首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forage sorghum yield and water use efficiency under variable irrigation   总被引:1,自引:0,他引:1  
The response of forage sorghum [Sorghum bicolor (L.) Moench] to three irrigation treatments in a semiarid environment was studied in the field for two seasons. Treatments were light frequent, moderate less frequent, and heavy infrequent irrigation, where irriga-tion water at 8 mm day–1 was delivered every 7, 10, and 13 days, respectively. These irrigation regimes meant heavier water inputs with increasing irrigation frequency. Plant heights and leaf area indices of forage sorghum were higher in the frequently watered plots than in plots where irrigation water was delivered less frequently. Averaged over the two seasons, maximum dry matter (DM) yields were 16.3, 11.8, and 10.5 tonnes ha–1 for frequent, intermediate, and infrequent irrigation regimes, respectively. Light, frequent irrigation resulted in a significantly higher water use efficiency (WUE) compared to the other two regimes, thus increasing the return from irrigation. These results suggest that in such semiarid environments, DM yields and WUE of forage sorghum could be increased by combining light irrigation with a short interval. Received: 6 February 1997  相似文献   

2.
High evaporative demand and limited precipitation restrict the yield of winter wheat (Triticum aestivum L.) grown in the Loess Plateau of China under semiarid climatic conditions. Grain yield can be improved by effective water management practices. A 13-year field experiment was conducted at the CERN Changwu Agro-ecological Experimental Station of the Loess Plateau to determine optimal irrigation strategies under limited water supply and to develop relationships among grain yield (Y), seasonal evapotranspiration (SET) and water-use efficiency (WUE). The experiment consisted of five irrigation treatments and three blocks. Measurements included grain yield, soil water content at various depth intervals in the 0–3,000 mm layer, irrigation amount, and precipitation. Results showed that winter wheat grown in this area experienced serious water stress during critical growth stages for the no-irrigation treatment. The amount and timing of irrigation had an important effect on grain yield, but significant differences in yield were not observed between the three-irrigation and the four-irrigation treatments. Grain yield was linearly related (R2=0.66) to SET, but differences in WUE were not significant for any of the treatments. The relationship between WUE and Y was best represented by a second order polynomial (R2=0.65) consisting of a nearly linear portion between 1.5 and 5.0 Mg ha–1. Optimum water management of winter wheat in the Loess Plateau should consist of three 87.5 mm irrigations applied at stem elongation, booting, and anthesis.Communicated by J.E. Ayars  相似文献   

3.
Root growth, water potential, and yield of irrigated rice   总被引:3,自引:0,他引:3  
Root length density (Lv), leaf water potential (Ψ leaf) and yield of rice were studied in 1983 and 1984 on a Phool bagh clay loam (Typic Haplaquoll) and on a Beni silty clay loam (Aquic Hapludoll) in the Tarai region of Uttar Pradesh under naturally fluctuating shallow (0.07–0.92 m) and medium-depth (0.13–1.26 m) water table conditions with six water regimes ranging from continuous submergence under 0.05 m ± 0.02 m (Ic) to completely rainfed (Io). In irrigation treatments, Ic1, Ic3, Ic5, and Ic7, 0.07 m irrigation was applied on days 1, 3, 5, and 7 respectively, after the disappearance of ponded water. Maximum rooting depth (0.55 m in the shallow and 0.65 m in the medium-depth water table) was attained at the dough stage (125 days after transplanting) and was more strongly influenced by fluctuations in water table depth than by the water regime. For wet regimes (Ic1–Ic5), roots were concentrated at and above the water table interface and had greater horizontal development, whereas in dry regimes, (Ic7 and Io) they were concentrated in lower horizons and had a more vertical distribution. Like Lv, Ψ leaf was not significantly affected by water regime up to 90–95 days after rice transplanting but was significantly affected thereafter, except for Lv beneath 0.2 m–0.25 m. Grain yields with irrigation treatments Ic1 and Ic3 under shallow and Ic1 under medium-depth water table conditions were not significantly different from those under continuous submergence, but there was a (nonsignificant) trend to lower yield with less water. However, differences among the wet regimes (Ic, Ic1, and Ic3) were small (141–490 kg ha–1) under shallow and 413–727 kg ha–1 under medium-depth water table conditions. The results demonstrate that optimum yield (5500–6000 kg ha–1) could be obtained under Tarai conditions by adopting an intermittent irrigation schedule of 3–5 days after the disappearance of ponded water under shallow, and of 1–3 days under medium-depth water table conditions, in place of continuous submergence. Received: 26 February 1996  相似文献   

4.
The response of sunflower (Helianthus annuus L.) to 14 irrigation treatments in a sub-humid environment (Bursa, Turkey) was studied in the field for two seasons. A rainfed (non-irrigated) treatment as the control and 13 irrigation treatments with full and 12 different deficit irrigations were applied to the hybrid Sanbro (Novartis Seed Company) planted on clay soil, at three critical development stages: heading (H), flowering (F) and milk ripening (M). The yield increased with irrigation water amount, and the highest seed yield (3.95 t ha−1) and oil yield (1.78 t ha−1) were obtained from the HFM treatment (full irrigation at three stages); 82.9 and 85.4% increases, respectively, compared to the control. Evapotranspiration (ET) increased with increased amounts of irrigation water supplied. The highest seasonal ET (average of 652 mm) was estimated at the HFM treatment. Additionally, yield response factor (k y) was separately calculated for each, two and total growth stages, and k y was found to be 0.8382, 0.9159 (the highest value) and 0.7708 (the lowest value) for the total growing season, heading, and flowering-milk ripening combination stages, respectively. It is concluded that HFM irrigation is the best choice for maximum yield under the local conditions, but these irrigation schemes must be re-considered in areas where water resources are more limited. In the case of more restricted irrigation, the limitation of irrigation water at the flowering period should be avoided; as the highest water use efficiency (WUE) (7.80 kg ha−1 mm−1) and irrigation water use efficiency (IWUE) (10.19 kg ha−1 mm−1) were obtained from the F treatment.  相似文献   

5.
Food production and water use are closely linked processes and, as competition for water intensifies, water must be used more efficiently in food production worldwide. A field experiment with wither wheat (Triticum Aestivum L.), involving six irrigation treatments (from rain-fed to 5 irrigation applications), was maintained in the North China Plain (NCP) for 6 years. The results revealed that dry matter production, grain yield and water use efficiency (WUE) were each curvilinearly related to evapotranspiration (ET). Maximum dry matter at maturity was achieved by irrigating to 94% and maximum grain yield to 84% of seasonal full ET. A positive relationship was found between harvest index (HI) and dry matter mobilization efficiency (DMME) during grain filling. Moderate water deficit during grain filling increased mobilization of assimilate stored in vegetative tissues to grains, resulting in greater grain yield and WUE. Generally, high WUE corresponded with low ET, being highest at about half potential ET. At this location in NCP, highest WUE and grain yield was obtained at seasonal water consumption in the range 250–420 mm. For that, with average seasonal rainfall of 132 mm, irrigation requirements was in the range of 120–300 mm and due to the deep root system of winter wheat and high water-holding capacity of the soil profile, soil moisture depletion of 100–150 mm constituted the greater part of the ET under limited water supply. The results reveal that WUE was maximized when around 35% ET was obtained from soil moisture depletion. For that, seasonal irrigation was around 60–140 mm in an average season.  相似文献   

6.
Root length density (LV), mid-day leaf water potential (Ψ leaf) and yield of wheat were studied in 1983 – 1984 and 1984 – 1985 on a Phoolbagh clay loam (Typic Haplaquoll) and on a Beni silty clay loam (Aquic Hapludoll) in the Tarai region of Uttar Pradesh under naturally fluctuating shallow (0.4 – 0.9 m, SWT) and medium-depth (0.8 – 1.3 m, MWT) water table conditions with six water regimes: rainfed (I0); irrigation at cown root initiation (I1); at crown root initiation and milk (I2); at crown root initiation, maximum tillering and milk (I3); at crown root initiation, maximum tillering, flowering and milk (I4); and at crown root initiation, maximum tillering, flowering, milk and dough (I5). Maximum rooting depth (0.8 m under SWT and 1.05 m under MWT conditions) was attained at the dough stage (115 days after sowing, DAS) and was more strongly influenced by fluctuations in water table depth than by the water regime. For wet regimes (I2– I5), roots were concentrated at and above the water table interface and had greater horizontal development, whereas in dry regimens (I0 and I1), due to deficient moisture conditions in the upper soil layer (0.45 m) they invaded lower horizons and had a greater vertical distribution Ψ leaf was not significantly affected by water regime (I1– I5) up to 94 DAS during a wet year (1983 – 1984) and up to 74 DAS during a dry year (1984 – 1985), but was significantly affected thereafter. Grain yields with water regimens I1– I5 during a wet year and for the I2– I5 treatments during a dry year at either water table depth were not significantly different, but there was a (non-significant) trend to lower yield with increasing soil water deficit. Under SWT in I2, the average grain yield wsa 5130 kg ha–1 and under the I3 regime, 5200 kg ha–1. Likewise, under MWT in I3, it was 5188 kg ha–1 and under the I4 regime, 5218 kg ha–1. The results indicate that application of irrigation of more than 120 and 180 mm under SWT and MWT conditions, respectively, did not raise yield. Irrigation given as per schedule I2 under SWT and I3 under MWT conditions in the Tarai situation, appears to be more effective than a very wet regime (I5). Received: 9 December 1997  相似文献   

7.
The response of three durum wheat cultivars (C: Chen’s, V: Vitron, W: Waha) to irrigation was studied during 4 years in semi-arid Algeria (Chlef). The four treatments were NI (unirrigated), EI (early irrigation, up to heading), LI (late irrigation, from heading) and FI (full irrigation, over the entire season). FI increased rainfed grain yield (1,300 kg ha−1) by 270%, EI by 107%, and LI by 67%. The variety × irrigation interaction was significant each year. Under irrigation, cv. Vitron was generally the most productive cultivar while in rainfed conditions cv. Waha always resulted in the highest grain yield. Grain yield increased exponentially with seasonal evapotranspiration (r 2 = 0.741) and harvest index (r 2 = 0.873). Water use efficiency for grain ranged from 4.6–5.3 kg ha−1 mm−1 (NI) to 9.6–10.8 kg ha−1 mm−1 (FI) as a function of cultivar and irrigation, cv. Vitron and cv. Waha (full irrigation) and cv. Waha (rainfed) being the most efficient cultivars. According to the evaporation pan method, the seasonal crop coefficient (K c) values for the three cultivars were 0.64 (V), 0.62 (W) and 0.54 (C). The corresponding peak K c values were 1.0, 0.97 and 0.89, respectively. K c was closely related to leaf area index (LAI) and specific logarithmic relationships were calculated for each cultivar. Irrigation scheduling should be adapted to the type of cultivar in relation to its potential yield and LAI development pattern.  相似文献   

8.
The cost and scarcity of water is placing increasing pressure on Australian dairy farmers to utilise water for forage production as efficiently as possible. This study aimed to identify perennial forage species with greater water-use efficiency (WUE) than the current dominant species, perennial ryegrass (Lolium perenne L.). Fifteen perennial forage species were investigated under optimum irrigation and two deficit irrigation treatments, over three years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Under optimal irrigation, there was a nearly twofold difference in mean WUEt (total yield/evapotranspiration) between forages, with kikuyu (Pennisetum clandestinum Hochst. ex. chiov.) having the highest (27.3 kg ha−1 mm−1) and birdsfoot trefoil (Lotus corniculatus L.) the lowest (14.8 kg ha−1 mm−1). Kikuyu was also the most water use efficient forage under the extreme deficit irrigation treatment, although its mean WUEt declined by 15% to 23.2 kg ha−1 mm−1, while white clover (Trifolium repens L.) in the same treatment had the largest decline of 44% and the lowest WUEt of only 8.8 kg ha−1 mm−1. In order to maximise WUE for any forage, it is necessary to maximise yield, as there is a strong positive relationship between yield and WUEt.  相似文献   

9.
Irrigation management strategy invites the quantification of crop response to irrigation frequencies. Conventionally, mulches increase the yield and water use efficiency (WUE) to a great extent by augmenting the water status in the root zone profile. A field study was carried out during the winter season (November-March) of 2003-2004 and 2004-2005 at the Central Research Farm of Bidhan Chandra Krishi Viswavidyalaya (Latitude 22°58′N, Longitude 88°31′E and altitude 9.75 m amsl), Gayeshpur, India, to evaluate the effect of irrigation frequencies and mulches on evapotranspiration rate from tomato crop field as well as leaf area index (LAI), fruit yield and WUE of the crop. The experiment was laid out in a split-plot design where three irrigation treatments {rainfed (RF); CPE50 and CPE25 where irrigation was given at 50 and 25 mm of cumulative pan evaporation (CPE)} were kept in the main plots and the subplots contained four mulch managements {no mulch (NM), rice straw mulch (RSM), white polyethylene mulch (WPM) and black polyethylene mulch (BPM)}. Under CPE25, tomato crop recorded significantly higher leaf area index (LAI) over CPE50 and rainfed condition. LAI value under BPM was 9-30% more over other mulches. Maximum variation of LAI among different treatments was recorded at 60 days after transplanting (DAT). Fruit yield under CPE25 was 39.4 Mg ha−1; a reduction of 7 and 30% has been obtained under CPE50 and RF condition. The use of mulch increased 23-57% yield in comparison to NM condition. Actual evapotranspiration rate (ETR) was 1.82 mm day−1 under CPE25 and declined by 15 and 31% under CPE50 and RF condition, respectively. The variation of ETR among different mulches became more prominent under maximum water stressed (RF) condition, whereas the variation was negligible under CPE25 frequency. Irrespective of mulching WUE was highest under moderately wet (CPE50) soil environment. Among different mulches, BPM was responsible for attaining the highest WUE value (25.1 kg m−3), which declined by 22, 21 and 39% under WPM, RSM and NM, respectively.  相似文献   

10.
Limited precipitation restricts yield of winter wheat (Triticum aestivum L.) grown in the North China Plain. Water stress effects on yield can be avoided or minimized by application of irrigation. We examined the multiseasonal irrigation experiments in four locations of the piedmont and lowland in the region, and developed crop water-stress sensitivity index, relationship between seasonal evapotranspiration (ET) and yield, and crop water production functions. By relating relative yield to relative ET deficit, we found that the crop was more sensitive to water stress from stem elongation to heading and from heading to milking. For limited irrigation, irrigation is recommended during the stages sensitive to water stress. Grain yield was 258–322 g m−2 in the piedmont and 260–280 g m−2 in the lowland under rainfed conditions. The corresponding seasonal ET was 242–264 mm in the piedmont and 247–281 mm in the lowland. Irrigation significantly increased seasonal ET and therefore grain yield as a result of increased kernel numbers per m−2 and kernels per ear. On average, one irrigation increased grain yield by 21–43% and two to four irrigations by 60–100%. Grain yield was linearly related to seasonal ET with a slope of 1.15 kg m−3 in the lowland and 1.73 kg m−3 in the piedmont. Water-use efficiency was 0.98–1.22 kg m−3 for rainfed wheat and 1.20–1.40 kg m−3 for the wheat irrigated 2–4 times. Grain yield response to the amount of irrigation (IRR) was developed using a quadratic function and used to analyze different irrigation scenarios. To achieve the maximum grain yield, IRR was 240 mm in the piedmont and 290 mm in the lowland. When the maximum net profit was achieved, IRR was 195 mm and 250 mm in the piedmont and lowland, respectively. The yield response curve to IRR showed a plateau over a large range of IRR, indicating a great potential in saving IRR while maintaining reasonable high levels of grain yield.  相似文献   

11.
Based on a field study on the semi-arid Loess Plateau of China, the strategies of limited irrigation in farmland in dry-period of normal-precipitation years are studied, and the effects on water use and grain yield of spring wheat of dry-period irrigation and fertilizer application when sowing are examined. The study includes four treatments: (1) with 90 mm dry-period irrigation but without fertilizer application (W); (2) with fertilizer application but without dry-period irrigation (F); (3) with 90 mm dry-period irrigation plus fertilizer application (WF); (4) without dry-period irrigation and fertilizer application (CK). The results indicate that dry-period irrigation resulted in larger and deeper root systems and larger leaf area index (LAI) compared with the non-irrigated treatments. The root/shoot ratio (R/S) in the irrigated treatments was significantly higher than in the non-irrigated treatments. The grain yields in F, W and WF are 1509, 2712 and 3291 kg ha−1, respectively, which are 13.7, 104.3 and 147.9% higher than that (1328 kg ha−1) of CK, and at the same time the grain yields in W and WF are also significantly higher than in F. Water use efficiencies (WUE) in terms of grain yield are 5.70 and 6.91 kg ha−1 mm−1 in W and WF, respectively, being 65.7 and 101.1% higher than that (3.44 kg ha−1 mm−1) of CK. The highest WUE and grain yield consistently occurred in WF, suggesting that the combination of dry-period irrigation and fertilizer application has a beneficial effect on improving WUE and grain yield of spring wheat.  相似文献   

12.
Water use efficiency and yield of barley were determined in a field experiment using different irrigation waters with and without nitrogen fertilizer on a sandy to loamy sand soil during 1994–1995 and 1995–1996. Depending upon different fertilizer treatments, the overall mean crop yield ranges for two crop seasons were: greenmatter from 19.48–55.0 Mg ha−1 (well water) and 21.92–66.5 Mg ha−1 (aquaculture effluent); drymatter from 6.86–20.69 Mg ha−1 (well water) and 7.87–20.90 Mg ha−1 (aquaculture effluent); biomass from 4.12–21.31 Mg ha−1 (well water) and 8.10–19.94 Mg ha−1 (aquaculture effluent) and grain yield from 2.12–5.50 Mg ha−1 (well water) and 3.25–7.25 Mg ha−1 (aquaculture effluent). The WUE for grain yield was 3.37–8.74 kg ha−1 mm−1 (well water) and 5.17–11.53 kg ha−1 mm−1 (aquaculture effluent). The WUE for total biomass ranged between 6.55–33.88 kg−1 ha−1 mm−1 (well water) and 12.88–31.70 kg ha−1 mm−1 (aquaculture effluent). The WUE for drymatter was 10.91–32.90 kg ha−1 mm−1 (well water) and 12.51–33.22 kg ha−1 mm−1 (aquaculture effluent). It was found that grain yield and WUE obtained in T-4 and T-5 irrigated with well water and receiving 75 and 100% nitrogen requirements were comparable with T-4 and T-5 irrigated with aquaculture effluent and receiving 0 and 25% nitrogen requirements. In conclusion, application of 100 to 150 kg N ha−1 for well water and up to 50 kg N ha−1 for aquaculture effluent irrigation containing 40 Mg N l−1 would be sufficient to obtain optimum grain yield and higher WUE of barley in Saudi Arabia.  相似文献   

13.
Using EPIC model to manage irrigated cotton and maize   总被引:1,自引:0,他引:1  
Simulation models are becoming of interest as a decision support system for management and assessment of crop water use and of crop production. The Environmental Policy Integrated Climate (EPIC) model was used to evaluate its application as a decision support tool for irrigation management of cotton and maize under South Texas conditions. Simulation of the model was performed to determine crop yield, crop water use, and the relationships between the yield and crop water use parameters such as crop evapotranspiration (ETc) and water use efficiency (WUE). We measured actual ETc using a weighing lysimeter and crop yields by field sampling, and then calibrated the model. The measured variables were compared with simulated variables using EPIC. Simulated ETc agreed with the lysimeter, in general, but some simulated ETc were biased compared with measured ETc. EPIC also simulated the variability in crop yields at different irrigation regimes. Furthermore, EPIC was used to simulate yield responses at various irrigation regimes with farm fields’ data. Maize required ∼700 mm of water input and ∼650 mm of ETc to achieve a maximum yield of 8.5 Mg ha−1 while cotton required between 700 and 900 mm of water input and between 650 and 750 mm of ETc to achieve a maximum yield of 2.0-2.5 Mg ha−1. The simulation results demonstrate that the EPIC model can be used as a decision support tool for the crops under full and deficit irrigation conditions in South Texas. EPIC appears to be effective in making long-term and pre-season decisions for irrigation management of crops, while reference ET and phenologically based crop coefficients can be used for in-season irrigation management.  相似文献   

14.
Alfalfa yield as related to transpiration,growth stage and environment   总被引:2,自引:0,他引:2  
Summary The utility of water production models as irrigation management tools is dependent upon their accuracy. Development of precise water production models requires a thorough understanding of how water and other factors interact to affect plant growth and yield. The objective of this experiment was to identify significant environmental variables which control water production function (transpiration vs. yield) variability between harvests and seasons for alfalfa (Medicago sativa L.) over a seven year (1981–1987) period in northwestern New Mexico. A single line-source design was used to supply a continuous gradient of irrigation (I) to the crop, and transpiration (T) was calculated as the difference between evapotranspiration, as estimated by the water balance method, and modeled soil water evaporation at each I level. Yield per cutting was found to be a function of T, growing degree-day accumulation, average daily solar radiation, year and harvest number within year. A multiple regression equation formulated with these variables explained 82% of the yield variability. Average yield per cut in 1981 at 50 mm of T was l Mg ha-1 and in 1985 at the same level of T was 2 Mg ha-1 based on the regression model. Yield per cut at any given level of T, as estimated by the coefficients of this equation reached a maximum at year 5.7 and a minimum in year 1. Within a season, yield per unit T was generally greatest at cut 1 and lowest at cut 2. Total seasonal yield was found to be a function of T and year which explained 90% of yield variability. Yield varied from 0.83 Mg ha-1 to 18.1 Mg ha-1 and T varied from 186 mm to 1298 mm.  相似文献   

15.
Water is the most important limiting factor of wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping systems in the North China Plain (NCP). A two-year experiment with four irrigation levels based on crop growth stages was used to calibrate and validate RZWQM2, a hybrid model that combines the Root Zone Water Quality Model (RZWQM) and DSSAT4.0. The calibrated model was then used to investigate various irrigation strategies for high yield and water use efficiency (WUE) using weather data from 1961 to 1999. The model simulated soil moisture, crop yield, above-ground biomass and WUE in responses to irrigation schedules well, with root mean square errors (RMSEs) of 0.029 cm3 cm−3, 0.59 Mg ha−1, 2.05 Mg ha−1, and 0.19 kg m−3, respectively, for wheat; and 0.027 cm3 cm−3, 0.71 Mg ha−1, 1.51 Mg ha−1 and 0.35 kg m−3, respectively, for maize. WUE increased with the amount of irrigation applied during the dry growing season of 2001-2002, but was less sensitive to irrigation during the wet season of 2002-2003. Long-term simulation using weather data from 1961 to 1999 showed that initial soil water at planting was adequate (at 82% of crop available water) for wheat establishment due to the high rainfall during the previous maize season. Preseason irrigation for wheat commonly practiced by local farmers should be postponed to the most sensitive growth stage (stem extension) for higher yield and WUE in the area. Preseason irrigation for maize is needed in 40% of the years. With limited irrigation available (100, 150, 200, or 250 mm per year), 80% of the water allocated to the critical wheat growth stages and 20% applied at maize planting achieved the highest WUE and the least water drainage overall for the two crops.  相似文献   

16.
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580–663 mm and 466–656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R2 = 0.89) and ETc/ETp (R2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.  相似文献   

17.
The reported study aimed at developing an integrated management strategy for irrigation water and fertilizers in case of wheat crop in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop (cultivar Sonalika) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment included four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments considered were I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments considered in the experiments were F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1, F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. In this study CERES-wheat crop growth model of the DSSAT v4.0 was used to simulate the growth, development and yield of wheat crop using soil, daily weather and management inputs, to aid farmers and decision makers in developing strategies for effective management of inputs. The results of the investigation revealed that magnitudes of grain yield, straw yield and maximum LAI of wheat crop were higher in low volume high frequency irrigation (I1) than the high volume low frequency irrigation (I3). The grain yield, straw yield and maximum LAI increased with increase in fertilization rate for the wheat crop. The results also revealed that increase in level of fertilization increased water use efficiency (WUE) considerably. However, WUE of the I2 irrigation schedule was comparatively higher than the I1 and I3 irrigation schedules due to higher grain yield per unit use of water. Therefore, irrigation schedule with 40% maximum allowable depletion of available soil water (I2) could safely be maintained during the non-critical stages to save water without sacrificing the crop yield. Increase in level of fertilization increases the WUE but it will cause environmental problem beyond certain limit. The calibrated CERES-wheat model could predict the grain yield, straw yield and maximum LAI of wheat crop with considerable accuracy and therefore can be recommended for decision-making in similar regions.  相似文献   

18.
This study was conducted in order to determine the effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency (IWUE) and net return. The experiments were carried out in the conditions of Eskisehir in Central Anatolian part of Turkey, between 2003 and 2005, with cv. Dual Large F1 tomatoes (Lycopercion esculentum L). The maximum yield of 121.1 t ha−1 was obtained from the treatment in which both the lateral and row spacing were 1 m, and irrigated with water amount based on the percentage of canopy cover. The seasonal irrigation water amount of the treatment was 551 mm. Tomatoes yield of 109.9 t ha−1 was obtained under conditions of 491 mm seasonal irrigation water applied for the 2-m lateral spacing in which two plant rows (twin rows) were planted 0.35 m on either side of the lateral with a row spacing of 0.70 m across the drip lateral and 1.30 m in the interrow between each set of twin rows. Although water saving of 60 mm and investments economy of 40% were provided from the twin-row design, the yearly return of the design including one lateral for each row was US$ 1590 ha−1 higher than that the return of the twin-row design. The method of determination of irrigation water amount based on the percentage of canopy cover appeared to be the most reasonable and effective one in terms of the yield and IWUE. On the other hand, the maximum irrigation water use efficiency (22.3 kg m3) was obtained from 2-m lateral spacing and the percentage of canopy cover for calculation of the amount of irrigation water applied. Thus, canopy cover may be used successfully at any lateral design conditions.  相似文献   

19.
The increasing scarcity of water for irrigation is becoming the most important problem for producing forage in all arid and semi-arid regions. Pearl millet is a key crop in these regions which needs relatively less water than other crops. In this research, a field study was conducted to identify the best combination of irrigation and nitrogen (N) management to achieve acceptable pearl millet forage both in quantity and quality aspects. Pearl millet was subjected to four irrigation treatments with interaction of N fertilizer (0, 75, 150 and 225 kg ha−1). The irrigation treatments were 40%, 60%, 80% and 100% of total available soil water (I40, I60, I80 and I100, respectively). The results showed that increasing moisture stress (from I40 to I100) resulted in progressively less total dry matter (TDM), leaf area index (LAI), and nitrogen utilization efficiency (NUzE), while water use efficiency (WUE) and the percentage of crude protein (CP%) increased. The highest TDM and LAI were found to be 21.45 t ha−1 and 8.65, in I40 treatment, respectively. TDM, WUE, CP% and profit responses to N rates were positive. The maximum WUE of 4.19 kg DM/m3 was achieved at I100 with 150 kg N ha−1. The results of this research indicate that the maximum profit of forage production was obtained in plots which were fully irrigated (I40) and received 225 kg N ha−1. However, in the situation which water is often limited and not available, application of 150 kg N ha−1 can produce high forage quality and guaranty acceptable benefits for farmers.  相似文献   

20.
Decreasing in water availability for cotton production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant cotton varieties or water management. A field trial was conducted to observe the effects of different drip irrigation regimes on water use efficiencies (WUE) and fiber quality parameters produced from N-84 cotton variety in the Aegean region of Turkey during 2004 and 2005. Treatments were designated as full irrigation (T100, which received 100% of the soil water depletion) and those that received 75, 50 and 25% of the amount received by treatment T100 on the same day (treatments T75; T50 and T25, respectively). The average seasonal water use values ranged from 265 to 753 mm and the average seed cotton yield varied from 2550 to 5760 kg ha−1. Largest average cotton yield was obtained from the full irrigation treatment (T100). WUE ranged from 0.77 kg m−3 in the T100 to 0.98 kg m−3 in the T25 in 2004 growing season and ranged from 0.76 kg m−3 in the T100 to 0.94 kg m−3 in the T25 in 2005 growing season. The largest irrigation water use efficiency (IWUE) was observed in the T25 (1.46 kg m−3), and the smallest IWUE was in the T100 treatment (0.81 kg m−3) in the experimental years. A yield response factor (ky) value of 0.78 was determined based on averages of two years. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use for treatments. Fiber qualities were influenced by drip irrigation levels in both years. The results revealed that well-irrigated treatments (T100) could be used for the semi-arid climatic conditions under no water shortage. Moreover, the results also demonstrated that irrigation of cotton with drip irrigation method at 75% level (T75) had significant benefits in terms of saved irrigation water and large WUE indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25.0% saving in irrigation water (T75) resulted in 34.0% reduction in the net income. However, the net income of the T100 treatment is found to be reasonable in areas with no water shortage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号