共查询到18条相似文献,搜索用时 359 毫秒
1.
CropspecTM是一种基于735 nm 和808 nm的车载式主动作物冠层光谱传感器,能够快速、无损地检测作物氮素营养状态。为了评价其检测精度,针对农大8号和京农科等2种玉米作物品种,使用该检测系统在拔节期采集作物冠层在808nm和735nm波段处的反射率。然后组合计算了DVI735, NDVI735, PVI735和 RDV735 等常规的植被指数,并基于RVI735构造了一种新的植被指数MRVI735。通过分析各植被指数与叶绿素含量指标SPAD值之间的相关关系得出 :对于农大8号,MRVI735、NDVI735和RVI735与叶绿素含量指标的相关性较好,相关系数分别是:-0.7482、-0.6763和-0.6786,达到强相关水平。对于京农科,NDVI735、MRVI735和RVI735与叶绿素含量指标的相关性较好,相关系数分别是:0.7270、0.7252和0.7245,达到强相关水平。对于2个玉米品种,都分别选取了相关系数最好的一个和两个植被指数为参数,分别建立了一元线性回归模型和二元线性回归模型。农大8号的一元模型和二元模型的R2 相似文献
2.
以株型相近的高赖氨酸玉米“中单9409”、粮饲兼用型玉米“中原单32”和高油玉米“高油115”为供试材料,研究了不同生育时期和冠层中不同高度叶片中纤维素、半纤维素含量的差异及其冠层水平的光谱响应。结果表明:在相同栽培密度和施肥水平下,不同品玉米品种叶片的纤维素、半纤维素含量存在差异,其中以中、上层叶片相差较大,不同品种间同层叶片纤维素含量相差可达34.9%,下层叶片相差较小。通过对同步获取的冠层近红外光谱与叶片中纤维素、半纤维素含量进行相关分析,分别筛选出1420、1450、1490、2100和2270 nm可作为反演纤维素含量的特征波长;而2270、2280和2340 nm可作为反演半纤维素含量的特征波长,达到了显著或极显著水平。 相似文献
3.
苹果花期是果树生产与管理的关键阶段,对冠层反射光谱特征研究具有重要的理论和现实意义。该文以山东省栖霞市为研究区,通过实测的120棵苹果花期冠层反射光谱数据,在分析不同累计样本容量冠层反射光谱特征的基础上,用方差分析和相关分析的方法,系统地研究了苹果树有花与无花、不同花量、花期不同阶段、不同树龄及不同品种的冠层反射光谱特征。研究结果表明,随着累计样本容量的增加,冠层反射光谱曲线趋于稳定、平滑。有花与无花冠层光谱反射率在431~500、591~680、761~1 300 nm波段方差分析结果极显著(α=0.01);不同花量的冠层与391~513、598~687、711~1 193 nm波段的反射率显著相关(p<0.05);在670 nm“红谷”附近,反射率随花量的增加而增大,在近红外761~1 300 nm波段,反射率随花量的增加而减小;不同品种之间,除嘎啦外,红富士、金帅和新红星之间不易区分。研究结果揭示了高光谱遥感在苹果花期信息获取方面的巨大潜力,为今后遥感反演模型的构建提供了依据。 相似文献
4.
通过对两个年份不同牛育阶段的田间夏玉米活体进行冠层反射光谱测定,该文分析了不同空间尺度、种植密度、观测角度、生育阶段、叶面积指数KAI、氮素胁迫、叶片含水量以及与杂草共生等8个条件下的冠层反射光谱响应特性,并探讨其发生机理,研究结果表明,夏玉米在不同条件下的冠层反射光谱响应均呈现出一定的规律性.在近红外波段,其反射率值随氮肥施用量的增加而增大,尤以750~1350 nm波段,但在可见光波段,反射率值降低;随着观测探头的逐步升高,反射率值降低:随杂草量的增多,反射率值逐渐增大.这些结果揭示了高光谱遥感田间夏玉米理化信息获取的巨大潜力,同时,为以后遥感反演建模提供了依据. 相似文献
5.
为了探索大田玉米冠层叶片叶绿素指标的快速检测方法。采用自主研发的2-CCD多光谱图像成像系统采集了大田玉米拔节期冠层图像,并同步获取了样本叶绿素含量指标SPAD值。对多光谱图像进行了平滑滤波,并基于HSI颜色空间实现了冠层图像的分割。提取了玉米冠层可见光(blue(B),green(G),red(R);400~700 nm)和近红外(near-infrared,NIR,760~1 000 nm)4个波段平均灰度值并计算了平均灰度值计算比值植被指数(RVI,ratio vegetation index)、归一化植被指数(NDVI,normalized difference vegetation index)、修改型二次土壤调节植被指数(MSAVI2,modified soil-adjusted vegetation index)等8种常见植被指数作为图像检测参数。分析了这12个检测参数与叶绿素指标之间的相关性,讨论了图像检测参数的多种组合,建立了叶绿素指标的多元线性回归分析(MLRA,multiple linear regression analysis)模型。研究结果表明:R、G、B波段的平均灰度值与叶绿素指标成较高负相关,相关系数分别为-0.73,-0.71和-0.71,植被指数中相关性较好的是NDVI、MSAVI2和RVI,相关系数分别为0.83、0.81和-0.81。基于这6个参数组合建立的叶绿素指标估算模型拟合度最好,其建模集决定系数为0.79,验证集决定系数为0.71,研究结果为无损检测玉米拔节期叶绿素含量提供了支持。 相似文献
6.
基于高光谱的夏玉米冠层SPAD值监测研究 总被引:1,自引:0,他引:1
开展夏玉米冠层SPAD值监测技术研究,建立叶绿素含量与敏感波段、光谱指数间的定量关系模型,以促进高光谱技术在玉米快速、无损长势监测及水肥精准管理的应用。以小型蒸渗仪夏玉米光谱反射率与植株冠层SPAD值的监测为基础,研究了夏玉米植株冠层光谱信息与SPAD值的响应关系,并优选出监测夏玉米冠层SPAD值的敏感波段与最优光谱指数。结果表明:夏玉米冠层光谱反射率在可见光波段随玉米冠层SPAD值增加而下降,在近红外波段却与之相反;采用原始光谱反射率、一阶微分光谱监测夏玉米冠层SPAD值的最敏感波段分别为700,690nm,与SPAD值的相关性分别为-0.498(p<0.05)和-0.538(p<0.01);而根据多元逐步回归分析获得的最优波段组合由405,408,700nm波段构成;从已报道的73个光谱指数中筛选出与夏玉米冠层SPAD值相关性较高的(SDr-SDb)/(SDr+SDb)、MCARI∥OSAVI、TCARI/OSAVI、SDr/SDb和MTCI等5个光谱指数,光谱指数(SDr-SDb)/(SDr+SDb)与SPAD值的相关性在各生育期均达极显著正相关,且在全生育期相关系数高达0.697(p<0.01),进一步优选出监测夏玉米冠层SPAD值最适宜的光谱指数为(SDr-SDb)/(SDr+SDb);在基于敏感波段、光谱指数和最优波段组合建立的夏玉米SPAD值的回归模型中,按照模拟效果由高到低排序依次为最优波段组合、光谱指数、原始光谱反射率、一阶微分光谱,其决定系数分别为0.777,0.539,0.351,0.282;推荐以(SDr-SDb)/(SDr+SDb)指数构建的二次多项式模型与基于405,408,700nm波段组合建立的线性回归监测模型作为夏玉米植株冠层SPAD值光谱监测适宜模型,且R2大于0.539,RMSE及MAE分别小于6.194和4.702。 相似文献
7.
为了探索玉米苗期叶片叶绿素含量指标的快速、非破坏性估测方法,该文运用多光谱图像技术对大田玉米苗期叶绿素含量指标进行快速无损的诊断研究。大田试验中,采用2-CCD多光谱图像采集系统获取大田玉米苗期的冠层多光谱图像,并同步采集漫反射灰度板的多光谱图像。为消除光照对图像采集质量的影响,准确将不同光照条件下的玉米冠层图像数据转换为其叶面反射率数据,标定试验中采用一块4个不同灰度级的满足朗伯面条件漫反射灰度板,建立了叶片光谱反射率同图像灰度值之间的线性反演公式,并与大田试验中漫反射灰度板的多光谱图像建立了玉米冠层图像灰度值的校正公式。对玉米苗期冠层多光谱图像进行处理,提取出玉米冠层B、G、R、NIR(中心波长分别为470,550,620,800 nm)4个波段归一化平均灰度值。通过灰度值的校正公式得到校正后的归一化平均灰度值,由线性公式反演出R、G、B、NIR 4个波段的平均反射率值,并计算4种常见光谱植被指数(RNDVI、RNDGI、RRVI和RDVI),采用最小二乘-支持向量回归(LS-SVR)建立植被指数同叶绿素含量指标的拟合模型。结果表明:植被指数RNDVI、RRVI和RDVI和玉米冠层叶绿素含量指标拟合验证集决定系数R2为0.56,达到了较为理想的拟合结果。证明通过漫反射灰度板对玉米冠层多光谱图像建立反射率反演校正模型的方法是可行的,这一方法为快速无损检测玉米苗期叶绿素含量指标提供了支持。 相似文献
8.
该文对不同品种玉米测定了其室内光谱反射率及其对应的全氮含量,采用相关性分析以及单变量线性与非线性拟合分析技术,对全氮含量与原始光谱反射率、光谱反射率一阶微分、一些高光谱特征参数(如红边波长、红边位置以及红边面积等)以及由一阶微分光谱所构建的一些比值植被指数和归一化植被指数之间的关系进行了分析,结果表明:全氮含量与原始光谱在716 nm处具有最大相关系数(r=-0.847),呈极显著负相关,并且基于此波长所构建的对数关系估算模型明显优于线性模型;与光谱反射率一阶微分值在759 nm处具有最大相关系数(r=0.944),呈极显著正相关,并且基于此波长所构建的线性和非线性模型的拟合效果接近;对于所选取的3类高光谱特征变量,全氮含量除了与黄边位置(λy)以及由红边面积和黄边面积所构建的比值植被指数和归一化植被指数的相关性较弱之外,与其余变量均呈极显著相关关系,说明由这些变量对玉米全氮含量进行估算具有可行性;对所建立的各类方程进行精度检验,最终筛选确定由759 nm处的光谱反射率一阶微分值所构建的指数模型作为对玉米全N含量的预测模型最为理想。 相似文献
9.
为提高小麦冠层叶片氮素含量检测精度,在不同生育时期对5种不同氮素水平的小麦试验田进行光谱采集,获取了234个范围为350~2 500 nm的高光谱数据。在比较蒙特卡洛-无信息变量消除(monte carlo-uninformative variable elimination,MC-UVE)、随机青蛙(random frog)、竞争自适应重加权采样(competitive adaptive reweighted sampling,CARS)及移动窗口偏最小二乘法的波段选择等方法的基础上,提出一种竞争性自适应重加权算法与相关系数法相结合的敏感波段选择方法,并从2151个原始波段中选出了30个敏感波段。用筛选后的30个波段数据建立非线性回归模型,得到了径向基神经网络模型校正集均方根误差为0.3699,预测集均方根误差为1.074e-009,校正决定系数为0.9832,预测决定系数为0.9982。试验结果表明:经过竞争自适应重加权采样的相关分析后所建立的径向基神经网络预测模型,无论是预测精度还是建模精度,比误差后向传播(back propagation,BP)神经网络和支持向量回归模型相比都有了显著提高,该方法在小麦氮含量预测过程中具有明显的优势,可在实际生产中应用。 相似文献
10.
为了寻找一种快捷获取玉米叶绿素空间分布信息的方法,研究了玉米苗期冠层叶片光谱反射率的变化特征,分析了不同生长阶段冠层叶片光谱反射率的空间分布和叶绿素质量浓度的空间分布.研究结果表明:玉米苗期冠层叶片叶绿素的质量浓度空间分布不均匀.冠层叶片的叶绿素质量浓度与光谱指数RVI的相关性较低,与归一化差异植被指数NDV1值和550 nm波段的反射率均有较高的相关性.分析550nm波段的反射率值与冠层叶片叶绿素质量浓度值的相关关系,显示二者成负相关变化趋势,相关系数绝对值在0.69~0.88范围随着生长期的变化而逐渐增大,五叶期前期的相关性系数绝对值达到苗期最大值,表明550 nm波段反射率值能够较好的反映玉米苗期叶绿素质量浓度的水平,分析和掌握550 nm波段反射率值的变化及其空间分布特性对快速监测玉米苗期生长状况,对指导田间施肥具有重要意义. 相似文献
11.
基于遥感监测多品种玉米成熟度进而掌握最佳收获时机,对提高其产量和品质至关重要。该研究在玉米成熟阶段获取无人机多光谱影像,同步采集叶片叶绿素含量(chlorophyll content,C)、籽粒含水率(moisture content,M)、乳线占比(proportion of milk line,P)等地面实测数据,以此构建玉米成熟度指数(maize maturity index,MMI),从而定量表征玉米成熟度。通过MMI与植被指数构建回归模型和随机森林模型,验证MMI适用性,并分析无人机遥感对不同品种玉米成熟度的监测精度。结果表明:1)不同品种玉米的叶片叶绿素含量、籽粒含水率、乳线占比的变化速率均存在差异。2)MMI与所选植被指数的相关性均可达到0.01显著水平,其中与归一化植被指数(normalized difference vegetation index,NDVI)、转换叶绿素吸收率(transformed chlorophyll absorbtion ratio index,TCARI)相关性最高,相关系数均为0.87。3)该研究基于不同组合的数据集进行了模型验证,其中随机森林模型对MMI的估测精度最高,测试集决定系数(coefficient of determination,R2)为0.84,均方根误差(root mean squared error,RMSE)为8.77%,标准均方根误差(normalized root mean squared error,nRMSE)为12.05%。此外,随机森林模型对不同品种MMI的估测精度较好,京九青贮16精度最优,其中R2、RMSE、nRMSE为0.76、10.67%、15.88%,模型精度证明了可以利用无人机平台对不同品种玉米成熟度进行监测。研究结果可为多光谱无人机实时监测农田多品种玉米成熟度的动态变化提供参考。 相似文献
12.
为了准确定量诊断氮素状况,为施肥和产量、品质的估测提供参考,该文通过设置不同氮素水平和品种类型的冬小麦田间试验,分析孕穗至灌浆初期不同光谱参数在小麦氮素营养状况监测上的差异,筛选叶片氮素含量和冠层氮素密度反演效果较好的参数,建立其与氮营养指数(NNI,nitrogen nutrition index)的经验模型。研究表明,线性内插法红边位置(REPLI)、修正红边单比指数(mSR705)、比值指数(RI-1dB)、简单比值色素指数(SRPI)、红边指数(VOG)等光谱参数与氮素营养指标具有良好的相关性(r0.85),且不受生育期影响,可用来反演评价冠层氮素营养状况;研究对筛选的光谱参数与各氮素指标进行回归建模,并用独立试验数据对所建模型进行验证,结果显示,REPLI在氮营养指数估测方面表现较好(r=0.93),估测模型精度较高(决定系数R2=0.86,均方根误差RMSE=0.08)。NNI在氮素营养状况诊断方面有一定的优势,通过高光谱反演氮营养指数进行氮素营养状态的定性定量诊断有一定的可行性。 相似文献
13.
为实现快速、准确估测土壤氮素含量水平,推动土壤信息化管理进程,该研究利用ASD2500高光谱仪在室内条件下测定了风干土壤样品的可见—近红外光谱。结果表明,通过不同的变换,光谱反射率对数的一阶导数与土壤全氮含量相关性得到增强,以400~600 nm波段范围内相关性最好。该文确定了以反射率对数的一阶导数光谱预测黑土全氮(TN)含量的最佳回归模型,模型所用的波段为可见光波段的556 nm、近红外的1 642和2 491 nm。同时,也确定了利用由可见光波段550和450 nm组成的归一化光谱指数预测黑土TN含量的最佳预测模型。模型通过验证达到较好的效果:利用反射率对数的一阶导数、归一化光谱指数对土壤TN的预测R2分别为0.863、0.829,均方根误差RMSE分别为0.122、0.152。 相似文献
14.
为了快速、无损诊断作物氮(N)、镁(Mg)营养亏缺,该研究提出一种以叶绿素叶面分布特征诊断黄瓜N、Mg元素亏缺的方法。在设施栽培模式下精确控制N、Mg营养元素的供给,培养黄瓜缺N、缺Mg及对照植株(营养元素正常植株),然后采集对应的高光谱图像并结合化学计量学方法快速、无损检测叶绿素分布。与对照组叶片叶绿素分布相比,缺N叶片的叶绿素含量在整个叶面区域偏低,缺Mg叶片叶绿素在叶脉之间区域含量偏低。鉴于此,提取叶绿素叶面分布特征(叶片所有像素点对应的叶绿素含量均值及标准差)对N、Mg营养元素亏缺进行诊断,对预测集N、Mg元素亏缺正确诊断率达90%。研究结果表明叶绿素叶面分布特征可作为一种黄瓜N、Mg元素亏缺诊断依据。 相似文献
15.
叶片自由空间在环境与冠层养分交换间具有重要作用,是目前植物营养学研究的重要领域之一。通过盆栽试验,以不同株型夏玉米为试材,研究了不同施氮水平(N 0、0.15和0.30 g /kg)下玉米冠层叶片表观自由空间(AFS)的差异。结果表明,不同生育期叶片AFS差异极显著(P0.01),表现为随生育期推进,叶片AFS、生物量和全氮含量均逐渐降低;除成熟期,其它各生育期品种与施氮水平对叶片AFS的影响均存在显著的交互作用。施氮对叶片生物量的影响不显著,但施氮后叶片全氮含量显著增加。不同施氮水平下,植株冠层叶片AFS也存在显著差异,中量施氮处理(即N 0.15 g /kg)植株叶片AFS值(9.49 %)明显高于与不施氮处理(9.03 %),但随施氮量进一步增加,叶片AFS下降,施氮量为N 0.30 g /kg时,叶片AFS为8.62 %;不同施氮水平各生育期不同叶层间叶片AFS、生物量和全氮含量差异显著(P0.05)。不同品种间叶片全氮含量和AFS存在显著差异(P0.05),以紧凑型品种陕单902叶片AFS最大,平均为9.24 %,显著高于其它品种;中间型品种农大108与平展型品种陕单9号间差异不显著,二者平均分别为9.06 %和8.85 %;不同株型品种各生育期不同叶层间叶片全氮含量和AFS缺乏规律性。相关分析表明,叶片全氮与叶片AFS存在极显著正相关(R=0.9481),说明植物冠层叶片AFS大小除受遗传特性影响外,植物体和介质氮素营养水平不同,AFS也存在差异,且这些差异随生育期变化而不同。 相似文献
16.
17.
为消除山区植被遥感监测中的地形影响,该文根据山区主要地物波谱曲线特征和波段比模型等基本原理,构建地形调节植被指数(topography-adjusted vegetation index,TAVI)组合算法。首先,提出TAVI研究思路。其次,利用山区Landsat8多光谱遥感影像分析山区主要地物波谱曲线特征,阐释TAVI光谱原理。接着,用红光波段数据构建新的阴影植被指数(shady vegetation index,SVI),并优选比值植被指数(ratio vegetation index,RVI)与SVI形成TAVI组合算法,再结合地形调节因子\"极值优化\"算法计算TAVI结果。最后,采用目视比较、统计分析和差值分析证明TAVI组合算法达到经大气加地形校正后遥感影像计算的NDVI的削减地形影响的效果,其与太阳入射角余弦值一元线性回归方程斜率降至0.035,相关系数降至0.075。TAVI组合算法可应用于山区植被信息和有关参数的遥感监测与估算。 相似文献
18.
准确估算柑橘叶片氮含量对于科学合理的施肥具有重要的指导作用,该研究利用Landsat8 OLI卫星遥感影像和地面采样实测数据,以K-近邻(K-Nearest Neighbors,KNN),随机森林(Random Forest,RF)和自适应增强(Adaptive boosting,Adaboost)模型为基础,构建Stacking集成学习框架,实现对柑橘叶片氮含量(Leaf Nitrogen Content,LNC)的估算。首先分析不同氮含量下的光谱反射特征,构建植被指数(Vegetation Indices,VIs)并计算其与柑橘LNC的相关系数;接着利用格网搜索、交叉验证训练模型,最后将Stacking模型与包括Bagging(Bootstrap Aggregating,Bagging)、人工神经网络(Artificial Neural Network,ANN)在内的多个经典机器学习模型试验结果进行对比分析,并生成柑橘果园的氮含量分布图。结果表明:1)构建的光谱指数与LNC具有较好的相关性,大部分指数相关系数在0.55以上;2)相比KNN、RF、Adaboost等多个单一模型,Stacking模型的估算效果最佳,决定系数达到0.761,均方根误差为1.366 g/kg,平均绝对百分比误差为3.494%;同时,Stacking模型的赤池信息准则(Akaike Information Criterion,AIC)值最低,是观测期内LNC估算的最优模型;3)研究区内LNC值整体上处于30.5~31.5 g/kg左右,接近柑橘种植的理想区间,模型估算与实测值趋于一致。总体上,该研究采用的光谱特征能够有效表征柑橘冠层叶片氮含量,并证明Stacking集成学习能综合多个基模型的优点,提高模型的准确性,为利用卫星遥感展开作物参数估算提供新的思路。 相似文献