首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  目的  研究油葵和苦荬菜根际土壤固、液相对镉(Cd)和锌(Zn)的活化机制,比较两种植物在轻、中度复合污染农田的修复潜力。  方法  通过大田试验种油葵和苦荬菜,测定成熟期土壤的pH值、有机酸、重金属总量及其生物有效性;测定土壤溶液中的溶解性有机质(DOM)、主要离子、水溶态重金属及其形态分布;测定植物各部位中重金属的浓度及形态,通过计算重金属在植物中的富集系数(BCF)和转运系数(TF),比较两种植物对土壤重金属污染的修复潜力。  结果  油葵和苦荬菜根系分泌的低分子有机酸均使根际土壤pH值下降明显,显著低于非根际土壤(P < 0.05);苦荬菜根际土中低分子有机酸及DOM的浓度显著高于油葵根际土(P < 0.05)。两种植物根际土壤溶液中的Cd以离子态和DOM结合态为主,Zn以离子态为主;两种植物根际土壤中有效态的Cd差异不显著,油葵根际有效态Zn显著高于苦荬菜;两种植物根际土壤的Zn和Cd有效态与土壤溶液中Cd-DOM和Zn-DOM呈显著相关。苦荬菜根对重金属的富集能力较强,但油葵地上部分能吸收转运更多的Cd和Zn,并在叶中以毒性较低的不溶性磷酸盐结合态和草酸结合态富集。  结论  两种植物根际分泌的有机酸可以增加根际土壤中的Cd-DOM和Zn-DOM的浓度,提高土壤中的Cd和Zn的有效性,苦荬菜根际对重金属有较强的活化能力,但油葵地上部分对Cd和Zn的吸收转运能力更强。两种植物都具有较强的土壤重金属修复潜力,但从经济角度出发,油葵更适合现阶段我国农田重金属污染的修复。  相似文献   

2.
  【目的】  研究不同来源有机肥释放的溶解有机质 (DOM) 的粒径分布与光谱特征,为有机肥在农业生产中的应用及DOM后续环境行为的研究提供理论指导。  【方法】  本研究选择海藻、羊粪、虾肽以及小麦秸秆生物炭4种有机肥,提取有机肥中的DOM (<0.7 μm)。利用超滤分级技术对提取的DOM进一步区分为 <1 kDa、1~100 kDa、100 kDa~0.2 μm和0.2~0.7 μm 4个粒级,使用总有机碳 (TOC) 分析仪测定各粒径DOM的含量并使用傅里叶变换红外光谱 (FTIR)、紫外?可见吸收光谱 (UV-Vis) 和三维荧光光谱 (3D-EEM) 进行光谱表征。  【结果】  从全量 (粒径<0.7 μm) 溶解有机碳(DOC)来看,小麦秸秆生物炭 (308 mg/kg)<虾肽 (1060 mg/kg)<海藻 (1266 mg/kg)<羊粪 (2989 mg/kg)。供试有机肥中不同粒径的DOC所占比例和含量差异明显,均以最小粒径 (<1 kDa) 所占比例最高,除海藻为47%外,其余有机肥处理皆达到50%及以上。4种不同来源有机肥DOM的紫外和荧光特征值表明,4种有机肥的荧光指数 (FI) 和自生源指数(BIX)随着DOM粒径的减小而增大,而SUVA254、SUVA260和腐殖化指数 (HIX)随着DOM粒径的减小而减小。虾肽DOM各粒径的类蛋白组分含量高且主要为内源DOM,自生来源有机质丰富,生物可利用性高;羊粪DOM各粒径受人类活动影响较大;而小麦秸秆生物炭的DOM大粒径(>100 kDa)组分的FI<1.4,表明其大粒径DOM主要为外源性的,自身生产和微生物活动贡献相对较低。此外,尽管海藻、羊粪和虾肽各粒径的DOM的HIX值随着粒径的减小而逐渐减小,除虾肽DOM的<1 kDa组分外,其腐殖化程度依旧较高 (HIX>10),而小麦秸秆生物炭小粒径DOM的HIX<4,表明小麦秸秆生物炭的小粒径DOM疏水组分含量高,腐殖化程度相对较低。荧光组分和红外光谱表明了4种不同来源有机肥DOM以类腐殖质物质为主,且含有大量氨基酸N—H键、O—H键和C—O键等官能团。  【结论】  依据有机肥释放的DOM的粒径分布和光谱特征,海藻、羊粪、虾肽有机肥中的DOM主要以小粒径为主,其腐殖化程度高,蛋白组分含量较低。小麦秸秆生物炭DOM的生物稳定性要高于其他有机肥,生物可利用性较低,因此,施加过量的生物炭不利于微生物对土壤DOM的降解利用;而虾肽来源有机肥的DOM类蛋白组分贡献最大,生物可利用性高,施用虾肽有机肥可能有利于微生物对土壤DOM的降解利用。  相似文献   

3.
【目的】研究3种AM真菌对离子型稀土废弃矿区的生态修复改良效果,为选择适宜的AM菌剂提供技术支撑。【方法】试验采用盆栽方法,供试土壤采自江西省赣州市定南县某废弃的离子型稀土矿区,供试作物为黑麦草。在灭菌的土壤上,分别接种摩西斗管囊霉(Glomus mosseae,G.m)、根内根孢囊霉(Rhizophagus intraradices,R.i)、幼套球囊霉(Glomus etunicatum,G.e),以不接种菌剂为对照,每个处理重复6次。播种催芽后的黑麦草,黑麦草生长210天,进行了8次株高和干物量监测,在黑麦草生长195天时(第8次监测),收获3个重复的黑麦草,植株样品用于分析地上部和根部干重、NPK含量,根际土壤样品用于分析pH、有机质、全量和速效氮磷钾含量。其余3个重复停止灌水用于干旱胁迫处理,在黑麦草生长210天时测定了植株超氧化物歧化酶(SOD)活性和脯氨酸含量。【结果】与不接菌空白组相比,接种G.m、R.i、G.e处理根际土壤pH由强酸性(4.60)提高至7.62~7.90,有机质分别提升了123.9%、126.8%、105.0%;G.m处理土壤全氮、碱解氮和全磷分别提升...  相似文献   

4.
The main agrochemical treatment applied in agriculture to lower harmful soil acidity is liming. Long term studies showed that application of calcium carbonate fertilizer brought about higher leaching of dissolved organic matter (DOM) in pot, lysdmetric and field experiments. Outflows obtained from limed soils contained 44.8% more DOM in comparison with nonlimed soils. During four years of lysimetric experiments it was found that the amounts of DOM from limed soils were increased by 52.7%. In the field experiments the amounts leached from one hectare of limed and nonlimed soil ranged 25.6 kg and 19.2 kg per year, respectively. DOM leached from limed soils was characterized by higher (45.4%) contents of carboxylic groups and humic substances (19.7%). Dissolved organic substances particularly humus rich in functional groups, due their complexing properties bound plant nutrients leached from soils and modify geochemical mobility of metals and anions. Therefore, DOM can play a significant role in the migration of chemical substances in agriculture landscape.  相似文献   

5.
Dissolved organic matter (DOM) in soils is partially adsorbed when passing through a soil profile. In most adsorption studies, water soluble organic matter extracted by water or dilute salt solutions is used instead of real DOM gained in situ by lysimeters or ceramic suction cups. We investigated the adsorption of DOM gained in situ from three compartments (forest floor leachate and soil solution from 20 cm (Bg horizon) and 60 cm depth (2Bg horizon)) on the corresponding clay and fine silt fractions (< 6.3 μm, separated together from the bulk soil) of the horizons Ah, Bg, and 2Bg of a forested Stagnic Gleysol by batch experiments. An aliquot of each clay and fine silt fraction was treated with H2O2 to destroy soil organic matter. Before and after the experiments, the solutions were characterized by ultra‐violet and fluorescence spectroscopy and analyzed for sulfate, chloride, nitrate, and fluoride. The highest affinity for DOM was found for the Ah samples, and the affinity decreased in the sequence Ah > Bg > 2Bg. Dissolved organic matter in the 2Bg horizon can be regarded as slightly reactive, because adsorption was low. Desorption of DOM from the subsoil samples was reflected more realistically with a non‐linear regression approach than with initial mass isotherms. The results show that the extent of DOM adsorption especially in subsoils is controlled by the composition and by the origin of the DOM used as adsorptive rather than by the mineralogical composition of the soil or by contents of soil organic matter. We recommend to use DOM gained in situ when investigating the fate of DOM in subsoils.  相似文献   

6.
The rhizosphere, enriched in organic matter, is the bottleneck of metal transfer in the soil–plant system. However, the transformation of metal fractions in the rhizosphere and the mechanisms that are involved, notably the role of organic matter, are poorly known. In this study, the solid-phase fractionation of lead (Pb) in the rhizosphere and non-rhizosphere soil of Elsholtzia splendens in a Pb-contaminated soil was investigated using a nine-step selective sequential extraction method in a pot experiment. Compared to the non-rhizosphere soil, there were measurable increases in Pb-fulvic complexes, Pb-humic complexes, organic Pb, and amorphous Pb but no significant changes in other forms of Pb in the rhizosphere soil. Pb-fulvic complexes and organic Pb, increasing from 397 to 438 mg kg?1 and 229 to 258 mg kg?1, respectively, showed a stronger accumulating trend than Pb-humic complexes and amorphous Pb, with an increase from 15.9 to 17.3 mg kg?1 and 6.04 to 7.80 mg kg?1 respectively, in the rhizosphere soil relative to non rhizosphere soil. These results may be mainly due to the enrichment of organic matter in the rhizosphere soil, resulting from root exudation and the enhanced turnover of microorganisms. The accumulation of Pb-fulvic complexes in the rhizosphere soil increases the potential phytoavailable pool, thus likely facilitating the phytoextraction of Pb in metal-contaminated soil.  相似文献   

7.
研究苗期干旱胁迫下施氮对东北春玉米氮素吸收利用和土壤生物化学性质的影响,为区域玉米养分管理与逆境调控提供依据。研究设置水、氮二因素盆栽试验,土壤水分包括3个水平:田间持水量的30%(W0),50%(W1)和70%(W2);施氮量包括2个水平:不施氮(N0)和施氮0.24 g/kg(N1),测定不同水氮条件下玉米苗期的植株干重和氮素吸收、根际和非根际土壤的化学性质、微生物量碳、氮(MBC、MBN)及土壤酶活性。结果表明:干旱胁迫显著降低玉米苗期植株干重和氮素吸收量,其中W0条件降幅最大(分别为51.1%,43.8%)。施氮促进各水分条件下植株生长,且与水分存在显著交互作用,W2条件下施氮后植株干重和氮素吸收量的增幅最高(分别为53.7%,83.2%)。干旱胁迫提高植株的水分利用效率,但降低氮肥利用效率。施氮显著提高W2条件植株的水分利用效率,但干旱条件下则无显著影响。水、氮及其交互作用对土壤性质的影响较为复杂。总体上,苗期干旱胁迫暂时提高了根际和非根际土壤pH,显著增加根际土壤的铵态氮和硝态氮含量。MBC、MBN对干旱胁迫的响应在根际与非根际土壤之间存在相反趋势,根际土壤随干旱程度增加而提高,非根际土壤则随之下降。土壤酶活性方面,干旱胁迫显著影响根际土壤的硝酸还原酶和亚硝酸还原酶活性。施氮增加所有水分条件下根际和非根际土壤的pH和铵态氮、硝态氮含量,其中根际土壤的增幅高于非根际土壤。施氮显著增加各水分条件下根际和非根际土壤的MBC、MBN、脲酶和硝酸还原酶活性,但显著降低根际和非根际土壤亚硝酸还原酶活性。水氮交互作用显著影响根际土壤的亚硝酸还原酶、非根际土壤的脲酶、亚硝酸还原酶和FDA水解酶活性。根际、非根际土壤各生物化学性质之间均存在显著的相关关系,而且根际土壤除土壤亚硝酸还原酶外的各指标均与植株氮素吸收和氮肥利用效率呈正相关。苗期干旱显著抑制玉米植株生长和氮素吸收,并对土壤生物、化学性质造成显著影响。施氮对植株和土壤性质的影响在不同水分条件下存在差异,而且植株表现与土壤生物、化学性质之间存在显著相关关系。  相似文献   

8.
在长期定位施肥的基础上,采用盆栽试验,研究了不同施肥处理对冬小麦根际土壤与非根际土壤中pH、有机质含量及速效养分含量差异的影响。结果表明,(1)CK和PK处理在不同生育期其根际pH值均低于根外,土壤有机质含量逐渐下降。氮肥及和P、K配施的处理中,根际和非根际的pH值均低于PK和CK。N、NP、NPK处理的根际土壤有机质从拔节到成熟期有先下降后上升的趋势,而NK处理根际和非根际土壤有机质含量均逐渐下降。有机肥和化肥配施的处理中,在拔节期根际pH值均小于根外,在抽穗期和成熟期却相反,有机质含量从拔节期到成熟期均高于化肥处理。(2)CK和PK处理,土壤速效氮在各个时期均较其它处理低。长期施用氮肥和其它肥料配施(N、NP、NK、NPK)处理,在拔节期时,根际与非根际土壤的速效氮含量差异不明显,而根际的速效磷含量最高;到成熟期时,以N、NK处理的速效氮含量最高;偏施钾肥(NK和PK)处理的根际与非根际土壤速效钾含量变化不明显,但高于NPK处理;长期施用有机肥和NPK处理根际土速效氮含量较化肥处理高,以MNPK和1.5MNPK处理表现最明显。除SNPK外,各处理根际和非根际土速效磷含量均明显高于化肥处理,以1.5MNPK处理含量最高。  相似文献   

9.
Laboratory experiments in soil columns were performed to study the influence of dissolved salts on the amount and composition of organic matter (OM) released from soil. Samples of two surface soils from former wastewater infiltration sites were leached with solutions containing dissolved salts (NaH2PO4, NaNO3, CaCl2) and by deionized water. The NaH2PO4 solution induced strongest release with 0.6% of soil organic carbon (Corg) with 700 ml for 100 g of soil, while CaCl2 released the least, summing to 0.1–0.2% of Corg. The OM released was characterized by UV absorbance (aromaticity), ultrafiltration (molecular size distribution) and solid-phase extraction (polarity). The results suggest that CaCl2 preferentially released readily soluble OM. For the other solutions we assume solubilization by enhanced electrostatic repulsion (water), sodium exchange (NaNO3), and sodium exchange and calcium decomplexation and displacement of sorbed organic anions (NaH2PO4) to be the major mechanisms of release. In all experiments a phase of spontaneous desorption was observed, followed by a phase of steady-state desorption. Activation energies for steady-state release were estimated from kinetic investigations and suggest that the release is controlled by diffusion towards the phase boundary. These investigations emphasize the influence of dissolved salts on the nature and quantity of organic matter released from soil. The method presented seems able to characterize soil organic matter with respect to its availability and its mode of association with the soil matrix.  相似文献   

10.
The effect of soil heating on the dynamics of soil available nutrients in the rhizosphere was evaluated. A pot experiment was carried out by using a rhizobox; a pot which enables to sample soils and soil solutions not only temporally with plant growth but also spatially depending on the distance from the root-accumulating compartment. The experiment consisted of 4 treatments; soils with or without heating treatment (150°C, 3 h), each of which was either planted with maize (Zea mays L.) or not. During the 17-d experiment, soil solutions at 0–2 mm from the root-accumulating compartment were collected 5 times. Soils depending on the distance from the root-accumulating compartment and plants were also collected after the experiment. The ionic concentrations of the soil solutions and soil water extracts, and the nutrient contents of plants were analyzed. Immediately after soil heating, the concentrations of cations, SO4 2-, CI-, water-soluble P, and water-soluble organic carbon increased significantly. With plant growth, the total ionic concentration in the rhizosphere soil solution increased for heated soil, whereas it decreased for unheated soil. The increase of the concentrations of cations and SO4 2- in the rhizosphere of heated soil was appreciable, suggesting that the movement of cations such as Ca2+ and Mg2+ by mass flow was regulated by that of SO4 2-. Moreover soil heating inhibited nitrification, resulting in the supply of N mainly in the form of NH4 + within 10 mm from the root-accumulating compartment. As a result, the soil pH decreased in the rhizosphere of heated soil. The amount of nutrients absorbed by plants, on the other hand, did not change significantly by soil heating except for an increase of P uptake. The increase of P uptake could be explained not only by the immediate increase of the water-soluble P concentration but also by the dissolution of Ca-bound P and the hydrolysis of water-soluble organic P in the rhizosphere.  相似文献   

11.
Field experiments during 2006–07 and 2007–08 were conducted in an Aeric Endoaquept to evaluate extractants suitable for boron (B) under the influence of organic matter and B in both rhizosphere (R) and nonrhizosphere (NR) soils with rape (Brassica campestris L.) as a test crop. The results reveal that the average B content in Mehlich 3 (MH-3) B was greatest (0.791 mg kg?1) in NR soil, while that of the same in R soil was greatest (0.785 mg kg?1) with Mannitol–calcium chloride (CaCl2) (MCC) followed by hot -CaCl2 (HCC, 0.750 mg kg?1) in the treatment T4 where NPK (80:40:40), B at 0.5 kg ha?1, and farmyard manure (FYM) at 5 t ha?1 were applied together. Based on linear regressions and correlations between different extractants and yield responses, the MH-3 extractant gave the greatest value of co-efficient of determination (R2 = 0.36**, r = 0.598**) and has proved to be a superior extracting solution for B in NR in an Aeric Endoaquept. The results further suggested that the extractability of B with these three extractants did not have any control over rhizosphere soil zone.  相似文献   

12.
Interactions with dissolved organic matter (DOM) are generally believed to play a crucial role in the translocation of Al and Fe in acid sandy soils. Binding of Al and Fe to DOM affects their mobility in soils by altering sorption equilibria of charged sites on solid soil material, inducing precipitation of organo‐metallic complexes and preventing the formation of inorganic Al and Fe phases. The relative importance of the different processes, especially with respect to the translocation of Al, Fe and organic matter in podzols, remains unresolved. We determined the effect of the presence of solid soil material from the eluvial (AhE and AE, respectively) horizons of a Fimic Anthrosol and a Haplic Podzol on the metal‐to‐organic carbon (M/C) ratio in solution and the formation of dissolved organic Al and Fe complexes. Furthermore, we assessed the resulting influence on the mobilization of Al, Fe and DOM. Even under considerable metal loading, the M/C ratios and ‘free’ metal fractions in solution remained low and relatively constant, due to an apparent buffering by the solid phase and the formation of organo‐metal complexes in solution. The M/C ratios remained so low that significant precipitation of organo‐metal complexes due to saturation with metals was not found. The apparent buffering by the solid phase can be explained by a strong release of organic matter from solid soil material and adsorption of non‐complexed Al and Fe on solid organic matter upon metal addition. Adsorption of organo‐metal complexes most likely played only a minor role. The observations confirm the expected mobilization of Al, Fe and DOM in eluvial horizons and seem to indicate that even under fluctuating input of Al, Fe and DOM the soil solution will have a constant composition with respect to M/C ratios and percentage of Al and Fe present in dissolved organo‐metal complexes.  相似文献   

13.
[目的]磷极易被土壤吸附和固定,导致土壤中磷有效性较低.研究接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和低磷处理两者交互对紫花苜蓿生长和磷吸收的影响,为提高碱性土壤中磷肥利用率提供理论依据.[方法]以黄绵土和紫花苜蓿(Medicago sativa)为试验材料进行盆栽试验.在施...  相似文献   

14.
Soils developed on sulphide-bearing shale (alum shale) in Norway contain naturally high amount of heavy metals. We conducted a greenhouse pot experiment to study the effect of four rates (0, 2, 4, and 8%) and three sources (cow manure, pig manure and peat soil) of organic matter in partitioning and distribution, extractability and plant uptake of Cd, Cu, Ni and Zn in an alum shale soil. Sequential extraction scheme was used to determine the distribution patterns of metals in the soil. DTPA was used for extracting the metals from the soil. Wheat (Triticum aestivum) was used as a test crop to study the plant uptake of metals. The highest amount of Cd was present in the exchangeable fraction, irrespective of the rate and source of organic matter applied. Copper, Ni, and Zn, on the other hand, were present only in small quantities in this fraction. The largest fraction of Cu was associated with organic matter and the amounts present in the oxide, carbonate and exchangeable fractions were very small. Nickel and Zn were found mainly in the residual fraction. Increasing rates of cow and pig manure decreased the amounts of Cd and Ni associated with the exchangeable fraction whereas, the addition of peat soil at the same rate increased the amounts of these metals associated with this fraction. This effect of organic matter was primarily associated with the change in soil pH caused by different organic matter sources. The DTPA-extractable metals were decreased with increasing rates of organic matter application, irrespective of its source. Grain and straw yields of wheat were decreased with increasing rates of organic matter. The application of organic matter increased the Cu and Zn concentrations in both grain and straw. The concentration of all metals was lower in plants grown in the cow manure amended soil as compared to those grown in the soil amended with either pig manure or peat soil. These results sugggest that the source of organic matter was a determining factor for metal distribution in the soil and for metal uptake by plants. In this study cow manure slightly increased the soil pH and thus was more effective than either pig manure or peat soil in reducing the plant uptake of metals but in general the efficiency of the organic material in reducing heavy metal uptake was small.  相似文献   

15.
Chemical weathering is an important neutralisation process and sourceof cations in forest soil. The presence of dissolved organic matter in the soil solution can have a considerable influence on weathering release. The aim of this study is to compare the weathering potentialof natural soil solutions, collected from Norway spruce, Scots pine and birch sites, to release Al, Ca, Mg, K, Na, and Si from the fine fraction in the C horizon of a podzol. Residual organic matter in the mineral soil was removed with H2O2. The <0.06 mm fraction of the mineral soil was suspended in soil solution, collected from the three sites, for 11 days with continuous agitation. Ultrapure water was used as a control. The pH of the suspensions was maintained at 5.4 by bubbling with CO2. The initial mean DOC concentrations in the soil solutions were 65, 56 and 40 mg L-1 for the spruce, pine and birch sites, respectively. The presence of DOM in the soil solution did not significantly enhance the capacity to weather mineral soil material, and no systematic differences were found between the three sites. However, Al release from the mineral soil was slightly higher in the soil solutions containing DOM compared to the control solution with no DOM. The proportions of DOM fractions capable of enhancing weathering were comparable with those reported in earlier studies. The weathering of metals was found to be primarily due to pH-driven processes. The lack of considerable weathering enhancement by DOM could be due to the fact that the cation-binding sites of the organic ligands were already saturated by e.g. Al and Fe in the soil solution derived from these podzolic, Al- and Fe-rich soils.  相似文献   

16.
溶解性有机质(Dissolved Organic Matter)作为有机质中生物活性和物理化学反应活性较为活跃的重要组成部分,对土壤中锌的形态分布有着重要影响,本文采用室内培养的方法,在相同的温度和湿度条件下,分析了两种不同来源的DOM在不同浓度梯度下对紫色土外源锌形态分布的影响,得出以下结论:(1)紫色土在添加DOM后,显著地促进了外源锌各形态之间的相互转化分布,酸性紫色土中DOM促进了外源锌由EX-Zn向其它形态转化,这对于减少土壤锌污染的植物毒性有一定的作用。石灰性紫色土中主要促进RES-Zn向其它形态转化,提高了锌对植物的有效性;(2)两种DOM对酸性紫色土的影响优于石灰性紫色土,影响效果DOM2>DOM1;(3)酸性紫色土形态间的相关关系程度显著,石灰性紫色土形态间的相关关系程度不显著。  相似文献   

17.
Dissolved organic matter (DOM) in soil solution represents a complex mixture of organic molecules and plays a central role in carbon and nitrogen cycling in plant–microbial–soil systems. We tested whether excitation–emission matrix (EEM) fluorescence spectroscopy can be used to characterize DOM and support previous findings that the majority of DOM is of high molecular weight (MW). EEM fluorescence spectroscopy was used in conjunction with MW fractionation to characterize DOM in soil solution from a grassland soil land management gradient in North Wales, UK. Data analysis suggested that three distinct fluorescence components could be separated and identified from the EEM data. These components were identified as being of humic‐like or fulvic‐like origin. Contrary to expectations, the majority of the fluorescence signal occurred in the small MW (<1 kDa) fraction, although differences between soils from the differently managed grasslands were more apparent in larger MW fractions. We conclude that following further characterization of the chemical composition of the fluorophores, EEM has potential as a sensitive technique for characterizing the small MW phenolic fraction of DOM in soils.  相似文献   

18.
Study of the relationship between plant litter-derived dissolved organic matter(DOM) and organic pollutant transport in soil is important for understanding the role of forest litter carbon cycling in influencing pollutant behaviour and fate in forest soil.With the aim of providing insight into the capacity of plant litter-derived DOM to influence sorption and desorption of selected polycyclic aromatic hydrocarbons(PAHs) on soil, batch experiments were carried out with application of a sorption-desorption model incorporating DOM effects. Freshly fallen pine(Pinus elliottii) needles were used as the source of organic matter. Input of the pine needle litter-derived DOM was found to significantly decrease desorption hysteresis as well as soil adsorption capacity of phenanthrene(PHE) and fluoranthene(FLA). Addition of 1 728 mg L-1dissolved organic carbon(DOC) lowered the organic carbon-normalized sorption distribution coefficient of PHE from 7 776 to 2 541 L kg-1C and of FLA from 11 503 to 4 368 L kg-1C. Decreases of the apparent sorption-desorption distribution coefficients of PHE and FLA with increased DOC concentration indicated that DOM favored desorption of PAHs from soil. Increases in the fraction of apparently dissolved PAHs were attributable to the dissolved PAH-DOM complexes, accounting for the dissolved proportions of 39% to 69% for PHE and 26% to 72% for FLA in the sorption and desorption processes as the concentration of the added DOM solution rose from 0 to 1 728 mg L-1. Our results suggest that pine needle litterderived DOM can have a substantial effect of inhibiting PAHs sorption and promoting PAHs desorption, thus leading to enhanced leaching in soil, which should be taken into account in risk assessment of PAHs accumulated in forest soil.  相似文献   

19.
土壤中溶解性有机质及其对污染物吸附和解吸行为的影响   总被引:55,自引:4,他引:55  
溶解性有机质(DOM)已成为环境科学、生态学和土壤科学等学科的研究热点。DOM对重金属、养分和有机污染物的环境化学行为有很大影响,因此开展DOM与污染物(或养分)之间相互作用的研究,具有重要的理论与实践意义。本文系统地评述了DOM的来源、组成、分级及其对土壤中污染物吸附一解吸行为的影响。尽管关于土壤中DOM的研究还不完善,许多工作也只是刚刚开始,至今对土壤中DOM的性质、组成和分类方法等问题都不是很清楚,但现有的结果已经表明,DOM是土壤圈中一种十分活跃的重要化学组分,它对土壤中化学物质的溶解、吸附、解吸、吸收、迁移和生物毒性等行为均有显著的影响。  相似文献   

20.
While dissolved organic matter (DOM) in soil solution is a small but reactive fraction of soil organic matter, its source and dynamics are unclear. A laboratory incubation experiment was set up with an agricultural topsoil amended with 13C labelled maize straw. The dissolved organic carbon (DOC) concentration in soil solution increased sharply from 25 to 186 mg C L−1 4 h after maize amendment, but rapidly decreased to 42 mg C L−1 and reached control values at and beyond 2 months. About 65% of DOM was straw derived after 4 h, decreasing to 29% after one day and only 1.3% after 240 days. A significant priming effect of the straw on the release of autochthonous DOM was found. The DOM fractionation with DAX-8 resin revealed that 98% of the straw derived DOM was hydrophilic in the initial pulse while this hydrophilic fraction was 20-30% in control samples. This was in line with the specific UV absorbance of the DOM which was significantly lower in the samples amended with maize residues than in the control samples. The δ13C of the respired CO2 matched that of DOC in the first day after amendment but exceeded it in following days. The straw derived C fractions in respired CO2 and in microbial biomass were similar between 57 and 240 days after amendment but were 3-10 fold above those in the DOM. This suggests that the solubilisation of C from the straw is in steady state with the DOM degradation or that part of the straw is directly mineralised without going into solution. This study shows that residue application releases a pulse of hydrophilic DOM that temporarily (<3 days) dominates the soil DOM pool and the degradable C. However, beyond that pulse the majority of DOM is derived from soil organic matter and its isotope signature differs from microbial biomass and respired C, casting doubt that the DOM pool in the soil solution is the major bioaccessible C pool in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号