首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) and polyethylene oxide (PEO) (or polyvinyl alcohol (PVA)) blended electrospun nanofibers were prepared in the presence of dimethyl sulfoxide (DMSO) and ethylene glycol (EG). The effects of added solvents (DMSO and EG) and blended polymers (PEO and PVA) on electrical conductivity and current-voltage (I-V) response were investigated. Electrical conductivity was dependent on both the additional solvent and blended polymers. PEDOT:PSS/PEO blended nanofibers showed a much higher electrical conductivity than PEDOT:PSS/PVA. EG blended PEDOT:PSS/PEO blended nanofibers showed much higher electrical conductivity than DMSO. The PEDOT:PSS/PEO/EG blended nanofibers web showed the highest value in I-V response.  相似文献   

2.
In recent decades, tremendous research has focused on the production of nanoscale fibers using synthetic polymers, with the goal of fabricating nanofibrous scaffolds for wound healing. However, the hydrophobicity of such polymers typically hinders attachment and proliferation of the cells. In this study, we combined poly-d,l-lactide-co-glycolide (PLGA) and small intestine submucosa (SIS) to fabricate blended nanofibers for wound healing by electrospinning. PLGA and SIS were dissolved in 1,1,1,3,3,3-hexafluoro isopropanol to produce different weight ratios of PLGA/SIS-blended nanofibrous membranes (NFM). Physicochemical characterization of the electrospun NFM was performed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, water contact angle analysis, degradation test and tensile testing. The PLGA/SIS-blended NFM showed improved hydrophilicity and tensile strength. Better infiltration, attachment and proliferation of rat granulation fibroblasts of PLGA/SIS-blended NFMs compared to PLGA NFMs were identified by morphological differences determined by SEM and a water-soluble tetrazolium salt assay kit. Based on our results, the PLGA/SIS blended NFMs were found to be suitable for use as a potential material for wound dressing.  相似文献   

3.
Reconstructing the typical analogue of extracellular matrix (ECM) in engineered biomaterials is essential for promoting tissue repair. Here, we report an ECM-mimetic scaffold that successfully accelerated wound healing through enhancing vascularization and regulating inflammation. We prepared an electrospun fiber comprising a brown alga-derived polysaccharide (BAP) and polyvinyl alcohol (PVA). The two polymers in concert exerted the function upon the application of PVA/BAP2 fiber in vivo; it started to reduce the inflammation and promote angiogenesis at the wound site. Our serial in vitro and in vivo tests validated the efficacy of PVA/BAP2 fiber. Particularly, PVA/BAP2 fiber accelerated the repair of a full-thickness skin wound in diabetic mice and induced optimal neo-tissue formation. Generally, our results suggest that, by mimicking the function of ECM, this fiber as an engineered biomaterial can effectively promote the healing efficiency of diabetic wounds. Our investigation may inspire the development of new, effective, and safer marine-derived scaffold for tissue regeneration.  相似文献   

4.
Electrospun web may possibly be widely applied to protective garments or specialty textiles due to its high level of protection as well as comfort. Of particular interest in this study is to develop waterproof-breathable fabric by applying electrospun web of polyurethane directly onto the substrate fabric. The optimal electrospinning condition was examined with regards to the concentration, applied voltage and tip-to-collector distance. Solvent-electospinning of polyurethane was performed at the optimum condition, using N,N-dimethylacetamide as solvent. The thickness of 0.02 mm of electrospun web was applied onto the polyester/nylon blended fabric. For comparison, the polyester/nylon fabrics were coated with 0.02 mm thickness of polyurethane resin membranes adopting four different conditions. The electrospun PU web/fabric was compared to resin coated fabrics in terms of water-proof and breathable properties. The electrospun web applied fabric showed higher air permeability, vapor transmission, and thermal insulation properties than resin coated fabrics, which can be translated as greater comfort sensation of electrospun applied fabrics. However, water resistance value of electrospun web applied fabric did not reach that of resin coated fabrics.  相似文献   

5.
Keloids are skin fibroproliferative disorders, resulting from abnormal healing of deep cutaneous injuries. Cryosurgery, the most common treatment for keloids, causes skin traumas. Even though the clinical practice of cryosurgery has increased, effective wound healing therapy is still lacking. In this investigation, nonwoven nanofibrous patches composed of ulvan, a marine sulfated polysaccharide exhibiting anti-inflammatory and antioxidant activities, and polyethylene oxide (PEO) were fabricated through electrospinning and characterized. Their wound healing efficacy on skin traumas resulting from cryosurgical treatment of keloids was clinically tested and evaluated in comparison to a reference product. Twenty-four volunteer patients undergoing cryosurgery as a treatment of keloids were selected to apply either the ulvan/PEO patch or the reference product for 21 days. The ulvan/PEO patch, 21 days after cryosurgery, showed significant wound healing, elimination of skin inflammation, restoration of biophysical parameters similar to normal values and significant decrease in haemoglobin concentration, skin texture and volume, while no discomfort or adverse reaction was observed. In contrast, the reference product showed inferior performance in all evaluated parameters. The designed ulvan/PEO patch represents the first wound dressing to effectively heal skin trauma after cryosurgical treatment of keloids.  相似文献   

6.
Layered fabric systems with electrospun polyurethane fiber web layered on spunbonded nonwoven were developed to examine the feasibility of developing protective textile materials as barriers to liquid penetration using electrospinning. Barrier performance was evaluated for layered fabric systems, using pesticide mixtures that represent a range of surface tension and viscosity. Air permeability and water vapor transmission were assessed as indications of thermal comfort performance. Protection performance and air/moisture vapor transport properties were compared for layered fabric systems and existing materials for personal protective equipment (PPE). Layered fabric systems with electrospun nanofiber web showed barrier performance in the range between microporous materials and nonwovens used for protective clothing. Layered fabric structures with the web area density of 1.0 and 2.0 g/m2 exhibited air permeability higher than most PPE materials currently in use; moisture vapor transport was in a range comparable to nonwovens and typical woven work clothing fabrics. Comparisons of layered fabric systems and currently available PPE materials indicate that barrier/transport properties that may not be attainable with existing PPE materials could be achieved from layered fabric systems with electrospun nanofibrous web.  相似文献   

7.
Electrospun atactic polypropylene (PP) fibers are thicker than those obtained from isotactic PP, although the viscosity of molten PPs is almost same. Thus we focused on the effect of tacticity of PP on fiber diameters. The PP samples with various tacticity were prepared by changing the blend ratio of isotactic PP and atactic PP. Melt-electrospinning is performed by using blended samples, and then electrospun fibers were observed by scanning electron microscope to evaluate fiber diameter of obtained fibers. It is clear that the diameter of electrospun PP fibers decreases as high tacticity content of PP increases. This result suggests that tacticity of samples is an important factor to control the electrospun fiber diameter.  相似文献   

8.
This research investigates applying zinc oxide nanoparticles to polypropylene nonwoven fabrics via electrospinning for the development of UV-protective materials. Layered fabric systems with electrospun zinc oxide nanocomposite fiber webs were developed at various concentrations of zinc oxide in a range of web area densities. The effects of zinc oxide concentration and web area density on the UV-protective properties of layered fabric systems were examined. Air and moisture vapor transport properties of layered fabric systems were assessed to examine the effect of electrospun web layers on thermal comfort properties of the material. A very thin layer of electrospun zinc oxide nanocomposite fibers significantly increased the UV blocking for both UV-A and UV-B ranges, and exhibited an ultraviolet protection factor (UPF) of greater than 40, indicating excellent UV protection. UV-protective properties of layered fabric systems increased with increasing zinc oxide concentrations of the nanocomposite fiber web. Increasing the electrospun web area density of the zinc oxide nanocomposite fiber web also enhanced UV-protective properties of layered fabric systems. Air and moisture vapor transport properties of layered fabric systems decreased as the electrospun web area density increased for the range of web area densities examined.  相似文献   

9.
In this study, electrospun wool keratose (WK)/silk fibroin (SF) blend nanofiber was prepared and evaluated as a heavy metal ion adsorbent which can be used in water purification field. The WK, which was a soluble fraction of oxidized wool keratin fiber, was blended with SF in formic acid. The electrospinnability was greatly improved with an increase of SF content. The structure and properties of WK/SF blend nanofibers were investigated by SEM, FTIR, DMTA and tensile test. Among various WK/SF blend ratios, 50/50 blend nanofiber showed an excellent mechanical property. It might be due to some physical interaction between SF and WK molecules although FTIR result did not show any evidence of molecular miscibility. As a result of metal ion adsorption test, WK/SF blend nanofiber mats exhibited high Cu2+ adsorption capacity compared with ordinary wool sliver at pH 8.5. It might be due to large specific surface area of nanofiber mat as well as numerous functional groups of WK. Consequently, the WK/SF blend nanofiber mats can be a promising candidate as metal ion adsorption filter.  相似文献   

10.
Nanospider technology as a modified electrospinning technique was used for the fabrication of electrospun nanofibers based on poly(vinyl alcohol) (PVA)/poly(ethylene oxide) (PEO) blend as drug delivery system (DDS) for metronidazole (MTZ) as an antimicrobial drug. Electrospun PVA/PEO/MTZ composite nanofibers were stabilized against disintegration in water by heating in oven at 110°C, or by soaking in isopropyl alcohol for 6 hrs. Incorporation of MTZ into electrospun nanofibers was confirmed by SEM, FT-IR spectra and TGA. The drug release results showed that the burst release was suppressed with stabilized electrospun nanofibers compared with non-stabilized ones. Electrospun PVA/PEO/MTZ composite nanofibers exhibited remarkable antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, Penicillium notatum and Aspergillus flavus which varies with the species of the tested organisms.  相似文献   

11.
Uniform chitosan fibers (CS/PEO) with diameter of 398±76 nm were prepared by electrospinning with merely 5 wt.% of poly(ethylene oxide) (PEO) loading, and then annealed at elevated temperature without the use of additional crosslinker to improve the thermostability and solvent resistance. Swelling test shows that the CS/PEO composite fibers annealed at 200 oC were stable in 50 wt.% acetic acid aqueous solution. The mechanical strength test shows that the annealing temperature can affect the tensile strength of CS/PEO composite fiber mat. The cross-linked CS/PEO composite fibers provide a useful platform for the immobilization of palladium catalyst to catalyze the Mizoroki-Heck reactions of aromatic halides with olefins. Moreover, these CS/PEO composite fibers could be post modified with special ligands to chelate palladium species efficiently to further improve the catalytic activity and stability.  相似文献   

12.
This study aimed to produce poly(4-vinyl pyridine) and hydroxypropyl methacrylamide (HPMA)-based bilayer wound dressings materials enhancing healing mechanism for the wounds which have self-healing problem and high infection risk. These materials were designed to protect wound from secondary traumas caused microorganism invasion and do not have toxic substance release problem. Synthesis of quaternary poly(4-vinyl pyridine) (poly(Q4-VP)) which is the antibacterial layer of wound dressing material was carried out in two stages. At first stage, poly(4-vinyl pyridine) polymer was synthesized from 4-vinyl pyridine monomer by free radical polymerization. Then, poly(Q4-VP) was synthesized from poly(4-VP) by alkylation reaction with 6-bromocaproic acid. Resulted polymer was structurally characterized by FT-IR. The macroporous spongy structure, as the lower layer of wound dressing material, was prepared by cryogelation of HPMA. Then, the antibacterial polymer was electrospun onto the cryogel structure and bilayered material was obtained. Cryogel structure, fiber morphology and layer integration was examined by SEM. In order to enhance wound healing process, ascorbic acid (vitamin C) was loaded to cryogel layer and release was followed by spectrophotometrically. The antimicrobial properties of the materials were examined against Escherichia coli, Staphylococcus aureus and Candida albicans, respectively. According to the results, bilayered, antibacterial and antifungal against Staphylococcus aureus and Candida albicans, temporary wound dressings which can stimulate wound healing and have high swelling capacity were obtained successfully.  相似文献   

13.
Nanoscaled non-woven fibers with shape memory effect are successfully fabricated via electrospinning method from Nafion solutions consisting of a little poly(ethylene oxide) (PEO). Scanning electron microscopy (SEM) investigation shows the electrospun nanofibers with average diameters in the range 170–410 nm. The electrospun nanofibers exhibit excellent shape memory properties. When deformed Nafion nanofibers are stimulated upon heat, the temporary shape responds rapidly, and then recovers to the permanent shape in less than one minute. The shape recovery ratios and shape fixity ratios of Nafion nanofibers with 0.3 wt%, 0.5 wt% and 0.7 wt% PEO are all above 90 %. In shape memory cycle, fibrous structure is stable after the stretching recovery. Shape memory Nafion nanofibers have various potential applications in smart structures and materials in the future.  相似文献   

14.
Silk fibroin (SF) nanofibers were prepared by electrospinning and their application as an enzyme immobilization support was attempted. By varying the concentration of SF dope solution the diameter of SF nanofiber was controlled. The SF nanofiber web had high capacity of enzyme loading, which reached to 5.6 wt%. The activity of immobilizedα-chymotrypsin (CT) on SF nanofiber was 8 times higher than that on silk fiber and it increased as the fiber diameter decreased. Sample SF8 (ca. 205 nm fiber diameter) has excellent stability at 25°C by retaining more than 90 % of initial activity after 24 hours, while sample SF11 (ca. 320 nm fiber diameter) shows higher stability in ethanol, retaining more than 45% of initial activity. The formation of multipoint attachment between enzyme and support might increase the stability of enzyme. From these results, it is expected that the electrospun SF nanofibers can be used as an excellent support for enzyme immobilization.  相似文献   

15.
In this study, electrospinning of poly(ε-caprolactone) (PCL) and its optimum preparation conditions were examined in detail using various solvent systems, such as formic acid, dichloromethane/dimethyl formamide (DMF), chloroform/DMF, and dichloroethane. The average fiber diameter of the electrospun PCL mat was controlled by the solvent used with a proper concentration of PCL dope solution. Different fiber sizes (0.1, 0.8, 1.9, and 3.4 μm) of uniform PCL mats were fabricated and the effects of fiber size on surface morphology, tensile properties and cell behavior were investigated. Here, we manipulated much broader range of average fiber diameter of the mats, from nano to several micron size of fiber. It was found that the fiber diameter greatly affected topology (surface roughness) and mechanical properties of the electrospun PCL mat and consequently, they influenced the cell behavior (adhesion and proliferation) significantly. We expect that these results will provide more feasible application of electrospun PCL scaffold in tissue engineering through the co-relations in structure and property of PCL fiber mat on cell behavior.  相似文献   

16.
In the present study, naringin, a flavonoid isolated from the grape and citrus fruit species, was incorporated with poly(ε-caprolactone)/gelatin composite mats in order to develop a potential wound dressing. The composite mats were prepared by electrospinning of poly(ε-caprolactone)/gelatin (1:1 (w/w)) solution incorporated with 1.50 %, 3 % and 6 % (w/w) of naringin. The electrospun mats were evaluated regarding their morphology, contact angle, water-uptake capacity, water vapor transmission rate, tensile properties, drug release, cellular response and in vivo wound healing activity. The study showed that after 2 weeks, the full-thickness excisional wounds of Wistar rats treated with the naringin-loaded dressings achieved a wound closure of higher than 94 % and the dressing containing 6 % (w/w) naringin had almost 100 % wound closure. The sterile gauze, as the control group, showed nearly 86 % of wound closure after this period of time. Our results provided evidence that supports the possible applicability of naringin-loaded wound dressing for successful wound treatment.  相似文献   

17.
Photoluminescence electrospun fibers were prepared from poly(aryl ether)s solutions. The porosity and wrinkle fibers could be observed by scanning electron microscopy (SEM). The effect of solution properties on fiber surface morphologies was studied. Meanwhile, the rough fiber surfaces could make the electrospun membranes possess water repellency. The contact angles of electrospun membranes for water were around 140°. The emission spectra of these membranes indicated that the fibers exhibited multi-color including sapphire blue, olive green and rose red. It could provide a proposal for improving flexible optoelectronic devices based on electrospun membranes of conjugated polymers.  相似文献   

18.
GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.  相似文献   

19.
Herein, a biodegradable and biocompatible composite comprising of support membrane based on crosslinked PVA/PEG film and curcumin loaded electrospun poly(lactic acid) (PLA) nanofiber mat is introduced. The membrane film was prepared from PVA/PEG blend followed by crosslinking with an optimum amount of citric acid, 15 wt.%. After then, PLA solutions with different curcumin content, 0-11 wt.%, were electrospinned on the prepared membrane substrate. The prepared film showed high water absorption, water vapor transmission rate and superior mechanical properties with improved elastic modulus, tensile strength and with an elongation of around 320 % with respect to the non-crosslinked one. Also, the scanning electron microscopy was revealed uniformly dispersed pores throughout the membrane film with a nearly narrow in size distribution centered at 36 μm. As well, a nanostructure porous morphology was found for the electrospun fibrous curcumin loaded PLA from the scanning electron microscopy micrographs and the average fiber diameter was decreased with curcumin content. In vitro drug release from the prepared flexible composite into the vertical diffusion cell was recorded by the measuring curcuminoids content using high performance liquid chromatography and drug release kinetic evaluations were revealed that the release pattern of all prepared samples, containing different content of curcumin, well fitted to the Higuchi’s model signifying diffusion-controlled release mechanism. As well, the determined release rate at the second release stages, i.e. steady state flux (J), was varied from 0.31 to 43.53 μg·cm-2·h-1 with increasing drug content from 1 to 11 wt.%. Regarding this results, this flexible composite by providing the moist environment along with miraculous healing properties of curcumin, can be potential candidate for transdermal drug delivery.  相似文献   

20.
Melt-electrospinning is an efficient and environmental-friendly technique for producing nano/micro fibers. In this work, the self-layering behavior of poly(ethylene terephthalate)(PET) fiber deposition during melt-electrospinning was investigated based on the electric field simulation analysis by ANSYS and high voltage insulation theory of capacitor for melt-electrospinning configuration. The simulation results demonstrated that during melt-electrospinning process, the electric field strength on the center and lateral surface of the collector changed alternately when some electrically charged jet deposited, making jet depositing location moved around between center and lateral surface, resulted in the formation of the binding fibers separating the inner and outer layers in the deposited PET fiber web. The PET fiber web electrospun in 90 minutes could be laminated freely into thirteen layers. The geometric dimensions of these layers were measured and their morphologies were observed by scanning electron microscopy (SEM). These laminated layers were concentric with almost linearly increasing radius from the inner to the outer. Inner layers featured themselves with appearance of thick center and thin edge, while for outer layers, they presented the appearance of thin center and thick edge. The fibers in the web were quite uniformly and had diameters of about 2 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号