首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In young sugi (Cryptomeria japonica D. Don) stands, crown shape (crown length/crown diameter) ratio, average branch inclination, and spatial density of foliage in the crown increased with stand age. Within crowns, foliage distribution increased from the apex downward and, until crown closure, reached a maximum near the crown base. After crown closure, the maximum occurred near the middle of the crown. In each stand, foliage distribution in the canopy showed almost the same vertical change over time as it did in individual crowns. The vertical distribution of foliage in the canopy moved upward with stand age, accompanied by an increase in canopy depth and leaf mass. The shape of the vertical distribution was almost symmetrical between the upper and lower halves in the closed stands, although slightly skewed downward. The logarithm of average spatial density decreased linearly as cumulative leaf mass increased with distance from the top of the canopy. The total cross-sectional area of the crowns exceeded the stand area from the middle of the canopy downward in the closed stands because of crown overlap. However, partly because of changes in crown morphology and structure, the increase in leaf mass with stand age did not always cause more severe crown competition.  相似文献   

2.
This study focused on the physiological changes inCryptomeria japonica accompanied by needle color changes during the winter. The physiological measurements include gas exchange, chlorophyll fluorescence, pigments, active oxygen scavenging enzymes, and several proteins in the photosynthetic apparatus. The light-saturated photosynthesis decreased during the winter. Total chlorophyll content and chlorophylla/b ratio decreased; meanwhile xanthophyll cycle pigments and lutein contents increased significantly. These results indicate that cold acclimation had occurred. Photoinhibition was also observed inC. japonica which can be determined from the decreases in photochemical efficiency of PS II and the partial closure of PS II reaction centers. Small and large subunits of Rubisco and LHC II in the needles ofC. japonica showed only a slight decrease during the winter, indicating that photoinhibition inC. japonica probably reflects a protective process to prevent more severe damage to the photosynthetic apparatus during low-temperature stress. This research was supported by the Bio-oriented Technology Research Advancement Institute (BRAIN), Japan  相似文献   

3.

The leaves and leaf litter of Cryptomeria japonica D. Don was collected from April 1994 to March 1995 to describe the seasonal changes in nutrient concentrations in leaves and leaf litter. Nitrogen (N), phosphorus (P) and potassium (K) concentrations were in the order new leaves > old leaves > leaf litter, whereas calcium (Ca) concentration was in the order leaf litter > old leaves > new leaves during the whole year. N, P and K concentrations were at their highest during the new leaf growth phase, and then decreased as a result of the diluting effect and translocation, whereas Ca increased with time. Magnesium did not show any clear seasonal trend compared with other nutrients. N resorption efficiency was lower than P resorption efficiency. There were two nutrient resorption peaks, which could be attributed to high nutrient translocation to new leaves in the spring and to translocation from old leaves before senescence in the autumn. A significant correlation between N and P resorption was observed.  相似文献   

4.
The species diversity of broad-leaved trees in relation to the distance from a broad-leaved forest was investigated in Cryptomeria japonica plantations with crown snow damage near the Japan Sea in central Japan. The number and diversity of species and stem density decreased with distance from the broad-leaved forest in maturing gap stands (51–58 years old; >10 years after crown snow damage), but not in recent gap stands (34–42 years old; <10 years after crown snow damage), and increased with improved light conditions in the interior of recent gap stands, but not in that of maturing gap stands. The stem densities of tall and small tree species and woody lianas were greater in the interior of recent gap stands than in maturing gap stands. Woody lianas, which are characteristically shade intolerant, had a high stem density in the interior of recent gap stands. In contrast, the stem density of shrubs was greater in maturing gap stands than in recent gap stands, irrespective of distance. Shade-tolerant shrubs had a high stem density in maturing gap stands. Wind-dispersed and frugivore-dispersed species were concentrated at the edges of maturing gap stands, but some frugivore-dispersed species, which may persist in soil seed banks, occurred in the interior of recent gap stands. Gravity-dispersed species tended to occur both at the plantation edge and in the interior. The differences in the occurrence patterns of broad-leaved trees in the two types of stands reflected the difference in the effect of both the distance from the adjacent broad-leaved forest and the light conditions related to canopy gaps, with the time since gap formation in a region where crown snow damage often occurs.  相似文献   

5.
Blackening in heartwood was investigated in relation to the metal contents and the moisture content in xylem of about 50-year-old seedling sugi (Cryptomeria japonica D. Don) planted in a steeply sloped stand in Okutama district (Itsukaichi Tokyo), where blackened heartwood is frequently found. The potassium, calcium, iron, and manganese contents were examined in the variously blackened heartwood and normal heartwood by an atomic absorption method. It was recognized that potassium increased relative to the degree of the blackening of heartwood, resulting in a significant correlation between them. This finding implies that an increase in potassium has an important role in the blackening of heartwood. Moisture content has a tendency to increase in the blackened heartwood, so it seems that the large accumulation of potassium is associated with the high moisture content in heartwood.This work was presented at the 43rd Annual Meeting of the Japan Wood Research Society at Morioka, August 1993  相似文献   

6.
The kinetics of color changes in keyaki (Zelkova serrata Makino) and sugi (Cryptomeria japonica D. Don) wood during heat treatment were examined. The color of wood specimens treated at 90, 120, 150, and 180 °C was measured by an imaging spectrophotometer and expressed using CIELAB color parameters. At any treatment temperature, values for L* and $ \Updelta E_{ab}^{*} $ decreased and increased in both wood species, respectively, with increased treatment time. Changes in a* and b* varied depending on wood species and treatment temperature. The color changes were successfully analyzed using the kinetic approach applying time–temperature superposition method. This approach elucidated and accurately predicted color changes during heat treatment.  相似文献   

7.
We measured horizontal and vertical gradients of light (rPPFD) along four first-order branches of a Pinus densiflora Sieb. & Zucc. crown, and compared variations in specific leaf area (SLA), needle nitrogen concentration (N), chlorophyll concentration (Chl) and photosynthetic capacity (i.e., maximum rate of carboxylation (V(cmax))) along the two axes. The horizontal gradient of rPPFD along first-order branches was similar in magnitude to the vertical gradient of rPPFD from the upper to the lower crown. None of the measured parameters (i.e., SLA, N, Chl and Vcmax) were strictly proportional to rPPFD, although they were more or less correlated with light when data obtained for all of the crown were pooled (r(2) = 0.31-0.80). The slope of rPPFD against N on an area basis (Narea) for a branch in the middle of the crown orientated northward was significantly greater than the slope for a similar branch orientated southward. Horizontal variations were unrelated to age effects because measurements were all on 1-year-old needles. We conclude that factors other than light (i.e., orientation) may influence N allocation within branches. There was considerably less variation in the relationship of Vcmax to Narea (r2 = 0.58) than in the relationship of Vcmax to rPPFD (r2 = 0.41). Fractional N distribution among components of the photosynthetic machinery was constant within the crown. Together with the relationships between rPPFD and N on a mass basis (r2 = 0.80) and SLA and Vcmax (r2 = 0.60), these findings suggest that most light acclimation in P. densiflora occurs through changes in needle morphology (e.g., SLA) during development.  相似文献   

8.
Sugi (Cryptomeria japonica D. Don) produces secondary metabolite norlignans in xylem. Several norlignans are involved in the coloration of heartwood and defense of sapwood against microbial invasion. Their biosynthetic process should be well understood so that their properties can be exploited to improve the quality and utility of C. japonica wood. Unfortunately, information on the norlignan biosynthesis is limited because norlignans are mainly synthesized in a particular season in the transition zone (TZ) along with the heartwood formation, and is difficult to study. Although the generation of two norlignans of C. japonica, agatharesinol and (E)-hinokiresinol, has been reported, systems for producing other norlignans are not yet known. To establish a novel norlignan generating system, we examined the changes occurring in norlignans in a TZ during the process of drying a C. japonica log. On the day of felling, the TZ contained agatharesinol and (E)-hinokiresinol, which increased until they reached a maximum on day 40 after felling. Sequirin-C appeared on day 40 and increased to day 70. The generation of sequirin-C in the TZ can be used to investigate the biosynthetic process of heartwood norlignans. This study describes for the first time the changes that occur in the composition of norlignan during the drying of the TZ.  相似文献   

9.
An understanding of spatial variations in gas exchange parameters in relation to the light environment is crucial for modeling canopy photosynthesis. We measured vertical, horizontal and azimuthal (north and south) variations in photosynthetic capacity (i.e., the maximum rate of carboxylation: Vcmax), nitrogen content (N), leaf mass per area (LMA) and chlorophyll content (Chl) in relation to relative photosynthetic photon flux (rPPF) within a Fagus crenata Blume crown. The horizontal gradient of rPPF was similar in magnitude to the vertical gradient of rPPF from the upper to the lower crown. The rPPF in the north quadrant of the crown was slightly lower than in the south quadrant. Nitrogen content per area (Narea), LMA and Vcmax were strictly proportional to rPPF, irrespective of the vertical direction, horizontal direction and crown azimuth, whereas nitrogen content per dry mass, Chl per area and photosynthetic capacity per dry mass (Vm) were fairly constant. Statistical analyses separating vertical trends from horizontal and azimuthal trends indicated that, although horizontal and vertical light acclimation of leaf properties were similar, there were two significant azimuthal variations: (1) Vcmax was lower in north-facing leaves than in south-facing leaves for a given Narea, indicating low photosynthetic nitrogen-use efficiency (PNUE) of north-facing leaves; and (2) Vcmax was lower in north-facing leaves than in south-facing leaves for a given LMA, indicating low Vm of the north-facing leaves. With respect to the low PNUE of the north-facing leaves, there were no significant azimuthal variations in leaf CO2 conductance from the stomata to the carboxylation site. Biochemical analysis indicated that azimuthal variations in nitrogen allocation to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and in nitrogen allocation between carboxylation (Rubisco and other Calvin cycle enzymes) and light harvesting machinery (Chl pigment-protein complexes) were not the main contributor to the difference in PNUE between north- and south-facing leaves. Lower specific activity of Rubisco may be responsible for the low PNUE of the north-facing leaves. Anatomical analysis indicated that not only high leaf density, which is compatible with a greater fraction of non-photosynthetic tissue, but also thick photosynthetic tissue contributed to the low Vm in the north-facing leaves. These azimuthal variations may need to be considered when modeling canopy photosynthesis based on the Narea-Vcmax or LMA-Vcmax relationship.  相似文献   

10.
There is insufficient direct evidence of long-term changes in the chemical properties of forest soils to provide information for forestry management plans for sustainable site productivity. To understand changes in the chemical properties of forest soils in a specific high-precipitation climate in Japan, we re-investigated, in 1997, soil pits within a Japanese cedar (Cryptomeria japonica) forest in the Yanase region of Kochi Prefecture which had previously been surveyed in 1976. Comparison of the 1976 and 1997 results revealed significantly lower pH of surface and subsurface soils, and fewer exchangeable cations over time. In contrast, subsoil pH, concentrations of total carbon and nitrogen, and cation-exchange capacity (CEC) had not changed over the 21-year period. Estimation of proton and cation budgets in the forest ecosystem over 21 years, using data for the amounts in soil, biomass accumulation, and input through precipitation, revealed that biomass accumulation did not explain the cation depletion in soils. This suggests that cations were leached from the ecosystem. In contrast with previous reports, which showed Ca accumulation in Japanese cedar forest soils, our results indicated that high precipitation of more than 4,000 mm combined with acid deposition resulted in soil acidification and leaching of cations from soils, following the decrease in base saturation.  相似文献   

11.
Soil respiration (rs), soil temperature (Ts) and volumetric soil water content were measured in a balsam fir (Abies balsamea (L.) Mill.) ecosystem from 1998 to 2001. Seasonal variation in root and microbial respiration, and covariation in abiotic factors confounded interpretation of the effects of Ts and soil water potential (Psis) on rs. To minimize the confounding effect of temperature, we analyzed the effect of Psis on rs during the summers of 1998-2000 when changes in Ts were slight. Soil respiration declined 25-50% in response to modest water stress (minimum Psis of -0.6 to -0.2 MPa), and between years, there was substantial variation in the relationship between rs and Psis. In the summer of 2000, 2-m2 plots were subjected to drought for 1 month and other plots were irrigated. The relationship between summertime rs and Psis in the experimental plots was similar to that estimated from the survey data obtained during the same summer. In late spring and early autumn of 2001, 2-m2 trenched and untrenched plots were subjected to drought or exposed to rainfall. It was dry in the early autumn and there was severe soil drying (Psis of -10 MPa in untrenched plots and -2 MPa in trenched plots). In spring, rs in untrenched plots responded more to modest water stress than rs in trenched plots, indicating that root respiration is more sensitive than microbial respiration to water stress at this time of year. The response to abiotic factors differed significantly between spring and autumn in untrenched plots but not in trenched plots, indicating that root activity was greater in early autumn than in late spring, and that roots acclimated to the sustained, severe water stress experienced before and during the autumn.  相似文献   

12.
We investigated the relationship between turgor pressure and diurnal differences in secondary wall formation of differentiating tracheids. Saplings of Cryptomeria japonica were grown in a growth chamber with 12-h light:12-h dark cycles, and the tangential strain on the inner bark surface was measured as an indicator of the volumetric changes of differentiating cells. The innermost surface of developing secondary walls was then observed using field emission scanning electron microscopy at 1-h intervals after both light and dark periods. Dramatic changes in the aspects of the innermost surface of developing secondary walls occurred 3h after the light was switched on and 4h after the light was switched off. The amorphous material containing glucomannans became evident when the differentiating cells became fully turgid during the dark period. Conversely, cellulose microfibrils became clearly visible when the cell volume was low during the light period. These results suggest that the diurnal periodicity in the supply of hemicellulose-containing matrix to developing secondary walls is associated with the changes in turgor pressure of differentiating tracheids that result from the change in light conditions during the photoperiodic cycle.  相似文献   

13.
The effect of heating on the hygroscopicity of Japanese cedar wood was investigated as a simple evaluation of thermal degradation in large-dimension timber being kiln-dried at high temperatures (>100°C). Small wood pieces were heated at 120°C in the absence of moisture (dry heating) and steamed at 60°, 90°, and 120°C with saturated water vapor over 2 weeks, and their equilibrium moisture contents (M) at 20°C and 60% relative humidity (RH) were compared with those of unheated samples. No significant change was induced by steaming at 60°C, while heating above 90°C caused loss in weight (WL) and reduction in M of wood. The effects of steaming were greater than those of dry heating at the same heating temperature. After extraction in water, the steamed wood showed additional WL and slight increase in M because of the loss of water-soluble decomposition residue. The M of heated wood decreased with increasing WL, and such a correlation became clearer after the extraction in water. On the basis of experimental correlation, the WL of local parts in large-dimension kiln-dried timber was evaluated from their M values. The results indicated that the thermal degradation of inner parts was greater than that of outer parts.  相似文献   

14.
Crown form, vertical changes in branch inclination and vertical distribution of foliage density in a young sugi (Crytomeria japonica D. Don) stand were analyzed using allometric equations. Tall trees had deeper crowns than short trees, whereas the crown diameters of both tall and short trees were similar. Apical roundness was more pronounced in the lower-story trees, which were characterized by umbrella-shaped crowns. The vertical distribution of foliage density was approximated by a nearly symmetrical curve. Tall trees had higher spatial densities of foliage than short trees. Branch inclination also varied significantly with tree height. The middle-story trees had the largest branch inclinations and the lower-story trees had the smallest branch inclinations. Even in young uniform stands, crown morphology and structure were modified in response to the light environment.  相似文献   

15.
In a Cryptomeria japonica plantation, we examined the composition and seasonal abundance of microarthropods in communities associated with habitat substrates in the canopy (defined as dead leaves, dead branches, and living leaves) and compared them with those in soil communities. Habitat substrates and microarthropods were periodically collected by the branch-clipping and washing method from the canopy and by the Tullgren method from the soil. Oribatida, Collembola, and larvae of the Chironomidae, most of which are detritivorous or fungivorous, were dominant in the canopy. The dominant oribatid and collembolan families differed markedly between the canopy and the soil. Numbers of all microarthropods per unit dry weight of leaf or per unit area of branch ranged from 4.2 to 11.7g–1 dry wt on dead leaves, 0.13–0.48cm–2 on dead branches, and 1.3–6.4g–1 dry wt on living leaves. In the soil, the number of individuals per unit ground area ranged from 24000 to 220000m–2. The total abundances of microarthropods on dead leaves and dead branches were almost constant throughout the year. These results suggest that the arboreal litter characteristic of C. japonica canopies is utilized consistently by large numbers of detritivorous and fungivorous microarthropods, and that the decomposition of dead foliage and branches is initiated in the canopy.  相似文献   

16.
Indole acetic acid (IAA) was believed to be an important regulator in xylem formation in conifers. However, few studies have been done on the endogenous amount of IAA in cambial region tissues in sugi (Cryptomeria japonica) trees. In this study, we report the IAA amounts in the lower and upper trunk of mature sugi cultivars (Kumotoshi, Yaichi and Obiaka) in September, and the effects of growth traits on the IAA amounts. The effect of height position (lower or upper trunk) on IAA amounts was found to be larger than that of genetic variation (Kumotoshi, Yaichi or Obiaka) by two-way ANOVA. There was no significant interaction effect (genetic variation × height position). The IAA amounts of all trees varied from 3 to 42 ng/cm2 at the lower trunk and 9 to 47 ng/cm2 at the upper trunk. Crown length and distance from crown base had significant positive and negative effects on IAA amounts in the trunk of sugi cultivars, respectively. Distance from crown base had a larger effect on IAA amounts than crown length. In Yaichi, taller trees had larger IAA amounts at both the lower and upper trunk.  相似文献   

17.
Variable chlorophyll fluorescence (Fvar) was investigated as a tool in detection of distinct seasonal physiological changes in 1+0 intact white spruce seedlings. The loss of the characteristic Fvar peak (Fp) between 0.8 and 1.0 s after illumination of dark adapted seedlings is an indication of regulation of photosynthetic activity in August. The peak represents excess photochemical water-splitting of photosystem II. We interpret its loss as a physiological indicator of the process of dormancy induction. Three dimensional (i.e. X[0-300 s], Y[rfu], Z[time of year] axis) Fvar curves of non-stressed seedlings measured over 300 s followed a three phase change over the growing season. In actively growing seedlings, the portion of the Kautsky induction curve between 60 and 300 s was 0.4 relative fluorescence units (rfu) in northern (i.e. >56° latitude) seedlots and 0.6 in the southern (i.e. <56° latitude) range seedlot from August until early September. About mid-September curve features between 60 and 300 s decreased sharply to approximately zero (rhu) by October. Freeze test data indicated seedlings became frost hardy during this time. The third, or inactive phase was seen as flat line from 40 to 100 s. The portion of the curve after 100 s was responsive to short term temperature changes. White spruce seedlots of northern and southern B.C. latitudes having curve fluorescence peak (Fp) values at about 1 s of 0.6, and 0.8 (rhu) respectively, plus curve minimum (Fmin) values at about 60 s which do not decrease further over a 2–3 week period represent stock which can safely be lifted for cold storage. The Fvar attribute at 5 s after the actinic light is turned on (F5s) correlates well with net photosynthesis (r2 =0.61) during the growing season.  相似文献   

18.
The relationship of understorey herbage yield with light intensity and soil moisture content was investigated in a 20-year-old Pinus pinaster plantation in Kilkis of Macedonia, northern Greece, in three seasons (fall, winter and spring). The plantation was thinned at three density levels, high, medium and low (2500, 1750 and 1000 trees/ha respectively) and it was seeded with Dactylis glomerata. In addition, two fertilization levels (0 and 110 N+150 P2O5 kg/ha) and grazing intensity levels (0 and 0.8 sheep/ha/yr) were applied in a split-split plot experimental design. It was found that herbage yield was highest in the ungrazed and fertilized low tree density stands in all seasons. In the medium tree density stand, although light was lacking, fertilized plots produced higher herbage yield as compared to unfertilized low tree density stands while fertilization is of no use in close stands if herbage production is the goal. Animals seemed to prefer fertilized and medium density stands. Third degree polynomial equations were the best to explain herbage variation through the seasons both in fertilized and unfertilized plots.  相似文献   

19.
Liu LX  Xu SM  Woo KC 《Tree physiology》2003,23(18):1255-1261
We examined the effects of artificially altering leaf angle of the tropical tree species Acacia crassicarpa (A. Cunn. ex Benth., Fabaceae) on light interception, leaf temperature and photosynthesis in the wet and dry seasons of tropical Australia. Reducing leaf angle from the natural near-vertical angle (90 degrees ) to 67.5, 45, 22.5 and 0 degrees greatly increased light interception and leaf temperature, and decreased photosynthetic activity. Compared with the 90 degrees phyllodes, net photosynthetic rates in the horizontal phyllodes decreased by 18 and 42% by the second day of leaf angle change in the wet and dry seasons, respectively. The corresponding values for Day 7 were 46 and 66%. Leaf angle reduction also altered the diurnal pattern of photosynthesis (from two peaks to one peak) and reduced daily CO2 fixation by 23-50% by Day 2 and by 50-75% by Day 7 in the dry season. In contrast, the xanthophyll cycle pool size in the phyllodes increased with leaf angle reduction. Thus, there are at least five major advantages to maintaining high leaf angle orientation in tropical tree species. First, it reduces excessive light interception. Second, it lowers leaf temperature. Third, it protects the photosynthetic apparatus against photodamage by excessive light. Fourth, it minimizes xanthophyll cycle activity and reduces the cost for xanthophyll biosynthesis. Finally, it enhances photosynthetic activity and helps to sustain high plant productivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号