vs. 502 ± 9.7 kg) in spring. Lightly grazed pastures yielded greater (P < 0.05) kg of calf weaned·ha-1 and calf crop percent than conservatively grazed pastures in 1998 due to destocking of conservatively grazed pastures during that year's drought. Conversely, pregnancy percent tended to be greater (P < 0.1) in conservatively relative to lightly grazed pastures (92.6% vs. 87.7%); however, this advantage is explained by herd management as cows in the conservatively grazed pastures were removed during drought of 1998, avoiding exposure to the drought stress experienced by cows in the lightly grazed pastures. Nonetheless, pregnancy percents from both grazing treatments would be acceptable for most range beef production systems. Results suggest that consistently applying light grazing use of forage is a practical approach for Chihuahuan Desert cow–calf operations to avoid herd liquidation during short term drought.  相似文献   

13.
The effects of mineral-supplement delivery system on patterns of supplement use by grazing beef cows were measured in 2 studies. Study 1 was conducted on 4 pastures grazed by pregnant, mature beef cows (BW = 562 ± 38 kg) from February to May. Study 2 was conducted on 4 pastures grazed by lactating beef cows (BW = 579 ± 54 kg) and their calves from May to September. Treatments were mineral delivered in salt-based, granular form (salty) or mineral provided in a low-protein, cooked, molasses-based block (sweet); both were fed ad libitum. The salty supplement was supplied to cattle via a covered mineral feeder; the sweet supplement was supplied via an open-topped barrel. Both salty and sweet supplements were deployed in each pasture. No additional salt was supplied to cattle. Forage use in the vicinity of each supplement-deployment site and the frequency and duration of herd visits to each supplement-deployment site were measured during four 14-d periods during study 1 and seven 14-d periods during study 2. Supplements were moved to new locations within pastures at the beginning of each period. Consumption of the sweet supplement was greater than salty during each data-collection period in study 1; however, relative differences in consumption diminished over time (treatment × time, P = 0.03). In study 2, sweet consumption was greater than salty in periods 1, 6, and 7 but was not different from salty during periods 2, 3, 4, and 5 (treatment × time, P < 0.01). Increased consumption of the sweet supplement in study 1 translated to greater frequency of herd visits to supplement-deployment sites compared with the salty sites (2.82 vs. 2.47 herd visits/d; P = 0.02) and longer herd visits to supplement-deployment sites compared with the salty sites (125.7 vs. 54.9 min/herd visit; P < 0.01). The frequency of herd visits to mineral feeding sites in study 2 was similar (P > 0.10) between treatments for periods 1 through 6; however, herds visited the sweet sites more often than salty during period 7 (P < 0.01). Herd visits to the sweet sites were longer than those to the salty sites in study 2 (83.8 vs. 51.4 min/herd visit; P < 0.01). Forage disappearance within 100 m of supplement-deployment sites was not influenced (P ≥ 0.54) by treatment in either study. Results were interpreted to suggest that the sweet supplement influenced the location of grazing cattle more strongly than the salty supplement and may be more effective for luring cattle into specific areas of pasture during the winter, spring, and early fall but not during summer.  相似文献   

14.
Performance and production of growing cattle (Bos taurus) on Coastal Bermudagrass [Cynodon dactylon (L.) Pers.] pasture are affected by forage allowance, but possible interactions with fertilizer nutrient source (i.e., inorganic vs. organic) and time have not been well described. We evaluated the effects of 3 nutrient sources with equivalent N rates: 1) inorganic, 2) crimson clover (Trifolium incarnatum L.) cover crop plus inorganic, and 3) chicken (Gallus gallus) broiler litter, factorially arranged with 2 residual forage mass levels [grazing to maintain high (4,528 +/- 1,803 kg/ha) and low (2,538 +/- 1,264 kg/ha) forage mass], on cattle stocking density, ADG, and BW gain during 5 consecutive summer grazing seasons. Across grazing seasons, residual forage mass and nutrient source both affected response variables, but interactions between these variables were rarely significant (P < or = 0.10). Across grazing seasons and nutrient sources, increasing grazing pressure to maintain a lower forage mass reduced ADG (0.67 vs. 0.88 kg/d; P < 0.001) but increased BW gain/ha (726 vs. 578 kg/ha; P < 0.001) due to greater stocking density (8.7 vs. 5.8 steers/ha, P < 0.001; mean BW of growing Angus steers of 212 kg). Inorganic fertilization led to greater stocking density than other nutrient sources (8.2 vs. 6.8 steers/ha, P < 0.001) because of greater forage production. Stocking density to achieve the 2 targeted forage mass levels was widely different during the initial grazing seasons of the study but nearly similar at the end of 5 yr. Cattle performance tended to decline with time during each grazing season under both residual forage mass levels, perhaps as a result of declining forage quality, because performance was positively associated with grazing season precipitation under high forage mass. Steer BW gain/ha was greater (P < 0.05) with lower forage mass early in the grazing season of all years but not necessarily later in the grazing season. Steer BW gain/ha was also greater (P < 0.05) with a lower forage mass during the early years of the study but was similar during the later years of the study. Significant variations in cattle performance and production with time confirmed the short-term seasonal effects but suggested that the long-term effects may also be of importance in maintaining productivity and environmental quality of grazed pastures.  相似文献   

15.
Our objective was to evaluate production, nutritive value and carrying capacity of piatã grass (Brachiaria brizantha cv. BRS Piatã), and performance of Nellore heifers in agrosilvopastoral systems (ASPS) with three eucalyptus (Eucalyptus urograndis) tree densities, during winter, spring, summer, and fall. Three integrated systems were evaluated: ASPS-1 (357 trees ha?1), ASPS-2 (227 trees ha?1), and CON (5 trees ha?1). In each system, two sward heights were evaluated: short and tall. A total of 80 11-month-old Nellore heifers were randomly allocated in a randomized split-plot block, 3?×?2 factorial. Greater dry matter availability was observed on CON pastures during the fall season. Greater percentage of leaf lamina was detected on ASPS-1 with short sward height and greater during summer, compared with other seasons. A greater forage production was observed between tree rows and for tall sward height. Spring was the season with less forage nutritive value. Average daily gain was greater during summer and fall. Gain per hectare and stocking rate were greater on CON system and on ASPS-2. Pastures with short sward height had greater gain per hectare and stocking rate. Agrosilvopastoral systems with intermediate tree density seem to be a good choice for producers willing to diversify their revenue sources without decreasing animal production.  相似文献   

16.
Our objectives were to evaluate strategies to improve productivity and economic returns from beef and dual-purpose cattle systems based on data collected on one dual-purpose (Bos taurus x Bos indicus) and two beef (Nellore) cattle farms in the western Amazon region of Brazil. Forage chemical composition and digestion rates of carbohydrate fractions of grazed Brachiaria decumbens and Brachiaria brizantha cv. Marandu grasses and Pueraria phaseoloides (tropical kudzu) legume were measured monthly during a 9-mo period from the end of one dry season to the end of the subsequent rainy season. Measurements of milk and growth responses to grazing these forages were used to predict animal productivity responses to dietary nutrient availability throughout an annual cycle. The ME available for gain in our simulations was always more limiting than metabolizable protein. The predicted ME available for gain was 0.50 kg/d for steers grazing B. brizantha and 0.40 kg/d for finishing steers grazing B. decumbens. Grasses contained more NDF and neutral detergent insoluble protein and less ME (P < 0.05) in the rainiest months than in the less rainy season, which resulted in 20% less predicted weight gain by growing steers (P < 0.05). Supplementation with sorghum grain was required to increase milk production and growth by 25 or 50% per animal, respectively, but this strategy was less profitable than current forage-only diets. Greater productivity of land and labor from higher stocking indicated greater net margins for beef production, but not for milk. This study suggested that more intensive beef production by judicious fertilization of grass-legume pastures and greater stocking density is the preferable strategy for owners of these cattle systems to improve economic returns under current conditions. It also might help decrease the motivation for additional forest clearing.  相似文献   

17.
Complete rest or grazing deferment is a general recommendation to encourage vegetative recovery following fire in the western United States. However, effects of grazing deferments on animal performance have not been determined. Prescribed fires were individually applied to nine separate, 1.5-ha pastures each year (2006 and 2007) for a total of 18 pastures. Grazing was deferred until spring (16 May), early summer (19 June), or late summer (1 August) the growing season after fire. At the end of each deferment, a 70-d (2007) or 41-d (2008) grazing period was initiated. Stocking rates were consistent between treatments within year, but were adjusted between years to achieve the targeted residual biomass of approximately 300 kg · ha?1. Diet quality was assessed approximately every 15 d throughout each grazing period (three pastures · period?1) via collection of rumen extrusa throughout the 2-yr study. Ewe body weight was measured on and off-test for each grazing period. Diet extrusa samples for in vitro organic matter disappearance was less (P = 0.03) for late summer than early summer grazing periods and equal to the spring period (62.9, 64.6, and 61.0 ± 0.90%, respectively for spring, early summer, and late summer grazing periods). In vitro neutral detergent fiber disappearance decreased (P = 0.01) by 10.6 percentage units from early grazing to late grazing period in 2007, whereas no differences were observed in 2008. Ewe average daily gain did not differ between spring and early summer grazing periods and were greater (P = 0.03) than the negligible body weight gains of the late summer grazing period. Total gain was 10.9 kg · ha?1 greater in 2008, and a quadratic response was measured for grazing period in 2007. Results indicate that deferment until early summer may be preferable so that stocking rates can be more accurately determined and animal performance is not diminished.  相似文献   

18.
Livestock production in the Swaziland Middleveld is limited by inadequate sources of good quality forage. Experiments were carried out to determine whether tropical pastures could help overcome the feed problem. Numerous species were screened in a nursery and trials were conducted with promising lines to determine their nutrient requirements and to test their performance under grazing. Mixtures of grasses and Desmodium spp. were found to be useful for summer grazing, winter foggage, and silage. These pastures had relatively low fertilizer requirements and could be particularly valuable in the development of Swazi peasant cattle farming.  相似文献   

19.
Agricultural operations, including horse farms, can contribute nonpoint source (NPS) pollution to surface water. The use of best management practices (BMPs) is the most effective way to prevent the movement of pollutants to surface water from nonpoint source pollution. Previous mailed survey studies have assessed the use of BMPs at the county and state level, but a visual assessment of horse farms is necessary to validate survey results. An observational field study was conducted to assess BMP use and soil and pasture quality and to create a model to predict soil erosion on Maryland horse farms. Fifty-one farms were selected based on stocking density (acres per horse [ac horse-1]), farm use, and presence of water on property. All farms were visited from September through November 2009. In each pasture with grazing horses, the correct use of BMPs was assessed, grass height and vegetative cover were measured, and composite soil samples were collected. Less than half of the 18 assessed BMPs were being used by participants. Although most participants maintained the recommended vegetative cover and grass height, soil erosion was a major problem in pastures. Most farms had optimum soil nutrient concentrations (Ca, K, and P), excessive Mg values, and basic soil pH. Vegetative cover and grass height measurements were positively correlated with stocking density (r = 0.345, P < .0001; and r = 0.291, P < .0001, respectively). Farm use was the only variable that predicted soil erosion on farms (P = .006). Farms used for pleasure were least likely to have soil erosion, whereas farms used for breeding were more likely to have soil erosion (P = .0058). Despite the low-to-moderate adoption of BMPs, the maintenance of recommended vegetative cover and grass height as well as optimum values of soil nutrients indicated participating Maryland horse farms have a low potential for nutrient movement and NPS pollution.  相似文献   

20.
A 2-yr grazing experiment was conducted to assess the effects of grazing management on cattle distribution and pasture and stream bank characteristics. Six 12.1-ha cool-season grass pastures in central Iowa were allotted to 1 of 3 treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with stream access restricted to 4.9-m-wide stabilized crossings (CSR), or rotational stocking with stream access restricted to a riparian paddock (RP). Pastures were stocked with 15 fall-calving Angus cows (Bos taurus L.) from mid-May to mid-October for 153 d in 2008 and 2009. A global positioning system (GPS) collar recording cow position every 10 min was placed on at least 1 cow per pasture for 2 wk of each month from May through September. Off-stream water was provided to cattle in CSU and CSR treatments during the second of the 2 wk when GPS collars were on the cattle. A black globe temperature relative humidity index (BGTHI) was measured at 10-min intervals to match the time of the GPS measurements. Each month of the grazing season, forage characteristics (sward height, forage mass, and CP, IVDMD, and P concentrations) and bare and fecal-covered ground were measured. Stream bank erosion susceptibility was visually scored in May, August, and October (pre-, mid-, and post-stocking). Cattle in RP and CSR treatments spent less time (P < 0.10) within the stream zone (0 to 3 m from stream center) in June and August and in the streamside zone (0 to 33 m from stream zone) in May through August and May through September, respectively, than cattle in CSU pastures. However, off-stream water had no effect on cattle distribution. Compared with the CSU treatment, the CSR treatment reduced the probability (P < 0.10) that cattle were within the riparian zone (0 to 36 m from stream center) at BGTHI of 50 to 100. Bare ground was greater (P < 0.10) in pastures with the CSU than CSR and RP treatments in the stream and streamside zones in September and October and in July and September. Streams in pastures with the CSU treatment had less stable banks (P < 0.10) mid- and post-stocking than RP or CSR treatments. Results show that time spent by cattle near pasture streams can be reduced by RP or CSR treatments, thereby decreasing risks of sediment and nutrient loading of pasture streams even during periods of increased BGTHI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号