首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We demonstrate logic circuits with field-effect transistors based on single carbon nanotubes. Our device layout features local gates that provide excellent capacitive coupling between the gate and nanotube, enabling strong electrostatic doping of the nanotube from p-doping to n-doping and the study of the nonconventional long-range screening of charge along the one-dimensional nanotubes. The transistors show favorable device characteristics such as high gain (>10), a large on-off ratio (>10(5)), and room-temperature operation. Importantly, the local-gate layout allows for integration of multiple devices on a single chip. Indeed, we demonstrate one-, two-, and three-transistor circuits that exhibit a range of digital logic operations, such as an inverter, a logic NOR, a static random-access memory cell, and an ac ring oscillator.  相似文献   

2.
研究了碳纳米管吸附腺嘌呤前后电学性能的变化,并通过碳纳米管吸附腺嘌呤的拉曼光谱,分析其吸附机理.试验结果表明,碳纳米管在吸附腺嘌呤后导电性能降低.混酸修饰过的碳纳米管对腺嘌呤更敏感,其敏感率随着腺嘌呤浓度增大而增大.碳纳米管吸附腺嘌呤后,其在拉曼光谱1 344 cm-1波段和1 576 cm-1波段附近的2个特征峰都有一定蓝移,并在多处出现新峰,说明有新的化学键产生.  相似文献   

3.
With their impressive individual properties, carbon nanotubes should form high-performance fibers. We explored the roles of nanotube length and structure, fiber density, and nanotube orientation in achieving optimum mechanical properties. We found that carbon nanotube fiber, spun directly and continuously from gas phase as an aerogel, combines high strength and high stiffness (axial elastic modulus), with an energy to breakage (toughness) considerably greater than that of any commercial high-strength fiber. Different levels of carbon nanotube orientation, fiber density, and mechanical properties can be achieved by drawing the aerogel at various winding rates. The mechanical data obtained demonstrate the considerable potential of carbon nanotube assemblies in the quest for maximal mechanical performance. The statistical aspects of the mechanical data reveal the deleterious effect of defects and indicate strategies for future work.  相似文献   

4.
The combination of their electronic properties and dimensions makes carbon nanotubes ideal building blocks for molecular electronics. However, the advancement of carbon nanotube-based electronics requires assembly strategies that allow their precise localization and interconnection. Using a scheme based on recognition between molecular building blocks, we report the realization of a self-assembled carbon nanotube field-effect transistor operating at room temperature. A DNA scaffold molecule provides the address for precise localization of a semiconducting single-wall carbon nanotube as well as the template for the extended metallic wires contacting it.  相似文献   

5.
We report that freestanding films of vertically aligned carbon nanotubes exhibit super-compressible foamlike behavior. Under compression, the nanotubes collectively form zigzag buckles that can fully unfold to their original length upon load release. Compared with conventional low-density flexible foams, the nanotube films show much higher compressive strength, recovery rate, and sag factor, and the open-cell nature of the nanotube arrays gives excellent breathability. The nanotube films present a class of open-cell foam structures, consisting of well-arranged one-dimensional units (nanotube struts). The lightweight, highly resilient nanotube films may be useful as compliant and energy-absorbing coatings.  相似文献   

6.
Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.  相似文献   

7.
An array of aligned carbon nanotubes (CNTs) was incorporated across a polymer film to form a well-ordered nanoporous membrane structure. This membrane structure was confirmed by electron microscopy, anisotropic electrical conductivity, gas flow, and ionic transport studies. The measured nitrogen permeance was consistent with the flux calculated by Knudsen diffusion through nanometer-scale tubes of the observed microstructure. Data on Ru(NH3)6(3+) transport across the membrane in aqueous solution also indicated transport through aligned CNT cores of the observed microstructure. The lengths of the nanotubes within the polymer film were reduced by selective electrochemical oxidation, allowing for tunable pore lengths. Oxidative trimming processes resulted in carboxylate end groups that were readily functionalized at the entrance to each CNT inner core. Membranes with CNT tips that were functionalized with biotin showed a reduction in Ru(NH3)6(3+) flux by a factor of 15 when bound with streptavidin, thereby demonstrating the ability to gate molecular transport through CNT cores for potential applications in chemical separations and sensing.  相似文献   

8.
We demonstrate reversible wetting and filling of open single-wall carbon nanotubes with mercury by means of electrocapillary pressure originating from the application of a potential across an individual nanotube in contact with a mercury drop. Wetting improves the conductance in both metallic and semiconducting nanotube probes by decreasing contact resistance and forming a mercury nanowire inside the nanotube. Molecular dynamics simulations corroborate the electrocapillarity-driven filling process and provide estimates for the imbibition speed and electrocapillary pressure.  相似文献   

9.
Capillarity and wetting of carbon nanotubes   总被引:1,自引:0,他引:1  
The wetting and capillarity of carbon nanotubes were studied in detail here. Nanotubes are not "super-straws," although they can be wet and filled by substances having low surface tension, such as sulfur, selenium, and cesium, with an upper limit to this tension less than 200 millinewtons per meter. This limit implies that typical pure metals will not be drawn into the inner cavity of nanotubes through capillarity, whereas water and organic solvents will. These results have important implications for the further use of carbon nanotubes in experiments on a nanometer scale.  相似文献   

10.
Transparent, conductive carbon nanotube films   总被引:1,自引:0,他引:1  
We describe a simple process for the fabrication of ultrathin, transparent, optically homogeneous, electrically conducting films of pure single-walled carbon nanotubes and the transfer of those films to various substrates. For equivalent sheet resistance, the films exhibit optical transmittance comparable to that of commercial indium tin oxide in the visible spectrum, but far superior transmittance in the technologically relevant 2- to 5-micrometer infrared spectral band. These characteristics indicate broad applicability of the films for electrical coupling in photonic devices. In an example application, the films are used to construct an electric field-activated optical modulator, which constitutes an optical analog to the nanotube-based field effect transistor.  相似文献   

11.
The coalescence of single-walled nanotubes is studied in situ under electron irradiation at high temperature in a transmission electron microscope. The merging process is investigated at the atomic level, using tight-binding molecular dynamics and Monte Carlo simulations. Vacancies induce coalescence via a zipper-like mechanism, imposing a continuous reorganization of atoms on individual tube lattices along adjacent tubes. Other topological defects induce the polymerization of tubes. Coalescence seems to be restricted to tubes with the same chirality, explaining the low frequency of occurrence of this event.  相似文献   

12.
Lightly etched single-walled carbon nanotubes are chemically reacted to form rings. The rings appear to be fully closed as opposed to open coils, as ring-opening reactions did not change the structure of the observed rings. The average diameter of the rings was 540 nanometers with a narrow size distribution. The nanotubes in solution were modeled as wormlike polymer chains, yielding a persistence length of 800 nanometers. Nanotubes shorter than this length behave stiffly and stay nearly straight in solution. However, nanotubes longer than the Kuhn segment length of 1600 nanometers undergo considerable thermal fluctuation, suggesting a greater flexibility of these materials than is generally assumed.  相似文献   

13.
Intramolecular junctions in single-walled carbon nanotubes are potentially ideal structures for building robust, molecular-scale electronics but have only been studied theoretically at the atomic level. Scanning tunneling microscopy was used to determine the atomic structure and electronic properties of such junctions in single-walled nanotube samples. Metal-semiconductor junctions are found to exhibit an electronically sharp interface without localized junction states, whereas a more diffuse interface and low-energy states are found in metal-metal junctions. Tight-binding calculations for models based on observed atomic structures show good agreement with spectroscopy and provide insight into the topological defects forming intramolecular junctions. These studies have important implications for applications of present materials and provide a means for assessing efforts designed to tailor intramolecular junctions for nanoelectronics.  相似文献   

14.
We report the observation of unusually strong and systematic changes in the electron transport in metallic single-walled carbon nanotubes that are undergoing collisions with inert gas atoms or small molecules. At fixed gas temperature and pressure, changes in the resistance and thermopower of thin films are observed that scale as roughly M(1/3), where M is the mass of the colliding gas species (He, Ar, Ne, Kr, Xe, CH4, and N2). Results of molecular dynamics simulations are also presented that show that the maximum deformation of the tube wall upon collision and the total energy transfer between the colliding atom and the nanotube also exhibit a roughly M(1/3) dependence. It appears that the transient deformation (or dent) in the tube wall may provide a previously unknown scattering mechanism needed to explain the atom collision-induced changes in the electrical transport.  相似文献   

15.
Solution properties of single-walled carbon nanotubes   总被引:3,自引:0,他引:3  
Naked metallic and semiconducting single-walled carbon nanotubes (SWNTs) were dissolved in organic solutions by derivatization with thionychloride and octadecylamine. Both ionic (charge transfer) and covalent solution-phase chemistry with concomitant modulation of the SWNT band structure were demonstrated. Solution-phase near-infrared spectroscopy was used to study the effects of chemical modifications on the band gaps of the SWNTs. Reaction of soluble SWNTs with dichlorocarbene led to functionalization of the nanotube walls.  相似文献   

16.
Composite sheets and nanotubes of different morphologies containing carbon, boron, and nitrogen were grown in the electric arc discharge between graphite cathodes and amorphous boron-filled graphite anodes in a nitrogen atmosphere. Concentration profiles derived from electron energy-loss line spectra show that boron and nitrogen are correlated in a one-to-one ratio; core energy-loss fine structures reveal small differences compared to pure hexagonal boron nitride. Boron and carbon are anticorrelated, suggesting the substitution of boron and nitrogen into the carbon network. Results indicate that singlephaase CyBxNx as well as separated domains (nanosize) of boron nitride in carbon networks may exist.  相似文献   

17.
Static and dynamic mechanical deflections were electrically induced in cantilevered, multiwalled carbon nanotubes in a transmission electron microscope. The nanotubes were resonantly excited at the fundamental frequency and higher harmonics as revealed by their deflected contours, which correspond closely to those determined for cantilevered elastic beams. The elastic bending modulus as a function of diameter was found to decrease sharply (from about 1 to 0.1 terapascals) with increasing diameter (from 8 to 40 nanometers), which indicates a crossover from a uniform elastic mode to an elastic mode that involves wavelike distortions in the nanotube. The quality factors of the resonances are on the order of 500. The methods developed here have been applied to a nanobalance for nanoscopic particles and also to a Kelvin probe based on nanotubes.  相似文献   

18.
Macroscopic fibers and ribbons of oriented carbon nanotubes   总被引:1,自引:0,他引:1  
A simple method was used to assemble single-walled carbon nanotubes into indefinitely long ribbons and fibers. The processing consists of dispersing the nanotubes in surfactant solutions, recondensing the nanotubes in the flow of a polymer solution to form a nanotube mesh, and then collating this mesh to a nanotube fiber. Flow-induced alignment may lead to a preferential orientation of the nanotubes in the mesh that has the form of a ribbon. Unlike classical carbon fibers, the nanotube fibers can be strongly bent without breaking. Their obtained elastic modulus is 10 times higher than the modulus of high-quality bucky paper.  相似文献   

19.
The formation of carbon nanotubes in a pure carbon arc in a helium atmosphere is found to involve liquid carbon. Electron microscopy shows a viscous liquid-like amorphous carbon layer covering the surfaces of nanotube-containing millimeter-sized columnar structures from which the cathode deposit is composed. Regularly spaced, submicrometer-sized spherical beads of amorphous carbon are often found on the nanotubes at the surfaces of these columns. Apparently, at the anode, liquid-carbon drops form, which acquire a carbon-glass surface due to rapid evaporative cooling. Nanotubes crystallize inside the supercooled, glass-coated liquid-carbon drops. The carbon-glass layer ultimately coats and beads on the nanotubes near the surface.  相似文献   

20.
In the processes that are used to produce single-walled nanotubes (electric arc, laser ablation, and chemical vapor deposition), the typical lengths of tangled nanotube bundles reach several tens of micrometers. We report that long nanotube strands, up to several centimeters in length, consisting of aligned single-walled nanotubes can be synthesized by the catalytic pyrolysis of n-hexane with an enhanced vertical floating technique. The long strands of nanotubes assemble continuously from arrays of nanotubes, which are intrinsically long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号