共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern pollen surface samples from six lake and marsh sites in the northern California Coast Ranges establish a linear relation between elevation and the oakl(oak + pine) pollen ratio. Modern temperature and precipitation lapse rates were used to convert variations in the pollen ratio into temperature and precipitation changes. Pollen data from two cores from Clear Lake, Lake County, California, spanning the past 40,000 and 130,000 years were used to estimate temperature and precipitation changes through the last full glacial cycle. The maximum glacial cooling is estimated to be 7 degrees to 8 degrees C; the last full interglacial period was about 1.5 degrees C warmer than the Holocene, and a mid-Holocene interval was warmer than the present. The estimated precipitation changes are probably less reliable than the estimated temperature changes. 相似文献
2.
Dust concentrations in ice of the last glacial maximum (LGM) are high in ice cores from Greenland and Antarctica. The magnitude of the enhancements can be explained if the strength of the hydrologic cycle during the LGM was about half of that at present. This notion is consistent with a large decrease (5 degrees Celsius) in ocean temperature during the LGM, as recently deduced from measurements of strontium and calcium in corals. 相似文献
3.
Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial 总被引:1,自引:0,他引:1
Sedimentary time series of color reflectance and major element chemistry from the anoxic Cariaco Basin off the coast of northern Venezuela record large and abrupt shifts in the hydrologic cycle of the tropical Atlantic during the past 90,000 years. Marine productivity maxima and increased precipitation and riverine discharge from northern South America are closely linked to interstadial (warm) climate events of marine isotope stage 3, as recorded in Greenland ice cores. Increased precipitation at this latitude during interstadials suggests the potential for greater moisture export from the Atlantic to Pacific, which could have affected the salinity balance of the Atlantic and increased thermohaline heat transport to high northern latitudes. This supports the notion that tropical feedbacks played an important role in modulating global climate during the last glacial period. 相似文献
4.
Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period 总被引:2,自引:0,他引:2
A precise relative chronology for Greenland and West Antarctic paleotemperature is extended to 90,000 years ago, based on correlation of atmospheric methane records from the Greenland Ice Sheet Project 2 and Byrd ice cores. Over this period, the onset of seven major millennial-scale warmings in Antarctica preceded the onset of Greenland warmings by 1500 to 3000 years. In general, Antarctic temperatures increased gradually while Greenland temperatures were decreasing or constant, and the termination of Antarctic warming was apparently coincident with the onset of rapid warming in Greenland. This pattern provides further evidence for the operation of a "bipolar see-saw" in air temperatures and an oceanic teleconnection between the hemispheres on millennial time scales. 相似文献
5.
Atmospheric CO2 concentrations over the last glacial termination 总被引:1,自引:0,他引:1
Monnin E Indermühle A Dällenbach A Flückiger J Stauffer B Stocker TF Raynaud D Barnola JM 《Science (New York, N.Y.)》2001,291(5501):112-114
A record of atmospheric carbon dioxide (CO2) concentration during the transition from the Last Glacial Maximum to the Holocene, obtained from the Dome Concordia, Antarctica, ice core, reveals that an increase of 76 parts per million by volume occurred over a period of 6000 years in four clearly distinguishable intervals. The close correlation between CO2 concentration and Antarctic temperature indicates that the Southern Ocean played an important role in causing the CO2 increase. However, the similarity of changes in CO2 concentration and variations of atmospheric methane concentration suggests that processes in the tropics and in the Northern Hemisphere, where the main sources for methane are located, also had substantial effects on atmospheric CO2 concentrations. 相似文献
6.
Early local last glacial maximum in the tropical Andes 总被引:1,自引:0,他引:1
The local last glacial maximum in the tropical Andes was earlier and less extensive than previously thought, based on 106 cosmogenic ages (from beryllium-10 dating) from moraines in Peru and Bolivia. Glaciers reached their greatest extent in the last glacial cycle approximately 34,000 years before the present and were retreating by approximately 21,000 years before the present, implying that tropical controls on ice volumes were asynchronous with those in the Northern Hemisphere. Our estimates of snowline depression reflect about half the temperature change indicated by previous widely cited figures, which helps resolve the discrepancy between estimates of terrestrial and marine temperature depression during the last glacial cycle. 相似文献
7.
Schaefer JM Denton GH Barrell DJ Ivy-Ochs S Kubik PW Andersen BG Phillips FM Lowell TV Schlüchter C 《Science (New York, N.Y.)》2006,312(5779):1510-1513
Isotopic records from polar ice cores imply globally asynchronous warming at the end of the last glaciation. However, 10Be exposure dates show that large-scale retreat of mid-latitude Last Glacial Maximum glaciers commenced at about the same time in both hemispheres. The timing of retreat is consistent with the onset of temperature and atmospheric CO2 increases in Antarctic ice cores. We suggest that a global trend of rising summer temperatures at the end of the Last Glacial Maximum was obscured in North Atlantic regions by hypercold winters associated with unusually extensive winter sea ice. 相似文献
8.
Three records of oxygen isotopes in biogenic silica from deep-sea sediment cores from the Atlantic and Indian sectors of the Southern Ocean reveal the presence of isotopically depleted diatomaceous opal in sediment from the last glacial maximum. This depletion is attributed to the presence of lids of meltwater that mixed with surface water along certain trajectories in the Southern Ocean. An increase in the drainage from Antarctica or extensive northward transport of icebergs are among the main mechanisms that could have produced the increase in meltwater input to the glacial Southern Ocean. Similar isotopic trends were observed in older climatic cycles at the same cores. 相似文献
9.
Mid-depth circulation of the subpolar north atlantic during the last glacial maximum 总被引:2,自引:0,他引:2
Holocene and glacial carbon isotope data of benthic foraminifera from shallow to mid-depth cores from the northeastern subpolar Atlantic show that this region was strongly stratified, with carbon-13-enriched glacial North Atlantic intermediate water (GNAIW) overlying carbon-13-depleted Southern Ocean water (SOW). The data suggest that GNAIW originated north of the polar front and define GNAIW end-member carbon isotope values for studies of water-mass mixing in the open Atlantic. Identical carbon isotope values in the core of GNAIW and below the subtropical thermocline are consistent with rapid cycling of GNAIW through the northern Atlantic. The high carbon isotope values below the thermocline indicate that enhanced nutrient leakage in response to increased ventilation may have extended into intermediate waters. Geochemical box models show that the atmospheric carbon dioxide response to nutrient leakage that results from an increase in ventilation rate may be greater than the response to nutrient redistribution by conversion of North Atlantic deep water into GNAIW. These results underscore the potential rule of Atlantic Ocean circulation changes in influencing past atmospheric carbon dioxide values. 相似文献
10.
11.
Model-derived equilibrium line altitudes (ELAs) of former tropical glaciers support arguments, based on other paleoclimate data, for both the magnitude and spatial pattern of terrestrial cooling in the tropics at the last glacial maximum (LGM). Relative to the present, LGM ELAs were maintained by air temperatures that were 3.5 degrees to 6.6 degrees C lower and precipitation that ranged from 63% wetter in Hawaii to 25% drier on Mt. Kenya, Africa. Our results imply the need for a approximately 3 degrees C cooling of LGM sea surface temperatures in the western Pacific warm pool. Sensitivity tests suggest that LGM ELAs could have persisted until 16,000 years before the present in the Peruvian Andes and on Papua, New Guinea. 相似文献
12.
Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination 总被引:1,自引:0,他引:1
A high-resolution western tropical Atlantic sea surface temperature (SST) record from the Cariaco Basin on the northern Venezuelan shelf, based on Mg/Ca values in surface-dwelling planktonic foraminifera, reveals that changes in SST over the last glacial termination are synchronous, within +/-30 to +/-90 years, with the Greenland Ice Sheet Project 2 air temperature proxy record and atmospheric methane record. The most prominent deglacial event in the Cariaco record occurred during the Younger Dryas time interval, when SSTs dropped by 3 degrees to 4 degrees C. A rapid southward shift in the atmospheric intertropical convergence zone could account for the synchroneity of tropical temperature, atmospheric methane, and high-latitude changes during the Younger Dryas. 相似文献
13.
A simulation with a coupled atmosphere-ocean general circulation model configured for the Last Glacial Maximum delivered a tropical climate that is much cooler than that produced by atmosphere-only models. The main reason is a decrease in tropical sea surface temperatures, up to 6 degrees C in the western tropical Pacific, which occurs because of two processes. The trade winds induce equatorial upwelling and zonal advection of cold water that further intensify the trade winds, and an exchange of water occurs between the tropical and extratropical Pacific in which the poleward surface flow is balanced by equatorward flow of cold water in the thermocline. Simulated tropical temperature depressions are of the same magnitude as those that have been proposed from recent proxy data. 相似文献
14.
Beck JW Richards DA Edwards RL Silverman BW Smart PL Donahue DJ Hererra-Osterheld S Burr GS Calsoyas L Jull AJ Biddulph D 《Science (New York, N.Y.)》2001,292(5526):2453-2458
A long record of atmospheric 14C concentration, from 45 to 11 thousand years ago (ka), was obtained from a stalagmite with thermal-ionization mass-spectrometric 230Th and accelerator mass-spectrometric 14C measurements. This record reveals highly elevated Delta14C between 45 and 33 ka, portions of which may correlate with peaks in cosmogenic 36Cl and 10Be isotopes observed in polar ice cores. Superimposed on this broad peak of Delta14C are several rapid excursions, the largest of which occurs between 44.3 and 43.3 ka. Between 26 and 11 ka, atmospheric Delta14C decreased from approximately 700 to approximately 100 per mil, modulated by numerous minor excursions. Carbon cycle models suggest that the major features of this record cannot be produced with solar or terrestrial magnetic field modulation alone but also require substantial fluctuations in the carbon cycle. 相似文献
15.
Air trapped in bubbles in polar ice cores constitutes an archive for the reconstruction of the global carbon cycle and the relation between greenhouse gases and climate in the past. High-resolution records from Antarctic ice cores show that carbon dioxide concentrations increased by 80 to 100 parts per million by volume 600 +/- 400 years after the warming of the last three deglaciations. Despite strongly decreasing temperatures, high carbon dioxide concentrations can be sustained for thousands of years during glaciations; the size of this phase lag is probably connected to the duration of the preceding warm period, which controls the change in land ice coverage and the buildup of the terrestrial biosphere. 相似文献
16.
Pitulko VV Nikolsky PA Girya EY Basilyan AE Tumskoy VE Koulakov SA Astakhov SN Pavlova EY Anisimov MA 《Science (New York, N.Y.)》2004,303(5654):52-56
A newly discovered Paleolithic site on the Yana River, Siberia, at 71 degrees N, lies well above the Arctic circle and dates to 27,000 radiocarbon years before present, during glacial times. This age is twice that of other known human occupations in any Arctic region. Artifacts at the site include a rare rhinoceros foreshaft, other mammoth foreshafts, and a wide variety of tools and flakes. This site shows that people adapted to this harsh, high-latitude, Late Pleistocene environment much earlier than previously thought. 相似文献
17.
Accurate terrestrial glacial chronologies are needed for comparison with the marine record to establish the dynamics of global climate change during transitions from glacial to interglacial regimes. Cosmogenic beryllium-10 measurements in the Wind River Range indicate that the last glacial maximum (marine oxygen isotope stage 2) was achieved there by 21,700 +/- 700 beryllium-10 years and lasted 5900 years. Ages of a sequence of recessional moraines and striated bedrock surfaces show that the initial deglaciation was rapid and that the entire glacial system retreated 33 kilometers to the cirque basin by 12,100 +/- 500 beryllium-10 years. 相似文献
18.
19.
Kurita N 《Science (New York, N.Y.)》2012,336(6086):1242-1243
20.
Reconstructions of ancient atmospheric carbon dioxide (CO2) variations help us better understand how the global carbon cycle and climate are linked. We compared CO2 variations on millennial time scales between 20,000 and 90,000 years ago with an Antarctic temperature proxy and records of abrupt climate change in the Northern Hemisphere. CO2 concentration and Antarctic temperature were positively correlated over millennial-scale climate cycles, implying a strong connection to Southern Ocean processes. Evidence from marine sediment proxies indicates that CO2 concentration rose most rapidly when North Atlantic Deep Water shoaled and stratification in the Southern Ocean was reduced. These increases in CO2 concentration occurred during stadial (cold) periods in the Northern Hemisphere, several thousand years before abrupt warming events in Greenland. 相似文献