首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The aim of this study was to investigate the effectiveness of compost and vermicompost as soil conditioners in alleviating salt‐affected soils and increasing maize productivity. A greenhouse trial, consisting of seven soil amendment treatments in a completely randomized design with three replications, was carried out at Khon Kaen University, Thailand, during the rainy season of 2011. Plant height and total dry matter of maize increased in treatments with compost and vermicompost application when compared with the control (no fertilizer) in two types of soils (saline and nonsaline) during the growing season. Soil pH and electrical conductivity in saturation paste extracts were decreased by compost and vermicompost amendments with or without earthworms when compared with unamended treatments in the saline soil. Compost and vermicompost amendments improved cation exchange capacity, soil organic carbon, total nitrogen and extractable phosphorus in both soils. These amendments also increased exchangeable K+, Ca2+ and Mg2+ while decreasing exchangeable Na+ in the saline soil, which suggested that Ca2+ was exchanged for Na+, exchangeable Na+, then leached out, and soil salinity reduced as a result. Soil microbial activities including microbial C and N and basal soil respiration were improved by the application of compost and vermicompost amendments with or without earthworms when compared with the control in both soils. This experiment showed that the compost and vermicompost were effective in alleviating salinity and improving crop growth. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
ABSTRACT

Soil degradation due to salinization and sodication is the paramount threat in Indo-Gangetic plains. The studies on reclamation and management of such soils can provide a pragmatic solution for improving fertility and productivity of these soils. Lack of organic matter and poor availability of nutrients are the major factors for low productivity of sodic soils. Rice-wheat is a major cropping system in Indo-Gangetic alluvial plain region even in reclaimed sodic soils and farmers used inorganic fertilizers only to get higher yields. In this study, we used different organic sources of amendments in conjunction with different nitrogen (N) doses supplied through inorganic fertilizers to investigate the combined effect of organic and inorganic amendments on soil fertility and the productivity of rice- wheat system in sodic soils. Salt tolerant varieties of rice and wheat were grown in sodic soil (pH: 9.30, EC: 1.12 dSm?1 and exchangeable sodium percentage, ESP: 52) during 2014–15 to 2016–17 in a field experiment with 13 treatment combinations of organic and inorganic amendments (T1- (control) 100% of recommended dose of N (RDN), T2-municipal solid waste compost (MSWC) @10 t ha?1 + 50%RDN, T3- MSWC @10 t ha?1 + 75% RDN,T4- MSWC @10 t ha?1 + 100%RDN, T5-Vermicompost (VC) @10 t ha?1 + 50% RDN, T6- VC @10 t ha?1 + 75% RDN, T7-VC@10 t ha?1 + 100% RDN, T8- Farm yard manure (FYM) @ 10 t ha?1 + 50% RDN,T9- FYM@10 t ha?1 + 75%RDN, T10- FYM@10 t ha?1 + 100% RDN, T11-Pressmud (PM) @10 t ha?1 + 50% RDN, T12-PM@10 t ha?1 + 75%RDN, and T13- PM @ 10 t ha?1 + 100% RDN). Use of organic amendments supplemented with reduced dose of N through inorganic fertilizer has significantly improved soil bio-physical and chemical properties. Application of VC@10 t ha?1 + 100% RDN (T7) decreased soil bulk density, pH, EC, ESP and Na content to 2.0, 4.2, 26.5, 42.8, and 56.6% respectively and increased soil organic carbon by 34.6% over control (T1). Soil fertility in terms of available N, P, K, Ca, and Mg increased by 20.5, 33.0, 36.4, and 44%, respectively, over control (T1). Soil microbial biomass carbon, nitrogen, and phosphorus also improved significantly due to combined use of organic amendments and inorganic fertilizers over the only use of inorganic fertilizers. Decreasing in soil sodicity and increasing soil fertility showed significant increase (P < 0.05) in crop growth, growth indices, and grain yields of rice and wheat. The study revealed that combined use of VC or MSW compost @10 t ha?1 in conjunction with 75% RDN through inorganic fertilizers in sodic soils proved sustainable technology for restoration of degraded sodic soils and improving crop productivity.  相似文献   

3.
Comparison between percolation and extraction with 1 M NH4Cl solution to determine the effective cation exchange capacity (CECeff) of soils A simple method is proposed for the determination of the effective cation exchange capacity (CECeff). The soil is extracted with 1 M NH4Cl‐solution, manually shaken for three times, and the exchangeable cations are determined by ICP‐OES and pH‐measurement. Comparison with corresponding results of the percolation method (n = 110 samples) shows good agreement in reproducibility, exchangeable cations (except Fe and Na), base saturation and CECeff.  相似文献   

4.
Abstract

Influence of long‐term sodic‐water (SW) irrigation with or without gypsum and organic amendments [green manure (GM), farmyard manure (FYM), and rice straw (RS)] on soil properties and nitrogen (N) mineralization kinetics was studied after 12 years of rice–wheat cropping in a sandy loam soil in northwest India. Long‐term SW irrigation increased soil pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) and decreased organic carbon (OC) and total N content. On the other hand, application of gypsum and organic amendments resulted in significant improvement in all these soil properties. Mineralization of soil N ranged from 54 to 111 mg N kg?1 soil in different treatments. Irrigation with SW depressed N mineralization. In SW‐irrigated plots, two flushes of N mineralization were observed; the first during 0 to 7 d and the second after 28 d. Amending SW irrigated plots with GM and FYM enhanced mineralization of soil N. Gypsum application along with SW irrigation reduced cumulative N mineralization at 56 days in RS‐amended plots but increased it under GM‐treated, FYM‐treated, or unamended plots. Nitrogen mineralization potential (No) ranged from 62 to 543 mg N kg?1 soil. In the first‐order zero‐order model (FOZO), the easily decomposable fraction ranged from 5.4 to 42 mg N kg?1 soil. Compared to the first‐order single compartment model, the FOZO model could better explain the variations in N mineralization in different treatments. Variations in No were influenced more by changes in pH, SAR, and ESP induced by long‐term SW irrigations and amendments rather than by soil OC.  相似文献   

5.
Productive capacity of Mauritius soils could be declining with sugarcane monoculture. Effects of short- and long-term sugarcane cropping on quality of an Oxisol and an Inceptisol were assessed to a depth of 50 cm. In the short term (<25 years), cropping led to less organic matter and topsoil microbial biomass (0 to 15 cm), probably through increased microbial breakdown of organic matter (OM) and downward movement by tillage. The pH of both soils and the cation exchange capacity (CEC) of the Oxisol increased following application of lime, fertilizers, and organic amendments. Physical properties were also affected. Aggregate stability decreased and topsoil was compacted, whereas plant-available water and permeability improved. In the long-term (>50 years), OM and microbial biomass increased with inputs of crop residues, whereas exchangeable base levels improved in the Inceptisol with organic amendments. Physical properties did not change much in the long term, even if some improvement was noted in structural and hydraulic properties.  相似文献   

6.
Abstract

Kangping soil in northeast China is a sodic soil characterized by a high pH and excessive sodium. The high pH and excessive sodium in sodic soils generally cause loss of soil structure, reduce hydraulic conductivity (HC), increase soil hardness, and make the soil unproductive land. After we mixed organic matter (rice straw) and chemical amendments (H2SO4, CaSO4, and FeSO4), a column experiment was conducted to evaluate the physical and chemical properties of the soil influenced by the changes in HC, penetrability of soil s`urface, pH, electrical conductivity, CO3 2‐, HCO3 ?, Ca2+, Na+, sodium adsorption rate (SAR), available phosphorus (P) and iron (Fe), and leached P.

Organic matter decreased the concentrations of CO3 2‐, HCO3 ?, and Na+ in soil solution and increased the total volume of the leachate. Organic matter also reduced the amount of available Fe and increased the available P. However, organic matter did not affect the penetrability of the soil surface as much as soil hardness, HC, and SAR within the short period of this experiment. Among the chemical amendments, H2SO4 and FeSO4 were more effective than CaSO4 to restore HC, electrical conductivity, Na+, and SAR. The chemical amendments, compared with organic matter, significantly leached P from the soil in this study, but the leaching was independent of the concentration of available P in the soil. The CaSO4 had the strongest effect in increasing leached P from the soil without changing the concentration of available P in the soil. Organic matter with added CaSO4 leached P from the soil more than all other treatments.  相似文献   

7.
Substitution of mineral fertilizers with organic soil amendments is postulated to improve productivity‐relevant soil properties such as aggregation and organic matter (OM) content. However, there is a lack of studies analyzing the effects of biochar and biogas digestate versus mineral fertilizer on soil aggregation and OM dynamics under temperate field conditions. To address this research gap, a field experiment was sampled four years after establishment on a sandy Cambisol in Germany where mineral fertilizer or liquid biogas digestate was applied with or without 3 or 40 Mg biochar ha?1 (produced at 650°C). Soil samples were analyzed for soil organic carbon (SOC) content, pH, cation exchange capacity, bulk density, water‐holding capacity, microbial biomass, aggregate size class distribution, and the SOC content associated with these size classes. 40 Mg biochar ha?1 significantly increased SOC content in all fractions, especially free particulate OM and the 2–0.25 mm fraction. The yield of small macroaggregates (2–0.25 mm) was increased by biochar, but cation exchange capacity, water‐holding capacity, and pH were not consistently improved. Thus, high‐temperature biochar applied to a sandy soil under temperate conditions is primarily recommended to increase SOC content, which could contribute to climate change mitigation if this C remains sequestered over the long‐term. Fertilizer type did not significantly affect SOC content or other measured properties of the sandy Cambisol, suggesting that replacement of mineral fertilizer with digestate has a neutral effect on soil fertility. Co‐application of biochar with digestate provided no advantages for soil properties compared to co‐application with mineral fertilizer. Thus, independent utilization of these organic amendments is equally suitable.  相似文献   

8.
Cation exchange properties of acid forest soils of the northeastern USA   总被引:2,自引:0,他引:2  
Negative correlations between soil pH and cation exchange capacity (CEC) or base saturation in soils of the northeastern USA and Scandinavia have raised questions regarding the nature of cation exchange in acid forest soils. Using data from three small‐catchment studies and an extensive regional survey of soils in the northeastern USA, I examined relationships among total carbon, effective CEC (CECe), soil pHs (in 0.01 m CaCl2) and base saturation. Organic matter is the predominant source of soil surface charge in these coarse‐grained, glacially derived soils. Correlation coefficients (r) between total carbon and CECe ranged from 0.43 to 0.74 in organic horizons and from 0.46 to 0.83 in mineral horizons. In all cases, the intercepts of functional relations between CECe and total C were near zero. In O horizons, the CECe per unit mass of organic carbon (CECe:C) was positively correlated with pHs in three of the four data sets, consistent with the weak‐acid behaviour of the organic matter. However, CECe:C was negatively correlated with pHs in mineral soils in two data sets, and uncorrelated in the other two. The CECe in mineral soils represents the portion of total CEC not occupied by organically bound Al. The negative correlations between CECe:C and pHs can therefore be explained by increased Al binding at higher pHs. Aluminium behaves like a base cation in these soils. When Al was considered a base cation, the relation between base saturation and pHs could be effectively modelled by the extended Henderson–Hasselbalch equation. When modelled without Al as a base cation, however, there were no consistent relationships between pHs and base saturation across sites or soil horizons. Because of the non‐acidic behaviour of Al, it is difficult to predict the effect of ongoing reductions in acid deposition on the base status of soils in the northeastern USA.  相似文献   

9.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

10.
It has been suggested that additions of organic residues to acid soils can ameliorate Al toxicity. For this reason the effects of additions of four organic residues to an acid soil on pH and exchangeable and soil solution Al were investigated. The residues were grass, household compost, filter cake (a waste product from sugar mills) and poultry manure, and they were added at rates equivalent to 10 and 20 t ha?1. Additions of residues increased soil pH measured in KCl (pH(KCl)) and decreased exchangeable Al3+ in the order poultry manure > filter cake > household compost > grass. The mechanism responsible for the increase in pH differed for the different residues. Poultry manure treatment resulted in lower soil pH measured in water (pH(water)) and larger concentrations of total (AlT) and monomeric (Almono) Al in soil solution than did filter cake. This was attributed to a soluble salt effect, originating from the large cation content of poultry manure, displacing exchangeable Al3+ and H+ back into soil solution. The considerably larger concentrations of soluble C in soil solution originating from the poultry manure may also have maintained greater concentrations of Al in soluble complexed form. There was a significant negative correlation (r = ?0.94) between pH(KCl) and exchangeable Al. Concentrations of AlT and Almono in soil solution were not closely related with pH or exchangeable Al. The results suggest that although additions of organic residues can increase soil pH and decrease Al solubility, increases in soluble salt and soluble C concentrations in soil solution can substantially modify these effects.  相似文献   

11.
Acid deposition is considered to be a major environmental problem in China, but information about effects on soils and waters is scarce. To contribute to increased knowledge about the problem a small catchment (about 7 ha) in the outskirts of Guiyang, the provincial capital of Guizhou in south-western China, was instrumented for collection of precipitation, throughfall, soil water and stream water. In addition soil samples have been collected and analyzed for key properties. Median pH in the precipitation is 4.40 (quartiles: 4.19 and 4.77) and the median sulfate concentration 228 µeq/L (quartiles: 147 and 334 µeq/L). The dry deposition of both SO2 and alkaline dust is considerable. The sum of wet deposition of sulfate and dry deposition of SO2 has been estimated to about 8.5 gSm-2yr-1. The total S-deposition may be somewhat higher due to dry deposition of sulfate and occult deposition. In soil water, SO4 2- is the major anion, generally ranging from 300 to 2500 µeq/L in the different plots. Calcium is an important cation, but there is also a considerable contribution of aluminum from the soil. In some of the plots the concentrations of inorganic monomeric aluminum (Ali) are typically between 200 and 400 µm. Potential harmful levels of aluminum and/or high Ali/(Ca2+ + Mg2+) molar ratios occur in the catchment, but damages to vegetation have not yet been reported. In most cases exchangeable aluminum accounts for between 75 and 95% of the total effective cation exchange capacity (CECE) in the mineral soils. The aluminum chemistry cannot easily be explained by conventional models as the Gaines-Thomas ion-exchange equation or equilibrium with an Al(OH)3 mineral phase. The stream water is generally less acidic and has considerably lower concentrations of aluminum than the soil water, even though quite acid events have been observed (pH < 4.4). The median pH values are 4.9 and 5.0 in the two first order streams and 6.3 in the dam at the lower boarder of the catchment.  相似文献   

12.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

13.
Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C present in soil and can be easily quantified. Changes in soil MBC and water-extractable organic carbon pools were studied in a 14-year long-term experiment in plots of rice-wheat rotation irrigated with canal water (CW), sodic water (SW, 10-12.5 mmol c L-1 residual sodium carbonate), and SW amended with gypsum with or without application of organic amendments including farmyard manure (FYM), green manure (GM), and wheat straw (WS). Irrigation with SW increased soil exchangeable sodium percentage by more than 13 times compared to irrigation with CW. Sodic water irrigation significantly decreased hot water-extractable organic carbon (HWOC) from 330 to 286 mg kg-1 soil and cold water-extractable organic carbon (CWOC) from 53 to 22 mg kg-1 soil in the top 0-7.5 cm soil layer. In the lower soil layer (7.5-15 cm), reduction in HWOC was not significant. Application of gypsum alone resulted in a decrease in HWOC in the SW plots, whereas an increase was recorded in the SW plots with application of both gypsum and organic amendments in both the soil layers. Nevertheless, application of gypsum and organic amendments increased the mean CWOC as compared with application of gypsum alone. CWOC was significantly correlated with MBC but did not truly reflect the changes in MBC in the treatments with gypsum and organic amendments applied. For the treatments without organic amendments, HWOC was negatively correlated with MBC (r = 0.57*) in the 0-7.5 cm soil layer, whereas for the treatments with organic amendments, both were positively correlated. Irrigation with SW significantly reduced the rice yield by 3 t ha-1 and the yield of rice and wheat by 5 t ha-1 as compared to irrigation with canal water. Application of amendments significantly increased rice and wheat yields. Both the rice yield and the yield of rice and wheat were significantly correlated with MBC (r = 0.49**-0.56**, n = 60). HWOC did not exhibit any relation with the crop yields under the treatments without organic amendments; however, CWOC showed a positive but weak correlation with the crop yields. Therefore, we found that under sodic water irrigation, HWOC or CWOC in the soils was not related to MBC.  相似文献   

14.
湘西典型植烟土壤酸碱缓冲特性及影响因素   总被引:3,自引:0,他引:3  
为探明山地植烟土壤酸碱缓冲特性,采集了湘西山区烤烟典型生产区的28个土壤样本,采用酸碱滴定法和灰色关联法分析了湘西山地植烟土壤酸碱缓冲特性以及土壤缓冲容量与各影响因素之间的量化关系。结果表明:湘西山地植烟土壤酸碱缓冲量为11.35~43.29 mmol·kg-1,平均为17.26 mmol·kg-1,黄棕壤的酸碱缓冲量(11.35~43.29 mmol·kg-1)显著高于黄壤(11.79~20.70 mmol·kg-1)。有78.57%的样本对酸碱敏感,黄壤土是否对酸敏感由有机质含量决定,黄棕壤土是否对酸敏感与pH和有机质含量密切相关。对于同一土壤类型,有机质和黏粒含量与酸碱缓冲容量显著正相关;对于黄棕壤,酸碱缓冲容量还与pH和阳离子交换量呈显著正相关,与交换性酸和交换性铝呈显著负相关。主要土壤类型之间缓冲性能存在较大差异,黄壤土酸碱缓冲性能主要受土壤有机质、阳离子交换量和黏粒含量的影响;黄棕壤土酸碱缓冲性能主要受pH、阳离子交换量和有机质的影响。在生产中应采用合理施用化肥、增施有机肥、调节土壤酸性等措施提高植烟土壤酸碱缓冲性能,为优质烟叶生产创造良好的生态环境。  相似文献   

15.
In this experiment, the influences of three different organic sources on some physical and chemical fertility properties in soil were investigated. The approach involved establishing a plot experiment in the greenhouse with a Lithic Rhodoxeralf and a variety of carbon sources having specific chemical properties applied to the soil of individual plots. Treatments include potassium (K)–humate (KH, 25, 50 and 100 kg ha?1), concentrated plant extract (CPE, 50, 100 200 kg ha?1), and molasses (M, 50, 100 200 kg ha?1). After a 7-month incubation period, soil organic matter (SOM), total nitrogen (N), soil reaction (pH), electrical conductivity (EC), cation exchange capacity (CEC), base saturation (BS), and bulk density (BD) were determined, and their correlation to different C sources was developed. With respect to the unamended soil, soil treated with intermediate and high doses of all organic amendments showed apparent increases of SOM, total N, pH, EC, and CEC and a slight decrease of BD.  相似文献   

16.
With the increased use of ammonium fertilizers a study of the absorption, retention and release of NH+ 4 by soil is gaining considerable importance. An ammonium saturated soil may hold NH+ 4 in three different forms, the free, the exchangeable and the fixed ammonium ion. The free NH+ 4 can be extracted from soil by water or alchohol; the exchangeable NH+ 4 may be replaced by simple cation exchange process using 2N-KCl whilst the fixed ammonium can not be removed even after the application of drastic treatments. Only absorbed ammonium is usually available to the plants either directly or through nitrification while free ammonium is likely to be lost through leaching with rain or irrigation water and less than 10% of the fixed ammonium is only slightly available to nitrifying bacteria or nitrate formation (ALLISON et al. 1951, HANWAY and SCOTT 1956).  相似文献   

17.
Ondráček  J.  Ždímal  V.  Smolík  J.  Lazaridis  M. 《Water, air, and soil pollution》2009,198(1-4):219-232
The work focuses on application of linear regression method for assessment of soil physicochemical parameters influence on 137Cs accumulation. Besides organic matter content and pH, the parameters related to sorption properties of mineral parts and mobile ions concentration were considered. Before linear regression model is applied the data were transformed using Box–Cox formula. Selection of explanatory variables for regression was based on Akaike Information Criterion (AIC). Analysis of residuals distribution showed that linear regression can be applied for assessment of Cs+ accumulation in soil horizons. The important conclusion is that Cs+ cation migration in soil is usually influenced by more than a single horizon parameter. Common influence of two or more parameters on 137Cs activity in soil horizon was observed. Our results suppose that migration of Cs in soil is affected mainly by horizon’s acidity, presence of minerals and ion exchangeable substances. Some processes are probably affected by Cs+ individual properties, but other ones are not so selective.  相似文献   

18.
Modern intensive agricultural practices, particularly the use of nitrogen fertilizers, have accelerated soil acidification on a global scale. The soil pH buffering capacity (pHBC) is often used to quantify the soil acidification rate. Calcareous soils have relatively higher pH and pHBC, reflecting the presence of carbonate minerals; however, the impact of long-term fertilization treatment on pH and pHBC is poorly understood for calcareous soils. Here, calcareous soil samples (0–20 cm) were collected from fields receiving six different fertilization treatments for 22 years: control (CK, unfertilized but planted); nitrogen (N); nitrogen and phosphorus (NP); nitrogen, phosphorus and potassium (NPK); combined manure and NPK (NPKM); and combined corn-stover and NPK (NPKS). Both pH and pHBC significantly decreased for all treatments relative to CK. NPKS treatment had the lowest soil pH. Compared with CK, the soil pHBC decreased 5.7 to 17.3% under different treatments. The calcium carbonate (CaCO3) content was significantly reduced by fertilization treatments, with a maximum decrease under the NPKS treatment. Structural equation model (SEM) analysis revealed that calcium carbonate and soil organic matter (SOM) made important contributions to effective cation exchangeable capacity (ECEC). Soil pHBC was directly controlled by ECEC, while CaCO3 and SOM indirectly contributed to the pHBC through ECEC. These results indicated that NPKS treatment induces more severe soil acidification, reflecting the higher H+ input and lower pHBC under this treatment.  相似文献   

19.
A study on the long-term effect of fertilizers and amendments on crop productivity and changes in soil fertility in maize-wheat cropping system in an acid Alfisol was carried out in randomized block design (RBD) with 11 treatments. Continuous application of chemical fertilizers along with farmyard manure (FYM) or lime significantly influenced the grain and straw/stover yield and the uptake of nutrients by wheat and maize crops significantly. The organic carbon content increased from 7.9 to 12.1 g kg?1, cation exchange capacity (CEC) from 12.1 to 14.6 cmol (p+) kg?1 and available phosphorus from 21.9 to 75.2 kg ha?1 through the integrated use of organic and fertilizers for the last 42 years while the status of available nitrogen (N) and potassium (K) declined over the years in all the treatments. Continuous application of urea alone resulted in a drastic decline in soil pH at both depths. Imbalanced use of fertilizers led to a significant reduction in the productivity of both crops and depleted the soil fertility.  相似文献   

20.
Kopáček  J.  Kaňa  J.  Šantrůčková  H.  Picek  T.  Stuchlík  E. 《Water, air, and soil pollution》2004,153(1-4):307-328
Soils and lakes were sampled in fifteen catchments in the alpinezone of the Tatra Mountains (Slovak-Polish border) to evaluate the dependence of lake water chemistry on soil properties. The amount of soil in alpine meadows varied from 38 to 255 kg m-2 (dry weight soil <2 mm; average of 121 kg m-2). The average cation exchange capacity (CEC) was 12 eq m-2, average base saturation was 12%, and average ${\text{pH}}_{{\text{CaCl}}_{\text{2}} } $ was 4.0. Moraine areas had, on average, 13 kg m-2 of <2 mm soil in small deposits between stones. Their chemical properties were similar to mineral horizons of alpine soils but had higher concentrations of P forms. Soil composition was spatially uniform, having coefficientsof variation of all parameters between 5 and 115%, and did not exhibit significant differences between the catchments or along the elevation gradient. Variation in pools of soil constituents was ~2-fold higher. Soil organic matter concentration was theparameter that most strongly and positively correlated with N, P, S, CEC, exchangeable base cations, exchangeable acidity, and all biochemical parameters (C, N, and P in microbial biomass and C and N mineralisation rates). Lake water concentrations of organic C, N, and total P were positively correlated (P < 0.01) with the pool of soil organic matter in the catchments, while NO3 - concentrations were negatively correlated (P < 0.001). No correlations were found between C, N, and P concentrations in lakes and soil chemistry, indicating the dominant role of soil quantity over quality for surface water composition in the Tatra lakes. Relatively high concentrations of Ca2+, Na+, SO4 2-, reactive Si, and acid neutralising capacity in some lakes were not explained by soil characteristics, and were more probably related to bedrock composition and structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号