首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cucumber mosaic virus (CMV) was isolated from a mosaic diseased plant of Eucharis grandiflora. The virus caused mosaic symptoms on leaves and slight distortion of flower petals in E. grandiflora by either mechanical or aphid inoculation. The virus was identified as a strain of CMV subgroup I from its biological and serological characteristics.  相似文献   

2.
To detect Japanese yam mosaic virus (JYMV) and Yam mild mosaic virus (YMMV) in yam plants in Japan, we developed a duplex RT-PCR assay consisting of a tube-capture procedure followed by one-step RT-PCR with two primer pairs. A 241-bp fragment of the coat protein region of JYMV and a 174-bp fragment of the nuclear inclusion protein b region of YMMV were amplified, thus identifying the two viruses from yam plants cultivated in Yamaguchi Prefecture in 2007. All water yam plants examined were infected with YMMV alone. All the Japanese yam and Chinese yam plants were infected with either JYMV alone or both JYMV and YMMV, suggesting that YMMV and JYMV are prevalent among field-grown yam plants.  相似文献   

3.
The L11Y strain of Tomato mosaic virus (ToMV) causes severe chlorosis on infected tobacco leaves. Sequencing analysis for the genome showed that L11Y contained multiple nucleotide changes and that some led to amino acid substitutions, when compared with that of the common L strain of ToMV. The chimeric virus, which has the CP of L11Y in the context of the L strain RNA genome, caused severe chlorosis on infected tobacco plants, suggesting that the CP of L11Y containing three amino acid changes (E33S, A86T and E97K) was the determinant of the chlorosis. Two of these amino acid changes (A86T and E97K) were associated with the induction of chlorosis when present together in the CP. Severe destruction and deformation of chloroplasts and the formation of discrete dark-staining materials adjacent to chloroplasts were observed with electron microscopy in L11Y-infected plants. Fewer virus particles accumulated in the cytoplasm of L11Y-infected plant cells. The level of accumulation of CP subgenomic RNA and CP in the infected protoplasts was similar between L and L11Y. Fewer virus particles accumulated in L11Y-infected protoplasts, and many of them were shorter-than-full-length. The nucleotide sequence data reported is available in DDBJ/EMBL/GenBank databases as accession AB355139.  相似文献   

4.
Eight provinces of Iran were surveyed during 2003–2008 to find Brassicaceae reservoir weed hosts of Turnip mosaic virus (TuMV). A total of 532 weed samples were collected from plants with virus-like symptoms. The samples were tested for the presence of TuMV by enzyme-linked immunosorbent assay using specific antibodies. Among those tested, 340 samples (64%) were found to be infected with TuMV. Rapistrum rugosum, Sisymberium loeselii, S. irio and Hirschfeldia incana were identified as the Brassicaceae weed hosts of TuMV, and the former two plant species were found to be the most important weed hosts for the virus in Iran. The full-length sequences of the genomic RNAs of IRN TRa6 and IRN SS5 isolates from R. rugosum and S. loeselii were determined. No evidence of recombination was found in both isolates using different recombination-detecting programmes. Phylogenetic analyses of the weed isolates with representative isolates from the world showed that the IRN TRa6 and IRN SS5 isolates fell into an ancestral basal-Brassica group. This study shows for the first time the wide distribution and phylogenetic relationships of TuMV from weeds in the mid-Eurasia of Iran.  相似文献   

5.
A virus that caused a distinct yellow mosaic was isolated in Okayama, Japan from Chinese cabbage (Brassica rapa L., Pekinensis group). The virus, with spherical particles ca. 28 nm in diameter, was mechanically transmissible only to cruciferous species. From the host range, characteristic morphology of virus particles, serology and sequence analysis of coat protein gene, the causal virus was identified as Turnip yellow mosaic virus (TYMV). Seed transmission of TYMV at 0–2.2% in Chinese cabbage was confirmed. This report is the first of TYMV from Chinese cabbage and in Japan. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases as accessions AB358971 and AB358972.  相似文献   

6.
Alfalfa mosaic virus (AMV) belongs to the genus Alfamovirus of the family Bromoviridae, for which the virions are stabilized by dominant protein–RNA interactions. The infectivity of purified AMV preparations stored frozen at −20°C decreased to 10–20% in 2 years. In addition, the virion peak profiles after sucrose density gradient centrifugation (SDGC) was reduced to a single, broad peak as a result of virus particle degradation, and the peaks for the extracted virion RNA decreased. However, additives such as 0.5% peptone or 2.5% sucrose were markedly protective such that infectivity and the SDGC profiles of the virus particles and virion RNA remained essentially unchanged after 5–8 years of freezing. Infectivity of the purified AMV decreased to c. 50%, and virus particles deteriorated immediately after freeze-drying. The addition of 1.0–7.5% sucrose suppressed alterations in infectivity, particle morphology and virion RNA after freeze-drying and other preservation processes. The characteristics of AMV preservation were similar to those reported in a previous study on cucumoviruses. Consequently, viruses belonging to the Bromoviridae may preserve well with sucrose in conjunction with freezing or freeze-drying.  相似文献   

7.
Severe mosaic with leaf malformation and green vein banding was observed on yam bean in West and Central Java, Indonesia. Virions of the causal virus were flexuous filaments, about 700 nm in length, with a coat protein of 30 kDa. The virus was transmitted by mechanical inoculation and by aphids in a nonpersistent manner. The nucleotide sequence of the coat protein gene had the highest identity with that of Bean common mosaic virus (BCMV, genus Potyvirus) isolate VN/BB2-5. Based on demarcation criteria, including the genome sequence and host range, we tentatively designate this isolate as BCMV-IYbn (Indonesian yam bean). The nucleotide sequence reported is available in the DDBJ/EMBL/GenBank databases under accession number AB289438.  相似文献   

8.
Pepper mottle virus, genus Potyvirus, was first identified in Japan based on particle morphology, host range, aphid transmission, and molecular classification using the nucleotide sequence of the coat protein gene and 3-untranslated region.  相似文献   

9.
The genomic fragments of two open reading frames (ORFs) 1 and 2 of German and Canadian PAV isolates of Barley yellow dwarf virus (BYDV-PAV) were sequenced. Sequences only slightly differed from previously published sequences of this virus. Two polyclonal antisera against proteins encoded by ORFs 1 and 2 of a German ASL-1 isolate were developed using recombinant antigens expressed in E. coli as a fusion either to His6− or thioredoxin-tags. In Western blot analysis with total protein extracts from BYDV infected plants, antisera efficiently recognized the 99 kDa fusion protein expressed from ORF1 and ORF2 (P1–P2 protein). Later in infection the P1–P2 protein disappeared and two smaller proteins, revealing sizes of 39 and 60 kDa, could be detected.  相似文献   

10.
Actinidia chinensis and A. deliciosa plants from China, showing a range of symptoms, including vein clearing, interveinal mottling, mosaics and chlorotic ring spots, were found to contain ~300 nm rod-shaped virus particles. The virus was mechanically transmitted to several herbaceous indicators causing systemic infections in Nicotiana benthamiana, N. clevelandii, and N. occidentalis, and local lesions in Chenopodium quinoa. Systemically- infected leaves reacted with a Tobacco mosaic virus polyclonal antibody in indirect ELISA. PCR using generic and specific Tobamovirus primers produced a 1,526 bp sequence spanning the coat protein (CP), movement protein (MP), and partial RNA replicase genes which showed a maximum nucleotide identity (88%) with Turnip vein clearing virus and Penstemon ringspot virus. However, when the CP sequence alone was considered the highest CP sequence identity (96% nt and 98% aa) was to Ribgrass mosaic virus strain Kons 1105. The morphological, transmission, serological and molecular properties indicate that the virus is a member of subgroup 3 of the genus Tobamovirus.  相似文献   

11.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

12.
Tobacco mosaic virus (TMV) was detected by ELISA, electron microscopy and/or bioassay from bumblebee (Bumbus terrestris), pollen clumps, nest materials and bee-visited anthers of flowers from greenhouses in which tomatoes had been pollinated by bees and were severely infected with TMV. Experimental bee-mediated transmission of TMV in greenhouse tomatoes demonstrated that the bumblebees transported TMV from plant to plant and that they spread the virus in greenhouses. This is the first report describing TMV transmission by bumblebees. Received 11 August 1999/ Accepted in revised form 30 September 1999  相似文献   

13.
The same mutant allele of eukaryotic initiation factor 4E (eIF4E) that confers resistance to Pea seed-borne mosaic virus (sbm-1) and the white lupine strain of Bean yellow mosaic virus (wlv) also confers resistance to Clover yellow vein virus (ClYVV) in pea. The eIF4E genes from several pea lines were isolated and sequenced. Analysis of the eIF4E amino acid sequences from several resistant lines revealed that some lines, including PI 378159, have the same sequence as reported for sbm-1 and wlv. When eIF4E from a susceptible pea line was expressed from a ClYVV vector after mechanical inoculation of resistant PI 378159, the virus caused systemic infection, similar to its effects in susceptible line PI 250438. The resistance to ClYVV in line PI 378159 was characterized through a cross with PI 193835, which reportedly carries cyv-2. Mechanical inoculation of the F1 progeny with ClYVV resulted in no infection, indicating that the resistance gene in PI 378159 is identical to cyv-2 in PI 193835. Furthermore, particle bombardment of pea line PI 193835 with infectious cDNA of ClYVV (pClYVV/C3-S65T) resulted in the same resistance mode as that described for PI 378159. These results demonstrate that the resistance to ClYVV conferred by cyv-2 is mediated by eIF4E and that cyv-2 is identical to sbm-1 and wlv.  相似文献   

14.
The clustered hrp genes encoding the type III secretion system in the Japanese strains MAFF301237 and MAFF311018 of Xanthomonas oryzae pv. oryzae were sequenced and compared. The strains differ in their pathogenicity, location, and year of isolation. A 30-kbp sequence comprising 29 open reading frames (ORFs) was identical in its structural arrangement in both strains but differed from X. campestris pv. campestris, X. axonopodis pv. citri, and X. axonopodis pv. glycines in certain genes located between the hpaB-hrpF interspace region. The DNA sequence and the putative amino acid sequence in each ORF was also identical in both X. oryzae pv. oryzae strains as were the PIP boxes and the relative sequences. These facts clearly showed that the structure of the hrp gene cluster in X. oryzae pv. oryzae is unique.  相似文献   

15.
Barley yellow dwarf disease is one of the most important problems confronting cereal production in Iran. Barley yellow dwarf virus-PAV (BYDV-PAV) and Cereal yellow dwarf virus-RPV (CYDV-RPV) are the predominant viruses associated with the disease. One isolate of BYDV-PAV from wheat (PAV-IR) and one isolate of CYDV-RPV from barley (RPV-IR) were selected for molecular characterisations. A genome segment of each isolate was amplified by PCR. The PAV-IR fragment (1264 nt) covered a region containing partial genes for coat protein (CP), read through protein (RTP) and movement protein (MP). PAV-IR showed a high sequence identity to PAV isolates from USA, France and Japan (96–97%). In a phylogenetic analysis it was placed into PAV group I together with PAV isolates from barley and oats. The fragment of RPV-IR (719 nt) contained partial genes for CP, RTP and MP. The sequence information confirmed its identity as CYDV. However, RPV-IR showed 90–91% identity with both RPV and Cereal yellow dwarf virus-RPS (CYDV-RPS). Phylogenetic analyses suggested that it was more closely related to RPS. These data comprise the first attempt to characterise BYD-causing viruses in Iran and southwest Asia. The nucleotide sequence data reported appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession numbers AY450425 and AY450454  相似文献   

16.
A viral disease was found in Nagano Prefecture, Japan, on statice (Limonium sinuatum) with chlorotic leaf spot, necrotic stunt, and dwarfing. Spherical virus particles 30 nm in diameter were isolated from infected plants and statice seedlings and caused identical symptoms 4 weeks after mechanical inoculation. Nucleotide and deduced amino acid sequences of the coat protein showed 98% and 98.7% identities with those of Grapevine Algerian latent virus (GALV) nipplefruit strain. This is the first report in Japan of a viral disease on statice caused by GALV. The nucleotide sequence data reported here are available in the DDBJ/EMBL/GenBank databases under accession AB461854.  相似文献   

17.
18.
Virus interactions between Tomato spotted wilt virus (TSWV) and Potato virus X (PVX) containing the nucleocapsid protein (N) gene sequences were examined to evaluate the capacity of the N gene sequences from TSWV to promote RNA-mediated cross-protection. Plants simultaneously inoculated with TSWV and PVX containing the 3 96bp of the N gene were highly resistant to TSWV infection, whereas no such resistance was observed in plants inoculated with TSWV and PVX containing the 5 96bp. These results suggest that the 3 portion of the N gene has a higher capacity for promoting RNA-mediated cross-protection of TSWV.  相似文献   

19.
The colonization of plant roots with certain rhizosphere bacteria promotes plant growth and induces long lasting systemic protection against a broad spectrum of plant pathogens. The role of the global regulator, GacS, in the rhizosphere colonist Pseudomonas chlororaphis O6 in stimulating growth promotion and induced resistance against Cucumber mosaic virus was examined in tobacco. Responses were compared in tobacco cvs Samsun and GX3. Root colonization of Samsun with wild-type O6 and the gacS complemented mutant-elicited reduced viral symptoms and viral titre. On GX3, there was little affect on symptoms when roots were colonized by the wild-type, gacS mutant or complemented mutant but colonization by both the wild-type and the gacS mutant lowered viral titre. Wild-type O6 and the gacS mutant caused plant growth to be maintained in both tobacco cultivars after viral infection, although the affect was stronger with GX3 than Samsun. In contrast, although a chemical inducer, benzothiadiazole, reduced symptoms and viral titre in both cultivars, plant growth was suppressed. Our results indicate rhizobacteria-elicited induced viral resistance without a negative impact on growth but there was a differential response between cultivars. Detailed knowledge regarding the mechanisms inherent to these differences between cultivars requires further investigation.  相似文献   

20.
A strain of Cucumber mosaic virus (CMV-D8) systemically infects Japanese radish (Raphanus sativus), but the Y strain of CMV (CMV-Y) only infects the inoculated leaves. Both of these strains cause severe systemic mosaic on the plants after dual infection with Turnip mosaic virus (TuMV). Synergistic interactions on long-distance transport of CMV-Y and CMV-D8 with TuMV were analyzed using an immunobinding assay. Direct tissue blots probed with either anti-CMV-Y or anti-TuMV antiserum clearly showed that CMV-Y efficiently spread and accumulated in the tissues of noninoculated upper leaves and roots when co-inoculated with TuMV, and that long-distance movement of CMV-D8 was enhanced by the presence of TuMV. Received 16 September 1999/ Accepted in revised form 5 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号