首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spodoptera litura (Fabr.), the tobacco caterpillar, is a major defoliator on sunflower in the tropics. Genetic variability for resistance to S. litura is limited in the cultivar germplasm of sunflower. In the present investigation, 43 accessions of 17 wild Helianthus species of the annual and perennial habit groups were evaluated along with cultivated sunflower under field and no-choice conditions in the laboratory for resistance to this pest. Under field conditions, H. occidentalis and H. argophyllus were found to be immune with no leaf damage and few accessions of the species belonging to section Divaricati were found to be resistant. Laboratory bioassays against neonate, two and 4-day-old larvae confirmed resistance both in terms of high larval mortality and low larval weight gain in eight species viz., H. occidentalis, H. argophyllus, H. tuberosus, H. maximiliani, H. mollis, H. simulans, H. divaricatus and H. hirsutus. Intra-accessional variability was observed and accessions of few species showed varied reaction (resistant, partially resistant to susceptible) to the target pest. Field evaluation of 224 backcross derived inbred lines from five cross combinations involving diploid species under high natural pest incidence revealed low damage in plants derived from crosses involving H. argophyllus and H. petiolaris.  相似文献   

2.
The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a major pest of cereal crops in many areas of the world, causing serious reduction in grain yield in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Incorporating genetic resistance to D. noxia into wheat cultivars is paramount to effectively reduce damage inflicted by this pest. Genetic resistance to D. noxia has been identified in wheat, barley and rye germplasm, and several resistance genes are available for use for cultivar improvement. In the United States of America, only a few Russian wheat aphid (RWA) resistant winter wheat cultivars are currently available, and these cultivars contain only one of the six known RWA resistance genes. The objective of this study was to determine the inheritance of RWA resistance in wheat accession PI 47545, using a screening method based on differences in the leaf morphology of resistant and susceptible types following insect challenge. PI 47545 was selected for study, since it displayed high levels of resistance in a white-grained wheat background, the predominant wheat class produced in the Pacific Northwest of the USA. Segregation analysis was conducted on an F2 population developed by cross-hybridizing the susceptible soft white winter wheat cultivar ‘Daws’ to the resistant accession PI 47545. Russian wheat aphid screening data from this population indicated that the resistance in PI 47545 is controlled by a single, dominant gene (χ2 = 1.72; p ≤ 0.189). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Sorghum midge [Stenodiplosis sorghicola (Coquillett)] is an important pest of grain sorghum, and host plant resistance is one of the important components for the management of this pest. We studied the inheritance of resistance to this insect involving a diverse array of midge-resistant and midge-susceptible genotypes in India and Kenya. Testers IS 15107, TAM 2566, and DJ 6514, which were highly resistant to sorghum midge in India, showed a greater susceptibility to this insect in Kenya. The maintainer lines ICSB 88019 and ICSB 88020 were highly resistant to sorghum midge in India, but showed a susceptible reaction in Kenya; while ICSB 42 was susceptible at both the locations. General combining ability (GCA) effects for susceptibility to sorghum midge for ICSA 88019 and ICSA 88020 were significant and negative in India, but such effects were non-significant in Kenya. The GCA effects of ICSB 42 for susceptibility to sorghum midge were significant and positive at both the locations. The GCA effects were significant and positive for Swarna, and such effects for IS 15107 and TAM 2566 were negative at both the locations. GCA effect of DJ 6514 were significant and negative in India, but non-significant and positive in Kenya; while those of AF 28 were significant and positive during the 1994 season in India, but significant and negative in Kenya. Inheritance of resistance to sorghum midge is largely governed by additive type of gene action. Testers showing resistance to sorghum midge in India and/or Kenya did not combine with ICSA 88019 and ICSA 88020 to produce midge-resistant hybrids in Kenya. Therefore, it is essential to transfer location specific resistance into both parents to produce midge-resistant hybrids.  相似文献   

4.
Summary Sorghum shoot fly, Atherigona soccata (Rondani) is an important pest of sorghum in Asia, Africa, and Mediterranean Europe, and host plant resistance is an important component for the management of this pest. The levels of resistance in the cultivated germplasm are low to moderate, and therefore, it is important to identify genotypes with different mechanisms of resistance to pyramid the resistance genes. We studied the antixenosis for oviposition, antibiosis, and tolerance components of resistance in a diverse array of shoot fly-resistant and -susceptible genotypes. The main plants and tillers of SFCR 151, ICSV 705, SFCR 125, and, IS 18551 experienced lower shoot fly deadhearts at 28 days after seedling emergence, produced more number of productive tillers. The insects fed on these genotypes also exhibited longer larval period (10.1–11.0 days compared to 9.3 days on Swarna), lower larval survival and adult emergence (54.7–67.8 and 46.7–52.2% compared to 73.3 and 60.6% on Swarna, respectively), and lower growth and adult emergence indices as compared to the susceptible check, Swarna. Physico-chemical traits such as leaf glossiness, trichome density, and plumule and leaf sheath pigmentation were found to be associated with resistance, and chlorophyll content, leaf surface wetness, seedling vigor, and waxy bloom with susceptibility to shoot fly and explained 88.5% of the total variation in deadhearts. Step-wise regression indicated that 90.4% of the total variation in deadhearts was due to leaf glossiness and trichome density. The direct and indirect effects, correlation coefficients, multiple and step-wise regression analysis suggested that deadhearts, plants with eggs, leaf glossiness, trichomes on the abaxial surface of the leaf, and leaf sheath pigmentation can be used as marker traits to select for resistance to shoot fly, A. soccata in sorghum.  相似文献   

5.
Summary The shoot fly, Atherigona soccata is an important pest of sorghum, and host plant resistance is one of the most effective components for managing this pest. Most of the hybrids grown in India based on milo cytoplasm (A1 cytoplasm) are highly susceptible to shoot fly. Therefore, the present studies were undertaken to evaluate different male-sterile cytoplasms (CMS) for their relative susceptibility to sorghum shoot fly. Oviposition and deadheart formation were significantly lower on the maintainer lines as compared to the corresponding male-sterile lines. Among the cytoplasms tested, A4M cytoplasm showed antixenosis for oviposition and suffered lower deadheart formation than the other cytoplasms tested. The A4G1 and A4M cytoplasms suffered lower deadhearts in tillers than the other cytoplasms. Recovery following shoot fly damage in A4M, A3, and A2 cytoplasms was better than in the other cytoplasms tested. The larval and pupal periods were longer and male and female pupal weights lower in A4M and A4VzM CMS backgrounds compared to the other CMS systems. Fecundity and antibiosis indices on CMS lines were lower than on the B-lines. The A4M cytoplasm was found to be relatively resistant to sorghum shoot fly, and can be exploited for developing shoot fly-resistant hybrids for sustainable crop production in future.  相似文献   

6.
J. A. Lane  J. A. Bailey 《Euphytica》1992,63(1-2):85-93
Summary Striga species are parasitic angiosperms that attack many crops grown by subsistence farmers in sub-Saharan Africa and India. Control of the parasite is difficult and genetically resistant crops are the most feasible and appropriate solution. In cowpea, complete resistance toStriga gesnerioides has been identified. Breeding for resistance in sorghum has identified varieties with good resistance toS. asiatica in Africa and India. One variety was also resistant toS. hermonthica in W. Africa. No such resistance toStriga has been found in maize or millets.Resistant varieties have usually been sought by screening germplasm in fields naturally infested withStriga. However, laboratory techniques have also been developed, including anin vitro growth system used to screen cowpeas for resistance toS. gesnerioides. Two new sources of resistance in cowpea have been identified using the system. The technique has also been used to investigate the mechanisms of resistance in this crop. Two mechanisms have been characterised, both were expressed after penetration of cowpea roots by the parasite.The resistance of some sorghum varieties toStriga is controlled by recessive genes. In cowpea, resistance toStriga is controlled by single dominant genes. The genes for resistance are currently being transferred to cowpea varieties which are high yielding or adapted to local agronomic conditions. OneStriga resistant cowpea variety, Suvita-2, is already being grown widely by farmers in Mali. Reports of breakdown of resistance in cowpea toStriga have not yet been confirmed, but a wider genetic base to the resistance is essential to ensure durability ofStriga resistance.Abbreviations ICRISAT International Crops Research Institute for the Semi-Arid Tropics - IITA International Institute of Tropical Agriculture - LARS Long Ashton Research Station - SAFGRAD Semi-Arid Food Grain Research and Development  相似文献   

7.
Summary A wide range of cultivated brassica accessions including broccoli, Brussels sprouts, Chinese cabbage, cauliflower, collard, kale and swede material was tested against the cabbage aphid, Brevicoryne brassicae, at HRI, Wellesbourne in the field and laboratory in both 1992 and 1993. In the field, B. brassicae attack was assessed as the proportion of infested plants and the numbers of aphid colonies present. In the laboratory, aphid performance was measured in terms of the pre-reproductive and reproductive period, population increase, and insect mortality. Interpretation of the data was facilitated by plotting sorted accession means against normal order statistics. This statistical approach indicated the spread of variation amongst the accessions and permitted identification of extremes. Partial levels of antixenosis resistance were discovered in red brassicas. Glossy accessions of cabbage and cauliflower possessed antixenosis and antibiosis resistance that lasted throughout the season of crop growth in the field. Other accessions were shown to withstand aphid attack and therefore possessed tolerance. The laboratory studies provided information on mechanisms of antibiosis resistance. The potential value of the different sources of resistance is discussed.  相似文献   

8.
Chromosomal location of resistance to two virulent Argentinean isolatesof Septoria tritici was studied in two wheat (Triticum aestivumL.) cultivars (Cappelle-Desprez & Cheyenne), a synthetic hexaploid(Synthetic 6x) and Triticum spelta in seedlings. Substitution lines of these(resistant or moderately resistant) genotypes into (susceptible) ChineseSpring were selected from a previous screening. For Synthetic 6x,resistance was clearly located in chromosome 7D. Chinese Spring with the7D chromosome substituted by Synthetic 6x showed almost completeresistance, similar to the level of Synthetic 6x. For the substitutions withCappelle-Desprez, Cheyenne, and T.spelta there were no lines with abehaviour similar to the resistant parent. However, some substitutions weremore resistant than the susceptible parent suggesting that severalchromosomes could be involved in the resistance of these genotypes toSeptoria leaf blotch.  相似文献   

9.
Parents and 318 F8 recombinant inbred lines (RILs) derived from the cross, TAG 24 × ICGV 86031 were evaluated for peanut bud necrosis disease (PBND) resistance and agronomic traits under natural infestation of thrips at a disease hotspot location for 2 years. Significant genotype, environment and genotype × environment interaction effects suggested role of environment in development and spread of the disease. Quantitative trait loci (QTL) analysis using QTL Cartographer identified a total of 14 QTL for six traits of which five QTL were for disease incidence. One quantitative trait locus q60DI located on LG_AhII was identified using both QTL Cartographer and QTL Network. Another QTL q90DI was detected with a high PVE of 12.57 using QTL Cartographer. A total of nine significant additive × additive (AA) interactions were detected for PBND disease incidence and yield traits with two and seven interactions displaying effects in favour of the parental and recombinant genotype combinations, respectively. This is the first attempt on QTL discovery associated with PBND resistance in peanut. Superior RILs identified in the study can be recycled or released as variety following further evaluations.  相似文献   

10.
Summary In three experiments, Chrysanthemum morifolium Ramat. cultivars and C. pacificum Nakai, were exposed for four days to adult flies of Liriomyza trifolii (Burgess). The flies fed on all plants and laid eggs which were allowed to developed in a leafminer free greenhouse. Feeding level and oviposition varied between genotypes. The largest differences between entries were visible in the percentage of larvae that reached the pupal stage. In the most susceptible C. morifolium cultivar 97% of the larvae pupated against 1% in the most resistant cultivar Penny Lane. C. pacificum Nakai was also resistant with larval survival rates of 12%, 2% and 0% respectively in three consecutive experiments. Breeding prospects and areas for further study are discussed.  相似文献   

11.
The relationship between resistance in seedlings, young and adult plants is studied for the pathosystem Brassica oleraceaHyaloperonospora parasitica. Genotypes identified in the laboratory as resistant or susceptible or exhibiting a differential reaction to a selection of H. parasitica isolates were tested in 1997–1999 in seedbeds and fields under natural infestation. Isolates tested in the laboratory were grouped in five pathotypes, of which four were presented by isolates from Brittany, France. Genotypes susceptible to all pathotypes in the laboratory were also susceptible in the seedbed and field tests, while genotypes expressing a differential response to pathotypes were either resistant or susceptible. Accessions Everest, DEGC, ESPG and RS1105 exhibiting resistance to all pathotypes except I, were resistant in all environments and remained resistant in 2000–2002. Pathotype I was not prevailing in the field and results support the hypothesis that accessions resistant under laboratory conditions will be resistant under field conditions, provided the same pathotypes are present under the laboratory and field conditions.  相似文献   

12.
Introgression lines (ILs) of groundnut with enhanced resistance to rust and late leaf spot (LLS) recorded increased pod and haulm yield in multilocation testing. Marker‐assisted backcrossing (MABC) approach was used to introgress a genomic region containing a major QTL that explains >80% of phenotypic variance (PV) for rust resistance and 67.98% PV for LLS resistance. ILs in the genetic background of TAG 24, ICGV 91114 and JL 24 were evaluated for two seasons to select 20 best ILs based on resistance, productivity parameters and maturity duration. Multilocation evaluation of the selected ILs was conducted in three locations including disease hot spots. Background genotype, environment and genotype × environment interactions are important for expression of resistance governed by the QTL region. Six best ILs namely ICGV 13192, ICGV 13193, ICGV 13200, ICGV 13206, ICGV 13228 and ICGV 13229 were selected with 39–79% higher mean pod yield and 25–89% higher mean haulm yield over their respective recurrent parents. Pod yield increase was contributed by increase in seed mass and number of pods per plant.  相似文献   

13.
Summary Accessions representing twenty eight landraces of maize were assessed for susceptibility to the maize weevil, Sitophilus zeamais in standardized resistance tests. Susceptibility parameters such as weight loss of grain, number of insect progeny produced, the Dobie index of susceptibility, and oviposition on grain were found to vary significantly by genotype, with exceptional resistance found in accessions representing the Naltel, Chapalote and Palomero landraces. As in improved genotypes, susceptibility was negatively correlated to phenolic and protein content of the variety tested but positively correlated to moisture content. A detailed analysis of the phenolics revealed the presence of diferulate which may contribute to mechanical resistance of the seed by cross-linking of cell wall hemicelluloses. A canonical discriminant analysis of the resistance data suggests that most of the five landrace groupings are significantly different. The ancient indigenous and prehistoric mestisos groupings are sources of resistant genotypes.  相似文献   

14.
S. K. Dey  Gurdip Singh 《Euphytica》1993,68(1-2):147-153
Summary Genetic regulation of host resistance in chickpea-Ascochyta rabiei interaction system is governed by two dominant complementary genes each in the genotypes GLG 84038 and GL 84099, whereas the resistance in a black seeded genotype ICC 1468 was controlled by one dominant and one recessive independent gene. In all the genotypes, resistance is operated by inter-allelic interactions. The genes conferring resistance in GLG 84038 were found to be different to those operating in GL 84099 and ICC 1468. Among the five dominant genes dispersed in 3 genotypes under study, at least one has been reported for the first time, as to date, only three dominant genes have been reported in the literature.The four identified dominant genes in GLG 84038 and GL 84099 have been named as Arc1, Arc2 (in GLG 84038) and Arc3, Arc4 (in GL 84099). The undistinguished dominant gene in ICC 1468 has been named as Arc5(3,4) as it could not be equated or differentiated from Arc3 or Arc4. The recessive gene in ICC 1468 has been named as Arc1.Generation mean analysis of the 6 resistant × susceptible crosses involving the same genotypes, revealed that the genes conferring resistance in any of the 3 genotypes did not follow simple Mendelian inheritance but were influenced by inter allelic interactions. Additive gene effect along with dominance were operative in all the 3 genotypes under study in conferring resistance. However, the mechanism of resistance in GLG 84038 and GL 84099 were primarily additive in nature while that in ICC 1468, dominance as well as dominance × dominance interactions were more important than additive gene action.  相似文献   

15.
Summary To elucidate the role of leaf surface structures as first barriers to confer resistance to bacterial blight, leaf stomata and their occlusion with leaf waxes were studied in cassava genotypes. For the first time, cassava leaf waxes were quantitatively and qualitatively analysed. Comparing the susceptible and resistant standard genotypes BEN86052 and TMS30572, respectively, the total quantity of triterpenes was significantly higher in the resistant genotype, grown in three ecozones of Benin. In cuticular leaf waxes of seven cassava genotypes the triterpenes beta amyrins, epi-taraxerol, taraxerone and taraxerol were dominant constituents across genotypes, and alkanes (C25-C33) and acids (C30 and C32) occurred in minor concentrations. Comparing seven genotypes, no clear relation between resistance or ecozones and total quantities of the major wax constituents was observed. Only the highly resistant genotype TMS30572 showed high triterpene levels irrespective of ecozone. Scanning electron-microscopy revealed a regular distribution of waxes at the abaxial leaf surface, covering and occluding stomatal pores of susceptible and resistant genotypes, while on the adaxial leaf surface waxes were in form of crystalloids and did not occlude the stomata. The number of stomata on the abaxial surfaces was about 7–11 fold higher than on the adaxial surfaces, where stomata were located along the midrib and major veins. No significant differences in stomata number were observed between genotypes varying in resistance to bacterial blight. It is suggested, that stomata on the adaxial surface might be portals of entry for the bacteria.  相似文献   

16.
Cassava root rot disease is an increasing problem in Africa where yield losses of about 80% have been recorded. We evaluated 290 African landraces and 306 improved genotypes from the germplasm collections of the International Institute of Tropical Agriculture (IITA), for sources of resistance using root slice laboratory assay. Disease severity was assessed quantitatively by direct percentage estimation (PS) and by use of a rating scale (RS). Both methods of assessment were compared for identification of variability in the germplasm, and genotypes were classified into response groups using an enlarged rank-sum method that combined the PS and RS assessments. The two scoring methods revealed continuous variation (P < 0.001) for resistance in the sets of germplasm. Disease assessments based on PS and RS were highly correlated in both the improved germplasm (r = 0.75) and the landraces (r = 0.72). Based on PS assessment, 50 improved genotypes (16.3%) and 53 landraces (18.3%) showed significantly lower disease scores than the resistant control. The rank-sum method separated each set of collections into highly resistant, resistant, moderately resistant, moderately susceptible, susceptible and highly susceptible groups. Fifty-nine improved genotypes (16.4%) and 61 African landraces (16.9%) were identified as either highly resistant or resistant. Generally, these genotypes exhibited resistance by limiting the growth of the pathogen (reduced amount of invaded surface area). This type of rate-reducing resistance is highly heritable and a quantitative trait which can be harnessed in breeding. Genotypes subsets were identified for further studies into the genetic basis of resistance to root rot disease.  相似文献   

17.
Resistance to stripe rust (caused by Puccinia striiformis Westend.) of 34 Triticum turgidum L. var.durum, 278 T. tauschii, and 267 synthetic hexaploid wheats (T. turgidum x T. tauschii) was evaluated at the seedling stage in the greenhouse and at the adult-plant stage at two field locations. Mexican pathotype 14E14 was used in all studies. Seedling resistance, expressed as low infection type, was present in all three species. One hundred and twenty-eight (46%) accessions of T. tauschii, 8 (23%) of T. turgidum and 31 (12%) of synthetic hexaploid wheats were highly resistant as seedlings. In the field tests, resistance was evaluated by estimating area under disease progress curve (AUDPC). Synthetic hexaploid wheats showed a wide range of variability for disease responses in both greenhouse and field tests, indicating the presence of a number of genes for resistance. In general, genotypes with seedling resistance were also found to be resistant as adult plants. Genotypes, which were susceptible or intermediate as seedlings but resistant as adult plants, were present in both T. turgidum and the synthetic hexaploids. Resistances from either T. turgidum or T. tauschii or both were identified in the synthetic hexaploids in this study. These new sources of resistance could be incorporated into cultivated hexaploid wheats to increase the existing gene pool of resistance to stripe rust.  相似文献   

18.
Iron deficiency chlorosis is an important abiotic stress affecting groundnut production worldwide in calcareous and alkaline soils with a pH of 7.5–8.5. To identify genomic regions controlling iron deficiency chlorosis resistance in groundnut, the recombinant inbred line population from the cross TAG 24 × ICGV 86031 was evaluated for associated traits like visual chlorosis rating and SPAD chlorophyll meter reading across three crop growth stages for two consecutive years. Thirty-two QTLs were identified for visual chlorosis rating (3.9%–31.8% phenotypic variance explained [PVE]) and SPAD chlorophyll meter reading [3.8%–11% PVE] across three stages over 2 years. This is the first report of identification of QTLs for iron deficiency chlorosis resistance-associated traits in groundnut. Three major QTLs (>10% PVE) were identified at severe stage, while majority of other QTLs were having small effects. Interestingly, two major QTLs for visual chlorosis rating at 60 days (2013) and 90 days (2014) were located at same position on LG AhXIII. The identified QTLs/markers after validation across diverse genetic material could be used in genomics-assisted breeding.  相似文献   

19.
烟草种质资源抗马铃薯Y病毒病鉴定方法比较   总被引:2,自引:1,他引:1  
便于年度间和研究者之间比较的抗病性鉴定方法,是筛选抗性稳定的抗病资源的基础。本文通过温室内人工接种,优化比较了烟草种质资源抗马铃薯Y病毒病的抗性鉴定方法。病情指数、相对病情指数、相对抗性指数、病情发展曲线下面积四种评价方法的比较结果表明,相对病情指数可直观反映品种的抗性,便于年度间和研究者之间的结果比较。高压喷枪摩擦接种和蚜虫饲毒接种的鉴定结果基本一致。通过温室人工摩擦接种,筛选出高抗资源NC55和NC102、抗病资源VSCR和TI245,CV91和Oxford 207表现为中抗、台烟6号表现为中感、NC297和云烟97表现为感病、Coker176表现为高感。抗病亲本NC55、VSCR与感病优良亲本F1组合均表现感病或高感,表明NC55和Virginia SCR抗源的抗性为隐性遗传。  相似文献   

20.
Sharma  R. C.  Duveiller  E.  Gyawali  S.  Shrestha  S. M.  Chaudhary  N. K.  Bhatta  M. R. 《Euphytica》2004,139(1):33-44
Helminthosporium leaf blight (HLB), caused by a complex of Cochliobolus sativus (Ito & Kurib.) Drechsler ex Dastur and Pyrenophora tritici-repentis Died, is a serious disease of wheat (Triticum aestivum L.) in the warm lowlands of South Asia. Wheat cultivars grown in the area are either susceptible to HLB or possess low levels of resistance to it. A replicated field study was conducted in 1999 and 2000 at two sites in Nepal to determine the level of HLB resistance and other desirable traits in 60 wheat genotypes of diverse origin. The test genotypes were planted in main strips divided into two strips one of which was sprayed four times with Tilt (a.i. propiconazole) @ 125 g of a.i. ha–1. Four readings of HLB were recorded to calculate the area under the disease progress curve (AUDPC). Other traits under investigation included biomass yield (BY), grain yield (GY), 1000-kernel weight (TKW), harvest index (HI), days to heading (DH) and maturity (DM), plant height (PHT), and effective tiller number (ETN). Wheat genotypes differed significantly for all traits. Mean AUDPC values ranged from 45 to 1268. A few exotic genotypes were highly resistant to HLB. Losses in GY due to HLB ranged from 2 to 26%, and TKW was reduced by up to 33%. A few genotypes showed HLB tolerance, i.e., relatively smaller GY and TKW reductions despite high levels of HLB. In general, medium to late maturity and higher levels of HLB resistance and low to high GY and TKW characterized genotypes exotic to South Asia. Biplot analysis identified several genotypes that were HLB-resistant and agronomically superior. Results suggest it is possible to improve HLB resistance of local wheat cultivars based on selective breeding using this pool of germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号