首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
选择对多菌灵、乙霉威和苯酰菌胺具有不同敏感性的胶孢炭疽菌 Colletotrichum gloeosporioides、辣椒疫霉菌 Phytophthora capsici 及恶疫霉菌 P.cactorum,采用菌丝生长速率抑制法及氨基酸序列比对法分析了其 β-微管蛋白氨基酸突变与敏感性的关系。结果表明,胶孢炭疽菌对苯酰菌胺、多菌灵和乙霉威的敏感性与 β-微管蛋白198位或200位氨基酸突变有关:对多菌灵敏感、对苯酰菌胺和乙霉威不敏感的胶孢炭疽菌 β-微管蛋白氨基酸198位为谷氨酸(E),200位为苯丙氨酸(F);对多菌灵已产生抗性而对苯酰菌胺和乙霉威不敏感的菌株,其 β-微管蛋白氨基酸200位由苯丙氨酸(F)突变为了酪氨酸(Y);对多菌灵高抗、对苯酰菌胺和乙霉威敏感的菌株其 β-微管蛋白氨基酸198位由谷氨酸(E)突变为了丙氨酸(A)。辣椒疫霉菌和恶疫霉菌对苯酰菌胺敏感,对多菌灵和乙霉威均不敏感。检测疫霉菌菌株 β-微管蛋白未发现氨基酸突变,但发现其 β-微管蛋白氨基酸在196~200位与胶孢炭疽菌差异较大,这可能是导致苯酰菌胺仅对疫霉菌有抑制效果的原因。  相似文献   

2.
油菜菌核病菌对多菌灵和乙霉威的抗药性机理   总被引:1,自引:0,他引:1  
生物测定结果表明,油菜菌核病菌田间菌株对多菌灵(MBC)敏感性表型呈多样性,即存在MBCS、MBCLRLR、MBCHRHR和MBCVHR表型.而对乙霉威(DIE)则只检测到DIES和DIEHR表型.MBCS、MBCLR和MBCHR菌株中除JD2-3菌株为DIES外,其余菌株均为DIEHR,MBCVHR菌株对DIE表现为DIES.MBC和DIE之间存在典型的负相关交互抗性.序列分析结果表明,表型为MBCVHRDIES菌株的β-微管蛋白基因,第198位氨基酸由Glu(GAG)突变为Ala(GCG);表型为MBCHRDIEHR菌株的β-微管蛋白基因的突变位点在第200位,由Phe(TTC)突变为Tyr(TAC);而表型为MBCSDIES和MBCLRDIEHR的菌株在所扩增的β-微管蛋白基因片段中未发生突变.初步表明,β-微管蛋白基因198和200位氨基酸的突变是引起油菜菌核病菌对多菌灵抗药性呈多样性的分子机理.  相似文献   

3.
 田间抗性监测发现了大麦云纹斑病菌新型的抗性菌株,这类菌株对苯并咪唑类(多菌灵)、Phenylcarbamate(乙霉威)及三唑类(三唑醇)表现多重抗性,先前发现的多菌灵抗药性菌株均是在β-维管蛋白基因的198位点出现等位基因的突变,而新发现的菌株则仅在200位点(TTC)由苯并氨酸转变成赖氨酸(TAC)而导致对3种药剂的抗性。温室试验证明,这类菌株的致病性和野生敏感菌的致病性几乎一致,说明大麦云纹斑病菌对杀菌剂抗药性的发展与致病性之间没有相关性。  相似文献   

4.
本文采用单孢分离法对四川汉源和山东烟台等地采集的樱桃果实进行了采后灰霉病的病原菌分离和鉴定;采用区分剂量法分别测定了菌株对苯并咪唑类杀菌剂甲基硫菌灵、乙霉威和二甲酰亚胺类杀菌剂腐霉利的敏感性,并进一步分析了抗药性菌株的分子机制。结果表明,分离得到的54株樱桃采后灰霉病菌均为灰葡萄孢Botrytis cinerea,对甲基硫菌灵的总抗性频率高达79.6%,其中甲基硫菌灵抗性-乙霉威敏感 (BEN R1) 菌株频率为 25.9%;甲基硫菌灵-乙霉威双重抗性菌株 (BEN R2) 频率为53.7%;检测到腐霉利抗性菌株 (DCF R) 9 株,频率为16.7%。甲基硫菌灵抗性菌株在β-tubulin基因上的突变共有2种类型: BEN R1抗性菌株中,第198位密码子发生点突变 (GAG→GCG),编码氨基酸由Glu (E)突变成缬氨酸Ala (A);在BEN R2抗性菌株中,第198位密码子发生点突变 (GAG→GTG),编码氨基酸由Glu (E)突变成缬氨酸Val (V)。DCF R菌株在BcOS1的第365位密码子由ATC突变成AAC或AGC,导致编码的氨基酸由异亮氨酸Ile (I)突变成天冬酰胺Asn (N)或丝氨酸Ser (S)。本研究表明樱桃采后灰霉病菌对甲基硫菌灵和腐霉利存在不同程度抗性,应在加强抗药性监测的同时与其他类型杀菌剂交替使用,延缓抗药性发展。  相似文献   

5.
 多菌灵是一类高效广谱的苯并咪唑类杀菌剂,用于防治多种重要的植物病害。尽管其对子囊菌、多数半知菌和担子菌有效,但对卵菌、接合菌和少数半知菌却无效,如腐霉属真菌(Pythium spp.), 链格孢属真菌(Alternaria spp .)和匍柄霉属真菌(Stemphylium spp.)。其抗药性机制主要是由于β-微管蛋白氨基酸的突变,导致蛋白质序列发生变化从而影响药剂与靶标的结合。研究表明其抗药性与β-微管蛋白几个位点氨基酸突变有关[1]。  相似文献   

6.
田间抗性监测发现了大麦云纹斑病菌新型的抗性菌株,这类菌株对苯并咪唑类(多菌灵)、Phenylcarbamate(乙霉威)及三唑类(三唑醇)表现多重抗性,先前发现的多菌灵抗药性菌株均是在β-维管蛋白基因的198位点出现等位基因的突变,而新发现的菌株则仅在200位点(TTC)由苯并氨酸转变成赖氨酸(TAC)而导致对3种药剂的抗性。温室试验证明,这类菌株的致病性和野生敏感菌的致病性几乎一致,说明大麦云纹斑病菌对杀菌剂抗药性的发展与致病性之间没有相关性。  相似文献   

7.
为评价西瓜蔓枯病菌对啶酰菌胺的抗性风险,了解其抗性机理,室内通过药剂驯化方法获得2株啶酰菌胺的抗性突变体XF21-3和YC60-1,测定了抗性突变体的生物学特性,并通过对Sdh B基因片段的测序比对,分析了西瓜蔓枯病菌对啶酰菌胺的抗性机理。生物测定结果表明:啶酰菌胺对2株抗性突变体的EC50值分别为108和124 μg/mL,抗性倍数(RR)分别为1 007和1 347,均为高抗菌株;抗性突变体的菌丝生长速率和产孢量均大于亲本菌株,但其致病性与亲本菌株无显著差异,对外界环境渗透压的敏感性低于亲本菌株;此外,啶酰菌胺与萎锈灵、戊唑醇、乙霉威及醚菌酯之间均不存在交互抗性,但与噻呋酰胺之间存在交互抗性。Sdh B基因片段测序及比对结果表明,高抗性突变体中Sdh B亚基277位上的氨基酸所对应的碱基由CAC突变为TAC,即由组氨酸(His)突变为酪氨酸(Tyr)。研究表明,西瓜蔓枯病菌在药剂选择压力下容易形成啶酰菌胺的抗性群体,且抗性突变体的离体适合度高于亲本菌株,此外,啶酰菌胺与同类型杀菌剂噻呋酰胺之间存在交互抗性,因此认为西瓜蔓枯病菌对啶酰菌胺具有中等抗性风险;同时进一步验证了Sdh B亚基277位上的氨基酸突变(His→Tyr,CAC→TAC)是西瓜蔓枯病菌对啶酰菌胺产生抗性的原因。  相似文献   

8.
由禾谷镰刀菌Fusarium graminearum引起的小麦赤霉病(Fusarium head blight,FHB)是小麦、大麦、燕麦、黑麦等禾谷类作物的毁灭性病害。目前,生产上防治小麦赤霉病主要依靠化学药剂防治,多菌灵等苯并咪唑类杀菌剂使用较为广泛,其作用靶标为β微管蛋白。禾谷镰刀菌有2个β微管蛋白,通过分子对接结果发现β2微管蛋白第138位氨基酸位点可能为多菌灵结合位点。本研究对β2第138位丝氨酸位点进行突变研究,以明晰其生物学功能。结果表明Fgβ2S138A突变后禾谷镰刀菌对多菌灵的敏感性显著增加,EC50值由0.617 mg/L降至0.290 mg/L,但不影响对噻菌灵的敏感性,EC50值为0.950 mg/L左右,并且该突变不影响禾谷镰刀菌菌丝营养生长、无性繁殖、有性生殖和致病性。本研究结果可为多菌灵对小麦赤霉病的化学防治提供理论基础,在生产上具有一定指导意义。  相似文献   

9.
河南省番茄灰霉病菌对3种杀菌剂的抗药性检测   总被引:2,自引:0,他引:2  
为了明确河南省番茄灰霉病菌对苯并咪唑类杀菌剂多菌灵、二甲酰亚胺类杀菌剂腐霉利和氨基甲酸酯类杀菌剂乙霉威的抗药性状况,2013年从河南省不同保护地中采集番茄灰霉病病果或病叶,经单孢分离共获得番茄灰霉病菌菌株139株。采用最低抑制浓度法(MIC)测定了其对多菌灵、腐霉利和乙霉威的抗药性。结果显示:番茄灰霉病菌对多菌灵、腐霉利和乙霉威产生抗性菌株的频率分别为81. 29%、80.58%和93.53%; 所测菌株对3类杀菌剂的抗性类型有BenRDicSNPCS、BenRDicRNPCS、BenRDicSNPCR、BenSDicRNPCR、BenSDicSNPCR和BenRDicRNPCR 6种,所占比例分别为2. 88%、3.60%、3.60%、5.04%、13.67%和71. 22%。表明河南省番茄灰霉病菌已对多菌灵、腐霉利和乙霉威产生抗药性,迫切需要筛选新的杀菌剂防治番茄灰霉病。  相似文献   

10.
芒果炭疽病菌对多菌灵的抗药性   总被引:26,自引:2,他引:26       下载免费PDF全文
对来自广东和海南等不同果园的芒果炭疽病菌进行了对多菌灵的抗性测定.结果表明,敏感菌株的最小抑制浓度(MIC)为0.110μg/mL,而抗性菌株在多菌灵500μg/mL下仍生长良好.抗性菌株经继代培养10代后抗性几乎不变,说明其抗性稳定.对抗、感菌株的生物学特性进行测定,然后以产孢量和致病力分别用MIC做简单相关性分析,证明病菌的生物学特性、产孢量、致病力与抗药性无关,因此可以认为病菌对多菌灵的抗药性突变并不影响其正常的生理功能.抗性菌株对甲基硫菌灵、苯菌灵、噻菌灵表现正交互抗性,而对乙霉威和咪鲜胺敏感.病菌在含药培养基上测定的敏感性与在经多菌灵处理过的离体果实上的敏感性有较好的对应关系,可用于大田抗药性的初步检测.  相似文献   

11.
根据禾谷镰孢菌参考菌株NRRL31084(PH-1)的γ-微管蛋白基因核苷酸序列设计5对引物,采用PCR方法从禾谷镰孢菌(Fusarium graminearum)对多菌灵(MBC)的敏感菌株、室内诱导及田间多菌灵抗药性菌株中分段扩增测序,获得了γ-微管蛋白基因全序列.该基因全长1 868 bp,含有5个内元,编码一含493aa的多肽;与PH-1的γ-微管蛋白基因核苷酸序列同源性99%,存在10个差异核苷酸,与所编码的氨基酸序列同源性100%;与其它7种真菌的γ-微管蛋白基因所编码的氨基酸序列同源性为31%~72%.中国的2个敏感菌株和4个抗药菌株的γ-微管蛋白基因序列完全相同,认为多菌灵抗药性与该微管蛋白变异无关.  相似文献   

12.
山东蓬莱葡萄灰霉菌对7种杀菌剂的抗药性检测   总被引:2,自引:0,他引:2  
为了明确葡萄灰霉菌对啶酰菌胺、多菌灵、咯菌腈、异菌脲、腐霉利、嘧霉胺的抗药性和对抑霉唑的敏感性,本试验采用菌丝生长速率法和孢子萌发法检测了采自山东蓬莱地区的69株葡萄灰霉菌对上述前6种杀菌剂的抗药性、对抑霉唑的敏感性及抑霉唑与其他6种杀菌剂的交互抗性关系。结果表明,抑霉唑对这69株葡萄灰霉菌的EC50分布在0.403~28.76μg/mL之间,平均值为(9.34±10.34)μg/mL;葡萄灰霉菌菌株中抗啶酰菌胺(BosR)、多菌灵(CarR)、咯菌腈(FluR)、异菌脲(IprR)、嘧霉胺(PyrR)、腐霉利(ProR)的比例分别为100%、100%、9.47%、97.18%、100%、89.20%,测试菌株的抗药性均为多抗类型,没有单抗菌株,其中对3种杀菌剂(啶酰菌胺、多菌灵、嘧霉胺)、对4种杀菌剂(啶酰菌胺、多菌灵、异菌脲、嘧霉胺)、对5种杀菌剂(啶酰菌胺、多菌灵、异菌脲、嘧霉胺、腐霉利或啶酰菌胺、多菌灵、咯菌腈、异菌脲、嘧霉胺)和对6种杀菌剂(啶酰菌胺、多菌灵、咯菌腈、异菌脲、嘧霉胺、腐霉利)的抗性频率分别为2.33%、9.30%、79.07%、2.33%、6.97%,表明啶酰菌胺、多菌灵、嘧霉胺对测试葡萄菌株完全丧失防效,建议在该葡萄产区停止使用这些药剂,测试菌株对腐霉利、异菌脲的抗性频率高,建议采取限制使用、禁止单独使用等措施,测试菌株对咯菌腈的抗性频率较低,可以继续使用但需按照科学使用规则进行。抑霉唑与其他6种杀菌剂间不存在交互抗性关系,说明其可以和其他药剂同时使用但建议减少使用。  相似文献   

13.
 根据禾谷镰孢菌参考菌株NRRL31084(PH-1)的γ-微管蛋白基因核苷酸序列设计5对引物,采用PCR方法从禾谷镰孢菌(Fusarium graminearum)对多菌灵(MBC)的敏感菌株、室内诱导及田间多菌灵抗药性菌株中分段扩增测序,获得了γ-微管蛋白基因全序列。该基因全长1 868bp,含有5个内元,编码一含493aa的多肽;与PH 1的γ-微管蛋白基因核苷酸序列同源性99%,存在10个差异核苷酸,与所编码的氨基酸序列同源性100%;与其它7种真菌的γ-微管蛋白基因所编码的氨基酸序列同源性为31%~72%。中国的2个敏感菌株和4个抗药菌株的γ-微管蛋白基因序列完全相同,认为多菌灵抗药性与该微管蛋白变异无关。  相似文献   

14.
不同类型杀菌剂对灰葡萄孢菌菌株的离体、活体毒力测定结果表明 ,苯并咪唑类的多菌灵、甲基硫菌灵之间 ,二甲酰亚胺类的腐霉利、异菌脲、菌核净之间表现交互抗性 ;苯并咪唑类和 N -苯氨基甲酸酯类乙霉威表现有负交互抗性趋势。离体测定中 ,对不同类型菌株以吡咯类杀菌剂咯菌腈 (EC50 200mg/ L) ,咯菌腈以及甾醇抑制剂戊唑醇、氟硅唑和丙环唑均表现出较高的活性。  相似文献   

15.
为建立致病疫霉Phytophthora infestans (Mont.) de Bary对缬菌胺的敏感基线,采用菌丝生长速率法测定了从河北省、黑龙江省、内蒙古自治区、贵州省和四川省未使用过缬菌胺的地区采集分离的105个致病疫霉菌株对缬菌胺的敏感性;为明确致病疫霉对缬菌胺产生抗性突变体的难易程度,进行了紫外诱导和药剂驯化试验;为明确缬菌胺与常用药剂之间的交互抗性,测定了8个抗缬菌胺突变体及其6个亲本敏感菌株对6种常用杀菌剂的敏感性。结果表明:105株致病疫霉对缬菌胺的EC50值范围为0.0594~0.159 mg/L,平均EC50值为(0.102 ± 0.024) mg/L,不同敏感性菌株的频率呈连续单峰曲线分布,未发现敏感性下降的亚群体,因此可将缬菌胺对105株致病疫霉的平均EC50值作为致病疫霉对缬菌胺的敏感基线;通过紫外诱变敏感菌株菌丝体获得了4个抗缬菌胺的突变体,其抗性水平介于 3.1~14.9倍之间,突变频率为0.54%,通过紫外照射敏感菌株孢子囊悬浮液获得了2个抗性水平分别为8.1倍和8.2倍的抗性突变体,突变频率为1.33 × 10?7;通过在含缬菌胺的黑麦蔗糖琼脂培养基上继代培养敏感菌株11代,获得2个抗性水平分别为3.1倍和9.4倍的抗性突变体。缬菌胺与烯酰吗啉和双炔酰菌胺存在交互抗性,与氟吡菌胺、嘧菌酯、甲霜灵和霜脲氰不存在交互抗性。初步推测致病疫霉对缬菌胺具有低到中等抗性风险,建议在生产上将缬菌胺与其他类型杀菌剂交替或混合使用,以延缓致病疫霉对缬菌胺抗性的产生。  相似文献   

16.
 本研究用真菌U-微管蛋白基因的通用寡聚核苷酸引物B1和B3,扩增并克隆了一段821 bp的小麦赤霉病菌Fusarium graminearum的U-微管蛋白基因片段,并进行了序列测定。根据该序列设计了F.graminearum U-微管蛋白基因的特异性测序引物,测定了赤霉病菌对多菌灵不同抗感菌株的U-微管蛋白基因核苷酸序列,结果表明不同F.graminearum菌株的U-微管蛋白的165,198,200和257位氨基酸未发生突变,在克隆的片段内也未发现核苷酸突变引起的氨基酸改变。表明该菌对多菌灵产生抗性的分子机制与目前已知的其它真菌有所不同,有待进一步研究。  相似文献   

17.
北京地区番茄灰霉病菌的多重抗药性检测   总被引:5,自引:0,他引:5  
2009年12月-2010年5月,在北京12个郊区县采集番茄病标样150份,分离纯化得到109个灰葡萄孢(Botrytis cinerea)单孢菌株,用最低抑制浓度法(MIC)测定了其对苯并咪唑类(多菌灵)、二甲酰亚胺类(腐霉利)和氨基甲酸酯类(乙霉威)杀菌剂的抗药性。结果表明:番茄灰霉病菌对多菌灵、腐霉利和乙霉威产生抗性菌株的频率分别为96.3%、80.7% 和58.7%;所测菌株对3类杀菌剂的抗性类型有BenRDicSNPCS、BenSDicSNPCR、BenRDicRNPCS和BenRDicRNPCR 4种,所占比例分别是19.3%、3.7%、21.1%和56.0%,表明北京地区番茄灰霉病菌对苯并咪唑类、二甲酰亚胺类和氨基甲酸酯类三类杀菌剂的抗药性严重,在生产中需慎用,应选择一些替代的新型杀菌剂和生物农药。  相似文献   

18.
番茄叶霉病菌异菌脲抗药性突变体的诱导与生物学性状   总被引:2,自引:1,他引:1  
测定了苯并咪唑类杀菌剂敏感-乙霉威抗性(BenS-DieR)、苯并咪唑类杀菌剂抗性-乙霉威敏感(BenR-DieS)和苯并咪唑类杀菌剂抗性-乙霉威抗性(BenR-DieR)3种类型的番茄叶霉病菌Cladosporium fulvum菌株对不同类型药剂的敏感性。结果表明,蕃茄叶霉病菌对供试药剂的敏感性与其对苯并咪唑类杀菌剂及乙霉威的敏感性无关。根据药剂对3类菌株EC50值的平均值, 16种杀菌剂抑制菌丝生长的活性依次为腐霉利>乙烯菌核利>异菌脲>戊唑醇>百菌清>嘧霉胺>醚菌酯>代森锰锌>8-羟基喹啉铜>丙环唑>苯醚甲环唑>嘧菌酯>灭锈胺>烯酰吗啉>烟酰胺>三唑酮;抑制孢子萌发的活性依次为醚菌酯>腐霉利>百菌清>乙烯菌核利>灭锈胺>8-羟基喹啉铜>异菌脲>代森锰锌>嘧菌酯>烟酰胺>嘧霉胺>戊唑醇>丙环唑>苯醚甲环唑>三唑酮>烯酰吗啉。通过紫外诱变共获得17株抗异菌脲突变体,突变频率为4.5×10-7。其中低抗、中抗和高抗菌株分别占 17.65%、70.59%和11.75%。这些突变体对腐霉利和乙烯菌核利表现交互抗性,对苯并咪唑类、脱甲基抑制剂(DMIs)、QoIs等药剂的敏感性与亲本菌株之间没有显著性差异,与亲本菌株在生长、产孢、致病能力等方面也无显著差异,但对渗透胁迫的敏感性要显著高于亲本。  相似文献   

19.
研究了采自浙江衢州地区,包括柯城区、衢江区和开化县12个贮藏库的70个柑橘绿霉病菌Penicillium digitatum菌株对抑霉唑和多菌灵的抗性频率、抗性水平及其抗性分子机制。结果表明:柯城区和衢江区的抑霉唑抗性菌株(最低抑制浓度MIC≥0.5 μg/mL)的比例分别为77.1%和62.5%,两地抗性菌株的平均EC50值分别为2.07±1.04 μg/mL和2.35±0.73 μg/mL,分别是当地敏感菌株EC50值的41.4和47.0倍;而采自开化县的菌株均对抑霉唑敏感(MIC≤0.1 μg/mL),平均EC50值为0.04±0.02 μg/mL。柯城区和衢江区的多菌灵抗性菌株(MIC≥10 μg/mL) 的比例分别为54.3%和54.2%,而开化县的抗性菌株比例仅为9.1%。即来自柯城和衢江两个柑橘主产区的绿霉病菌群体对抑霉唑和多菌灵的抗性频率均远高于非柑橘主产区的开化县群体,说明抗药性群体的形成与药剂使用历史有关。进一步研究发现,衢州地区柑橘绿霉病菌对抑霉唑的抗性均属于IMZ-R3型,即与抑霉唑靶标基因 CYP51B 启动子区的插入突变有关,而对多菌灵的抗性则与 β-微管蛋白基因的992位核苷酸点突变(T→A)导致对应的200位点的氨基酸突变(F→Y)有关。  相似文献   

20.
褐腐病菌Monilinia fructicola是引起多种果树褐腐病的重要病原菌,前期研究发现该病原菌对甲基硫菌灵的抗性与Tub2蛋白的多个氨基酸变异有关.为明确不同类型菌株的温度适应性及乙霉威是否对所有抗性类型菌株均具有抑菌活性,本研究测定了敏感型菌株S及3种抗性类型包括R(E198A)、R(E198Q)及R(F20...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号