首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research presents a novel strategy to fabricate multi-functional cotton textiles. In this study, silver nanoparticles-sericin (Ag NPS-sericin) hybrid colloid has been prepared using sericin as reducing agent and dispersing agent. Cotton fabrics was oxidized selectively with sodium periodate (NaIO4) to generate oxidized cotton fabrics, and which has then been finished using Ag NPS-sericin hybrid colloid prepared to obtain multi-functional cotton textiles. The finished cotton fabric not only possessed excellent antibacterial activity, but also it was modified functionally by sericin protein, which endowed antibacterial cotton fabrics relatively smooth surface and good wear ability. Fourier transform infrared spectrogram confirmed that sericin protein was grafted onto cellulose fibers. Ag NPs were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and X-ray powder diffraction (XRD). The results of SEM, X-ray photoelectron spectroscopy (XPS) and EDS confirmed that silver nanoparticles and sericin been loaded successfully on the surface of cotton fabrics. The antibacterial experiments showed bacterial reduction rates of S.aureus and E.coli were able to reach above 99 %. After washing 20 times, it showed still good antibacterial activity at over 95 % against S.aureus and E.coli.  相似文献   

2.
In order to prepare antimicrobial regenerated cellulose fibers from blended spinning solutions, three non-water soluble polymeric guanidine derivatives, polyhexamethylene guanidine dodecyl benzene sulfonate (PHGDBS), polyhexamethylene guanidine dodecyl sulfate (PHGDSA), and polyhexamethylene guanidine laurylsulfonate (PHGLSO) were synthesized. And the chemical structure of these agents was verified by element analysis, Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1H-NMR). The antimicrobial activity of the three agents as well as cellulose films containing PHGDBS was also studied. The results showed that the compounds we prepared had strong properties against both bacterial and fungus, including Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Candida albicans, and Aspergillus niger. Moreover, it was found that three antimicrobial agents were insoluble in water but they can dissolve in solvents of cellulose such as 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) and N-methylmorpholine-N-oxide monohydrate (NMMO·H2O). Meanwhile, it was also proved that [BMIM]Cl had little effect on the antimicrobial properties of these agents. The cellulose films containing only 1.0 wt% PHGDBS showed 99.94 % and 96.95 % bacterial reduction rates for S. aureus and E. coli, respectively. Moreover, still over 91 % of bacterial reduction was maintained after 15 laundering cycles. It suggests that the three agents will be suitable to prepare antimicrobial regenerated cellulose fibers or films.  相似文献   

3.
Cellulose fibers coated with an N-halamine precursor have been reported. Cellulose fibers were dipped and padded with m-aramid dissolved in N,N-dimethylacetamide followed by coagulation in distilled water. The morphology of the maramid-coated cellulose fibers was analyzed using scanning electron microscopy. The m-aramid on cellulose fibers was characterized using X-ray photoelectron spectroscopy (XPS) and the chlorination of m-aramid on the cellulose fibers was determined using Fourier transform infrared spectroscopy and XPS. The liquid and gas permeability of m-aramid coated fabrics were conducted. Wash fastness was performed to measure the durability of the m-aramid on the cellulose fibers. The chlorinated m-aramid-coated cellulose fibers preformed a 7-log reduction against Escherichia coli and Staphylococcus aureus. The chlorine lost after the bacterial inactivation could be regained after a simple re-chlorination process.  相似文献   

4.
A new hybrid ionic liquids solvent, 1-allyl-3-methylimidazolium chloride (AMIMCl) and glycine hydrochloride (Gly·HCl) was utilized to dissolve chitosan and fabricate chitosan/cellulose (Cs/Ce) blend films with chitosan proportion varying from 2 to 35 wt.% through solution casting method. FTIR, XRD, TG, SEM and EA were used to evaluate the prepared composites. Besides, the mechanical property and antibacterial activity were also analyzed. The shifting of the characteristic peaks of -NH and C=O for chitosan, similar crystal pattern with low intensity diffraction peaks at 2θ of around 20°, superior thermal stability (increased Tonset) with chitosan ratio below 10 wt.% in the composites suggested that the interactions via hydrogen bonds formed between chitosan and cellulose. Besides, the elemental analysis showed that the actual N% contents from the chitosan in the blend films were roughly equivalent to the theoretical value though the inevitable residue of ionic liquids. Furthermore, the blends not only presented compact structure but also processed high bacterial reduction to E. coli and S. aureus at pH 6.3, which indicated that the Cs/Ce blend films prepared via the Gly·HCl/AMIMCl dissolution method were suitable for production of degradable antibacterial materials.  相似文献   

5.
L-cysteine (Cys) and silver nanoparticles (Ag NPs) were successfully linked onto the cotton fabric surfaces. The Cys molecules were covalently linked to the cotton fibers via esterification with the cellulose hydroxyl groups, and the Ag NPs tightly adhered to the fiber surface via coordination bonds with the Cys thiol groups. As a result, the Ag NPs coating on the cotton fabric showed an excellent antibacterial function with an outstanding laundering durability. The bacterial reduction rates (BR) efficiency reached 100 % for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). After 50 consecutive laundering cycles, the bacterial reduction rates (BR) against E. coli and S. aureus were maintained over 97 %. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile.  相似文献   

6.
Depositing of TiO2 nanoparticles on cellulose fiber surface has potential technological applications in the field of photocatalysis. With this motivation, multilayers composed of lignosulfonates (LS) and TiO2 nanoparticles were constructed on cellulose fiber surface via layer-by-layer (LBL) self-assembly technique. X-ray photoelectron spectroscopy (XPS), zeta potential measurement and atomic force microscopy (AFM) were used to characterize the LS/TiO2 multilayers on cellulose fiber surface. Moreover, the photocatalytic activities of modified cellulose fibers (decomposition of methyl orange and antibacterial test) were investigated. The decomposition efficiency of methyl orange for a (LS/TiO2)5 multilayer modified cellulose fibers was 74.7 % under 5 h UV irradiation. Photocatalytic decomposition efficiency of methyl orange by LS/TiO2 multilayer modified cellulose fibers under the same UV irradiation time increased linearly with the number of bilayers. Antibacterial tests results revealed that the cellulose fibers modified with LS/TiO2 multilayers exhibited excellent antibacterial activity against E.coil. The degree of E.coil growth inhibition for a (LS/TiO2)5 multilayer modified cellulose fiber reached as high as 93 %. In addition, the effect of LS/TiO2 multilayers on properties of handsheets made from modified cellulose fibers was also considered. The air permeability of the handsheet prepared from fibers modified with TiO2/LS multilayers had 6.1–24.3 % higher compared with that of handsheet prepared from original fibers. The wetting properties measurement results demonstrated that the water contact angle of handsheet oscillated with the increasing number of layers depended on building block which was in the outermost layer.  相似文献   

7.
This study investigated the incorporation of nanoscale germanium (Ge) and silicon dioxide (SiO2) particles into poly(vinyl alcohol) (PVA) nanofibers with the aim of developing nanostructures with far-infrared radiation effects and antimicrobial properties for biomedical applications. Composite fibers containing Ge and SiO2 were fabricated at various concentrations of Ge and/or SiO2 using electrospinning and layered on polypropylene nonwoven. The morphological properties of the nanocomposite fibers were characterized using a field-emission scanning electron microscope and a transmission electron microscope. The far-infrared emissivity and emissive power of the nanocomposite fibers were examined in the wavelength range of 5-20 μm at 37 °C. The antibacterial properties were quantitatively assessed by measuring the bacterial reductions of Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. Multi-component composite fibers electrospun from 11 wt% PVA solutions containing 0.5 wt% Ge and 1 wt% SiO2 nanoparticles exhibited a far-infrared emissivity of 0.891 and an emissive power of 3.44·102 W m?2 with a web area density of 5.55 g m?2. The same system exhibited a 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, and showed a 34.8 % reduction of Klebsiella pneumoniae. These results demonstrate that PVA nanofibrous membranes containing Ge and SiO2 have potential in medical and healthcare applications such as wound healing dressings, skin care masks, and medical textile products.  相似文献   

8.
1-Ally-3-methylimidazolium chloride ([AMIM]Cl) was successfully synthesized and was used as a green spinning solvent for cellulose. The celluloses of various degrees of polymerization (DP) were dissolved in the [AMIM]Cl to obtain 5 % (w/w) cellulose solutions, which were regenerated to cellulose fibers through wet spinning process. Of three different regenerated cellulose fibers with different DPs, a DP of 2,730 was gave the strongest regenerated fiber without drawing having a tensile strength of 177 MPa and an elongation at break of 9.6 % respectively, indicating that celluloses of higher molecular weight can be entangled and oriented more easily. Also maximum draw ratio of the as-spun fibers increased from 1.2 to 1.7 with increasing degree of polymerization leading to a tensile strength and modulus of 207 MPa and 48 GPa, respectively. Particularly the tensile modulus was substantially higher than those of lyocell and high performance viscose fibers of 20 GPa or less. The higher DP of pristine cellulose was critical in increasing the mechanical properties such as tensile strength and elongation at break of the as-spun fibers coupled with higher tensile modulus after drawing.  相似文献   

9.
With the increased risk of disease transmissions and cross-infection caused by microorganisms, the control of microbial infections becomes a very important issue in modern societies. Moreover, with the emergence of antibio-resistant bacterial strains, it is necessary to control the bacterial growth. One of ways to limit the bacterial proliferation is to develop antimicrobial surfaces. The present work describes the synthesis process of a direct linking of propargyled Triclosan to a modified Kraft Pulp. Propargylated Triclosan, and azidated Kraft Pulp were linked in the presence of Cu(I) catalyst, a type of Huisgen’s 1,3-dipolar azide-alkyne cycloaddition reaction, leading to the formation of Triclosan linked to kraft Pulp fibers. The modified Kraft Pulp fibers are characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). This novel material has been investigated for its antibacterial properties against Escherichia coli, Staphylococcus aureus, Bacillus cereus and Pseudomonas aeruginosa. The developed material showed an important antibacterial activity. Although Triclosan is covalently grafted onto Kraft Pulp, its antibacterial properties are maintained.  相似文献   

10.
The present investigation reports the novel synthesis of CoWO4 nanoparticles@silk fiber under ultrasound irradiation. The effect of temperature, power of ultrasound irradiation and sequential dipping steps in growth of the CoWO4 particles were studied. Results show a decrease in the particles size as the temperature and power of irradiation decreased. The fibers containing CoWO4 nanoparticles were tested for their antibacterial efficacy against E. coli and S. aureus and were found to possess significant antibacterial activity. The results show the CoWO4 nanoparticles@silk with strongest fluorescence characteristics can be obtained in this method. The physicochemical properties of the nanoparticles were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectroscopy.  相似文献   

11.
Nano-ZnO assembled cotton fibers (NZCF) with excellent antibacterial properties were fabricated using microwave synthesis method. The effects of ZnO size, ZnO content, assembly times, microwave power and Zn2+ concentration of the synthesis solution on the antibacterial activity of the NZCF were studied using bacteriological tests such as Petri dish and agar diffusion method. The results show that NZCF has the antibacterial circle width (ACW) of about 1.5–2.3 mm and 2.3–3.4 mm against Escherichia coli (E. coli, gram-positive organism) and Staphylococcus aureus (S. aureus, gram-negative organism), respectively. It is also found that the antibacterial activity of NZCF increases with decreasing ZnO size, increasing ZnO content in NZCF and increasing Zn2+ concentration in synthesis solution.  相似文献   

12.
In this study, durable antibacterial cotton fabrics were prepared by a simple two-step impregnation method. Firstly, thioglycolic acid (TGA) was grafted onto cotton fabric via esterification with the hydroxyl groups of cellulose, then silver nanoparticles (Ag NPs) were immobilized on the cotton fabric surface via coordination bonds with the TGA thiol groups. As a result, the mean size of Ag NPs coating on the cotton fabric is around 74 nm, and these functionalized cotton fabrics show superior antibacterial properties and excellent laundering durability. After withstand 50 laundering cycles, the obtained cotton fabrics still showed outstanding bacterial reduction rates (BR) against both S. aureus and E. coli, and the rates are all higher than 97 %. Therefore, this method to prepare antibacterial cotton fabric shows great potential applications in socks, cosmetic, and medical textiles.  相似文献   

13.
Dry bacterial cellulose nanofiber (BC) sheet coated with poly(lactic acid) (PLA) was developed and characterized towards acute wound healing applications. This new approach of PLA coating on BC revealed enhanced physical and antibacterial properties. Commercial BC sheets originated from the manufacturing of nata de coco jelly were dried and coated with the PLA at various concentrations of 2, 4, 6, 8, 10 and 12 % w/v for the purpose of improving the mechanical properties and followed by loading of antiseptic such as benzalkonium chloride (BAC). PLA has been proposed for the use of coating materials at a concentration of 8 %, the biocomposite sheet started exhibiting a low moisture uptake, prolonged swelling in simulated wound fluid solution and high tear (9.17 Nm2/kg) and burst indices (32.5 kPa·m2/g). The 8 % PLA coating revealed porous fiber-like morphology as observed under scanning electron microscope. Therapeutic loading capacity of the BC/8 PLA was substantially higher than the pristine BC. Furthermore strong antimicrobial activities against Staphylococcus aureaus and Escherichia coli were observed for the BC/8PLA biocomposite film. These reports were clearly suggestive of the fact that synthetic biodegradable polymers, such as PLA, may be exploited for the synergistic combination with BC for antimicrobial and acute wound management. This new and modified fiber source material could reduce the dependency on plant based cellulose for more demanding biomedical applications such as wound healing materials, vascular graft, cartilage replacement, drug delivery and tissue engineering.  相似文献   

14.
Ethanol, as the first coagulation bath, and several common organic solvents, as well as aqueous solutions of NH4Cl, NaHCO3 and NaOH were explored and demonstrated to be adopted as the second coagulation bath for cellulose/phosphoric acid/tetraphosphoric acid (cellulose/complex PA solvent) solution to produce novel cellulose fibers by two-stage dry-wet spinning in a laboratory scale, and effect of coagulants, cellulose concentration, solvent concentration (P2O5 concentration) and coagulation temperature on crystal structure and properties of corresponding fibers were investigated. Surface morphology of regenerated fibers as-spun from different coagulants was observed by scanning electronic microscope (SEM), indicating that methanol and 8 wt% NaOH aqueous solution all rendered cellulose fibers relatively dense and smooth surface. X-ray diffraction (XRD) analysis showed that cellulose fiber precipitated from 8 wt% NaOH aqueous solution had pronounced characteristic peak of cellulose II than those of fibers precipitated from other coagulants, and highest crystallinity and orientation. Meanwhile, those two coagulants referred above also gave cellulose fibers relatively higher tensile strength under the same prerequisite. TGA curves exhibited that fibers were thermally stable produced from two salt aqueous solutions (8 wt% NH4Cl and NaHCO3) since they had the relatively higher onset decomposition temperatures. By evaluating the effect of cellulose concentration, P2O5 concentration and coagulation temperature on the structure and properties of asprepared fibers, it was preferable to produce cellulose fiber from a solution at 20 wt% cellulose concentration, 73 % P2O5 concentration, and coagulating in methanol at coagulation temperature of 60 °C at the second-stage.  相似文献   

15.
A series of antimicrobial fibers with different weight ratio of chitosan (CS) and polyvinyl alcohol (PVA) were fabricated via a primarily industrialized trail of wet-spinning method, and the morphology and structure of the resulting fibers were studied with the aid of scanning electron micrography (SEM), infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The CP60 blend fiber (60 % chitosan content) was confirmed as the best optimal sample among the blend fibers owing to strong intermolecular hydrogen bonds between PVA and chitosan and showed the maximum mechanical, antistatic, moisture absorption/desorption properties. The CP60 also exhibited good antimicrobial effects against Escherichia coli and Staphylococcus aureus as the chitosan fiber and could be recommended as the alternative material for the wound dressing and the food packing.  相似文献   

16.
This study is an attempt to investigate the feasibility of alkali pre-treatment to activate surface hydroxyl groups of cellulose fibers in order to enhance the deposition efficiency of silver nanoparticles (AgNPs) onto cotton fabrics. Cotton samples were pre-treated with various alkali solutions containing different earth metal hydroxides (LiOH, NaOH, and KOH). The as-prepared samples were then treated with aqueous silver nitrate followed by reduction treatment with aqueous ascorbic acid, which caused in situ formation of AgNPs on fiber surfaces. The surface structure of the fabrics was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis, and colorimetric data. The amount of silver was measured by using inductively coupled plasma-optical emission spectrometer (ICP-OES). Antimicrobial activity was measured against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. It was established that alkali pre-treatment had a substantial effect on the formation and adsorption of AgNPs on the fibers. Alkali pre-treated samples were homogeneously coated by AgNPs with high surface coverage. Alkali type had significant effect not only on the amount of AgNPs on the surface but also on its size. High antibacterial activity against both Gram-positive and Gram-negative strains was also demonstrated, even after 10 cycles washing.  相似文献   

17.
This paper presents a facile and novel approach for the synthesis of ZnO nanoparticles in aqueous solution based on a one-step reaction between a modified hyperbranched polymer (PNP) and zinc nitrate. The prepared ZnO nanoparticles polymeric hybrid was characterized and its antibacterial activity was investigated. The results indicated that the ZnO nanoparticles have an average size about 6 nm and well dispersed in aqueous medium. The minimum inhibitory concentration (MIC) of them was 20 ppm and 60 ppm against S. aureus and E. coli, respectively. For the functional finishing of cotton fabrics by these ZnO nanoparticles, a microwave assisted in situ fabrication method was employed. Scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) measurements confirmed that the ZnO nanoparticles in situ generated in cotton fabrics successfully. Fourier transform infrared (FT-IR) spectroscopic investigation demonstrated that the ZnO nanoparticles were fixed on the cotton fibers by PNP. The treated cotton fabrics exhibited excellent UV protective properties and antibacterial activities. When ZnO content of cotton fabric was 1.49 %, the UPF value of treated cotton fabric exceeded 125 and the bacterial reduction rate against S. aureus and E. coli reached 99.97 % and 98.40 %, respectively.  相似文献   

18.
Two new cyclized thiolopyrrolone derivatives, namely, thiolopyrrolone A (1) and 2,2-dioxidothiolutin (2), together with the kn own compound, thiolutin (3) were identified from a marine-derived Streptomyces sp. BTBU20218885, which was isolated from a mud sample collected from the coastal region of Xiamen, China. Their chemical structures were determined using spectroscopic data, including HRESIMS, 1D and 2D NMR techniques. 1 possessed a unique unsymmetrical sulfur-containing thiolopyrrolone structure. All the compounds were tested for bioactivities against Staphylococcus aureus, Escherichia coli, Bacille Calmette–Guérin (BCG), Mycobacterium tuberculosis, and Candida albicans. 1 displayed antibacterial activities against BCG, M. tuberculosis, and S. aureus with minimum inhibitory concentration (MIC) values of 10, 10, and 100 μg/mL, respectively. Thiolutin (3) showed antibacterial activities against E. coli, BCG, M. tuberculosis, and S. aureus with MIC values of 6.25, 0.3125, 0.625, and 3.125 μg/mL, respectively.  相似文献   

19.
In this work, we developed a new method that can achieve immobilization and protection of the Cu NPs coating on the cotton fabrics by a simple two-step impregnation method. Firstly, L-cysteine (Cys) was grafted onto cotton fabric via esterification with the hydroxyl groups of cellulose, then Cu NPs were introduced on the fabric surface in the presence of a protective reagent, citric acid. Due to the doubled stabilization acts of Cys and citric acid, the Cu NPs immobilized on the fabric surface showed an excellent antibacterial effect and outstanding laundering durability. As a result, the mean size of the Cu NPs coating on the cotton fabric is about 62.4 nm, and the modified cotton fabrics showed satisfactory antibacterial ability against both S. aureus and E. coli, which the bacterial reduction rates are all higher than 98 % even withstand 50 washing cycles. Therefore, this method to prepare antibacterial cotton fabrics showed great potential applications in socks, cosmetic, and medical textiles.  相似文献   

20.
In this paper, the mulberry fibers were successfully obtained by a new pretreatment named alkali-assisted microwave plus biological enzymatic technique (AMBET). The morphology, microstructure, physico-mechanical and antibacterial properties of the mulberry bast fibers were investigated by means of scanning electron microscope (SEM), Fourier Transform-Infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), instron tensile tester and antibacterial testing. The results showed that impurities of the bast fibers could be removed by AMBET treatment. AMBET treated mulberry fiber was even, smooth and fine, and typical cellulose I in the mulberry fibers was confirmed by FTIR and XRD analysis. The crystallinity of the AMBET treated fibers was higher than that of the raw mulberry and chemical treated mulberry fibers. Thermal analysis indicated that the mulberry fibers had a good thermal stability. Moreover, the AMBET treated mulberry fibers showed excellent antimicrobial activities against S.aureus. The physical properties of the mulberry fibers indicated the AMBET treated mulberry fibers were ideal candidates for new textile materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号