首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Headspace-solid-phase microextraction technique (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) were used to characterize the aroma compounds of coffee brews from commercial conventional and torrefacto roasted coffee prepared by filter coffeemaker and espresso machine. A total of 47 volatile compounds were identified and quantified. Principal component analysis (PCA) was applied to differentiate coffee brew samples by volatile compounds. Conventional and torrefacto roasted coffee brews were separated successfully by principal component 1 (68.5% of variance), and filter and espresso ones were separated by principal component 2 (19.5% of variance). By GC olfactometry, a total of 34 aroma compounds have been perceived at least in half of the coffee extracts and among them 28 were identified, among which octanal was identified for the first time as a contributor to coffee brew aroma.  相似文献   

2.
In this study, the optimization and comparison of an internally cooled fiber [cold fiber with polydimethylsiloxane (PDMS) loading] and several commercial solid-phase microextraction (SPME) fibers for the extraction of volatile compounds from tropical fruits were performed. Automated headspace solid-phase microextraction (HS-SPME) using commercial fibers and an internally cooled SPME fiber device coupled to gas chromatography-mass spectrometry (GC-MS) was used to identify the volatile compounds of five tropical fruits. Pulps of yellow passion fruit (Passiflora edulis), cashew (Anacardium occidentale), tamarind (Tamarindus indica L.), acerola (Malphigia glabra L.), and guava (Psidium guajava L.) were sampled. The extraction conditions were optimized using two experimental designs (full factorial design and Doehlert matrix) to analyze the main and secondary effects. The volatile compounds tentatively identified included alcohols, esters, carbonyl compounds, and terpernes. It was found that the cold fiber was the most appropriate fiber for the purpose of extracting volatile compounds from the five fruit pulps studied.  相似文献   

3.
A study of the phenolic and volatile composition of wines produced from the white cultivar Muscat lefko from the island of Samos was conducted. Dry, fortified, naturally sweet wines and mistelles (aged and nonaged) have been studied. The phenolic components (flavan-3-ols, hydroxycinnamates, and flavonols) were measured by high-performance liquid chromatography after solid phase extraction (SPE). The terpenes (free and glycosidically linked) were determined by the use of gas chromatography-mass spectrometry (GC-MS) after SPE. The fermentation aroma components were analyzed by GC-MS after liquid-liquid extraction. It was found that the dry wines contained lower amounts of most of the phenolics and higher quantities of terpenes and fermentation aroma compounds than the sweet wines. The aged mistelle wines contained lower levels of coutaric and caftaric acids, higher concentrations of the free acids, and markedly fewer free and bound terpenes and fermentation aroma components compared to the other sweet wines. The naturally sweet wine contained relatively increased amounts of phenolics, 2,3-butanediol, and glycosidically linked terpenes.  相似文献   

4.
The aroma compounds in broccoli stored in different modified atmospheres were studied. The packaging materials used were oriented polypropylene (OPP), poly(vinyl chloride) (PVC), and low-density polyethylene (LDPE) containing an ethylene-absorbing sachet. All samples were stored for either 1 week at a constant temperature of 10 degrees C or for 3 days at 4 degrees C, followed by 4 days at 10 degrees C. The atmospheres that developed inside the packaging materials differed significantly. The broccoli samples were analyzed raw and after cooking, with regard to volatile compounds, using gas-phase (headspace) extraction followed by gas chromatography-mass spectrometry (GC-MS) and GC-olfactometry. Dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), hexanal, 3-cis-hexen-1-ol, nonanal, ethanol, and a group of thiocyanates were selected for a detailed study because these compounds cause off-odor and can be used as indicators of stress. Significant differences were found in the aroma profiles of the broccoli samples relative to the packaging materials used for storage. Storage in OPP (14% O(2), 10.5% CO(2)) resulted in most of the off-odors, while storage in LDPE (6% O(2), 7% CO(2)) and PVC (17.9% O(2), 4% CO(2)) was found to maintain the concentration of DMS, DMDS, and DMTS during storage. Heat treatment of the broccoli increased the content of aroma compounds as well as the number of compounds containing sulfur.  相似文献   

5.
The aroma-active compounds in two apple ciders were identified using gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (MS) techniques. The volatile compounds were extracted using solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). On the basis of odor intensity, the most important aroma compounds in the two apple cider samples were 2-phenylethanol, butanoic acid, octanoic acid, 2-methylbutanoic acid, 2-phenylethyl acetate, ethyl 2-methylbutanoate, ethyl butanoate, ethyl hexanoate, 4-ethylguaiacol, eugenol, and 4-vinylphenol. Sulfur-containing compounds, terpene derivatives, and lactones were also detected in ciders. Although most of the aroma compounds were common in both ciders, the aroma intensities were different. Comparison of extraction techniques showed that the SAFE technique had a higher recovery for acids and hydroxy-containing compounds, whereas the HS-SPME technique had a higher recovery for esters and highly volatile compounds.  相似文献   

6.
The influence of isolation method on the determination of important aroma compounds in black currant juice was investigated by surface of nasal impact frequency (SNIF) gas chromatography-olfactometry (GC-O). The applied methods were solvent extraction, static headspace, and purge and trap using 15 and 60 min of purge time. By the four methods, a total of 59 odors were observed, and, of these, 44 corresponded to compounds that could be identified. For the headspace methods increasing purge volumes resulted in recoveries of additional, less volatile compounds. The main compound groups recovered by the headspace methods were esters and terpenes, whereas compounds recovered by solvent extraction were not as dominated by fruity odors. For most compounds there was agreement between the size of the SNIF value obtained by GC-O and the amount of the measurable compound found by gas chromatography-mass spectrometry.  相似文献   

7.
The volatile reaction products of aqueous mixtures comprising combinations of methionine, glucose, linoleic acid, and starch heated in a modified Likens-Nickerson apparatus were extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The majority of volatile compounds were formed from linoleic acid degradation, hexanal, 2,4-decadienal, and 2-pentylfuran being identified in the greatest amounts. Dimethyl disulfide and dimethyl trisulfide were detected in every system containing methionine. 3-(Methylthio)propanal (methional) and other sulfur compounds were detected when methionine was heated with another precursor. No binding of volatile compounds to starch was observed; rather, starch appeared to act as an additional source of reactive carbohydrate. Almost all the components identified have been identified among the aroma components of cooked potato. No pyrazines, pyridines, or thiazoles were identified, probably due to the relatively low temperature/high moisture conditions.  相似文献   

8.
Published research has indicated that ethyl 2-methylpropanoate, ethyl 2-methybutanaote, ethyl 3-methylbutanoate, hexanoic acid, butanoic acid, and 3-methylbutanoic acid are responsible for fruity fermented (FF) off-flavor; however, these compounds were identified in samples that were artificially created by curing immature peanuts at a constant high temperature. The objective of this study was to characterize the volatile compounds contributing to naturally occurring FF off-flavor. Volatile compounds of naturally occurring FF and no-FF samples were characterized using solvent-assisted flavor evaporation (SAFE), solid phase microextraction (SPME), gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS). Aroma extract dilution analysis (AEDA) identified 12 potent aroma active compounds, none of which were the previously identified esters, with no consistent differences among the aroma active compounds in no-FF and FF samples. Hexanoic acid alone was identified in the naturally occurring FF sample using the SAFE GC-MS methodology, whereas two of the three previously identified esters were identified in natural and artificially created samples. The same two esters were confirmed by SPME GC-MS in natural and artificially created samples. This study demonstrated the need for caution in the direct application of data from artificially created samples until those compounds are verified in natural samples. However, these results suggest that a laboratory method using SPME-GC techniques could be developed and correlated on an ester concentration versus FF intensity basis to provide an alternative to sensory analysis for detection of FF off-flavor in peanut lots.  相似文献   

9.
10.
The study of the aroma of oysters is of great economic interest in France because it enables their organoleptic quality to be verified. The aim of this study is to optimize the extraction methods of the volatile compounds of oysters Crassostrea gigas in order to obtain an extract with an odor as close as possible to that of the original oysters'. Oyster aroma is rarely studied, and its sensory profile has not been investigated to date. Two extraction methods were studied: vacuum hydrodistillation carried out at 20 degrees C with noncrushed oyster using ultrapure water and dynamic headspace carried out using noncrushed oyster during a 30 min purge. They were compared with regard to their sensory characteristics by a panel of seven judges, all trained in seafood aroma recognition. This study has shown that vacuum hydrodistillation is the better method to obtain an extract closest in aroma to the oyster reference.  相似文献   

11.
The volatile components of Hyuganatsu (Citrus tamurana Hort. ex Tanaka) peel oil, isolated by cold-pressing, were investigated by chemical and sensory analyses. According to chemical analysis by GC and GC-MS, limonene (84.0%) was the most abundant compound, followed by gamma-terpinene (6.9%), myrcene (2.2%), alpha-pinene (1.2%), and linalool (1.0%). Monoterpene hydrocarbons were predominant in Hyuganatsu peel oil. The odor-active volatiles in Hyuganatsu flavor were studied by GC-olfactometry and omission tests. The characteristic flavor was present in the oxygenated fraction. Flavor dilution (FD) factors of the volatile flavor components of the Hyuganatsu cold-pressed oil were determined by aroma extraction dilution analysis (AEDA). Furthermore, relative flavor activity was investigated by means of FD factor and weight percent. Ten kinds of odor compounds having Hyuganatsu-like aroma were detected by AEDA: limonene, linalool, octanol, neral, neryl acetate, tridecanal, trans-carveol, cis-nerolidol, trans,trans-farnesyl acetate, and trans,trans-farnesol. Linalool and octanol were regarded as the most odor-active or key compounds of Hyuganatsu aroma. Diluted solutions of linalool and octanol of approximately 2 ppm gave a fresh and fruity aroma note similar to Hyuganatsu flavor.  相似文献   

12.
The relationship between the physical structure of espresso coffee foam, called crema, and the above-the-cup aroma release was studied. Espresso coffee samples were produced using the Nespresso extraction system. The samples were extracted with water with different levels of mineral content, which resulted in liquid phases with similar volatile profiles but foams with different structure properties. The structure parameters foam volume, foam drainage, and lamella film thickness at the foam surface were quantified using computer-assisted microscopic image analysis and a digital caliper. The above-the-cup volatile concentration was measured online by using PTR-MS and headspace sampling. A correlation study was done between crema structure parameters and above-the-cup volatile concentration. In the first 2.5 min after the start of the coffee extraction, the presence of foam induced an increase of concentration of selected volatile markers, independently if the crema was of high or low stability. At times longer than 2.5 min, the aroma marker concentration depends on both the stability of the crema and the volatility of the specific aroma compounds. Mechanisms of above-the-cup volatile release involved gas bubble stability, evaporation, and diffusion. It was concluded that after the initial aroma burst (during the first 2-3 min after the beginning of extraction), for the present sample space a crema of high stability provides a stronger aroma barrier over several minutes.  相似文献   

13.
《Cereal Chemistry》2017,94(2):170-176
The volatile components from 13 commercially valuable foxtail millets from China were investigated by means of gas chromatography–mass spectrometry combined with simultaneous distillation extraction. A total of 52 volatile compounds were identified in all of the samples: 19 aldehydes, 5 alcohols, 10 ketones, 9 hydrocarbons, 6 benzene derivatives, and 3 others. Here, 23 common constituents were found in all samples. Aldehydes were the predominant volatile components in various cultivars. The importance of each volatile was assessed on the basis of odor thresholds and odor activity values (OAVs). Here, 35 volatile compounds were described using aroma character, and 24 volatile compounds were found to be odor‐active compounds. Another 11 common constituents were found in all samples. The components with the highest OAVs in most cultivars were (E )‐2‐nonenal and (E,E )‐2,4‐decadienal. Most of the other aldehydes also had high OAVs. Some of the ketones, alcohols, benzene derivatives, and other compounds were found to contain an odor‐active compound in several cultivars of foxtail millet. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the OAVs of aroma compounds enabled good differentiation of most cultivars.  相似文献   

14.
This study was conducted to determine the composition of kumquat (Fortunella japonica Swingle) cold-pressed peel oil and to determine which volatile components are primarily responsible for the aroma of this oil. Eighty-two compounds were identified in the oil by GC and GC-MS. The major compounds were limonene (93.73%), myrcene (1.84%), and ethyl acetate (1.13%). Flavor dilution (FD) factors and relative flavor activities (RFA) of volatile constituents were evaluated by aroma extract dilution analysis with gas chromatography-olfactometry (GC-O). Camphene, terpinen-4-ol, citronellyl formate, and citronellyl acetate showed high FD factors (>/=5) and RFA (>20). Citronellyl formate and citronellyl acetate were regarded as the characteristic odor components of the kumquat peel oil from the results of FD factor, RFA, and GC-sniffing. Citronellyl acetate is considered to be the odor component most similar to kumquat by organoleptic evaluation with GC-O.  相似文献   

15.
The volatile compounds formed in slapped and crushed young leaves of Japanese pepper (Xanthoxylum piperitum DC.) were compared with those of intact leaves by using a dynamic headspace gas analysis combined with GC-MS in an on-line system, together with the results of a sensory evaluation. The results indicated that the factors influencing the aroma note were mainly the constituent oxygenated monoterpenes and C(6) compounds and the quantity of terpene hydrocarbons. To clarify the formation mechanism for the aroma, the activities of lipoxygenase and beta-D-glucosidase were investigated. The results revealed that the hydrolysis of glycosides and the degradation of unsaturated fatty acids both played an important role in the formation of the major aroma compounds in young leaves of Japanese pepper.  相似文献   

16.
The aroma-active compounds of cv. Turkish Kozan orange wine were analyzed by sensory and instrumental analyses. Liquid-liquid extraction with dichloromethane was used for extraction of volatile components. According to sensory analysis, the aromatic extract obtained by liquid-liquid extraction was representative of orange wine odor. A total of 63 compounds were identified and quantified in orange wine. The results of the gas chromatography-olfactometry analysis showed that 35 odorous compounds were detected by the panelists. Of these, 28 aroma-active compounds were identified. Alcohols followed by terpenes and esters were the most abundant aroma-active compounds of the orange wine. Among these compounds, ethyl butanoate (fruity sweet), 3-methyl-1-pentanol (roasty), linalool (floral citrusy), gamma-butyrolactone (cheesy burnt sugar), 3-(methylthio)-propanol (boiled potato, rubber), geraniol (floral citrusy), and 2-phenylethanol (floral rose) were the most important contributors to the aroma of the orange wine because they were perceived by all eight panelists.  相似文献   

17.
18.
Bread aroma is an important parameter for bread quality, and this review aims to provide an overview of aroma compounds identified in bread crumb and how these compounds are formed. More than 150 volatile compounds were identified in bread crumb, and they mainly originated from the fermentative activity of yeast, from oxidation of flour lipids, and to a lower extent from Maillard reactions. Of those volatile compounds, 45 compounds can be characterized as aroma compounds, because they most likely can be sensed when the bread is eaten because of their high odor activity values and flavor dilution factors. The influence of ingredients and mixing conditions on bread aroma has scarcely been investigated. The fermentation conditions (yeast level and strain as well as fermentation temperature and time) were found to significantly influence the aroma of bread crumb. Yeast level and strain mainly influence formation of compounds directly related to the fermentative activity of yeast, whereas fermentation temperature and time also influence formation of compounds from oxidation of flour lipids.  相似文献   

19.
Comparisons were made between the aroma volatiles of the yellow-fleshed kiwifruit, "Hort16A", at two different stages of eating ripeness: firm and soft. The firm fruit contained a small number of aroma compounds that the soft fruit did not contain. In general, however, the largest difference between the two firmness categories was in the levels of esters, with the soft fruit containing higher concentrations and a larger number of esters than the firm fruit. In vitro analysis directly after maceration using atmospheric pressure chemical ionization mass spectrometry (APCI-MS) showed the relative importance of the most intense aromas between fruit at the two different firmness stages and was used to compare the release rates of aromas. A comparison of the aroma concentrations from gas chromatography mass spectrometry (GC-MS) and APCI-MS headspace analyses showed that the APCI-MS headspace showed less bias toward enzymatically generated lipid degradation compounds. A GC-sniffing study showed that many of the most intense compounds, acetaldehyde, hexanal, ethyl butanoate, and (E)-2-hexenal but not ethanol, showed odor activity in macerated fruit. In addition, dimethyl sulfide (DMS), a volatile present at very low levels in the fruit, also appeared to be an important contributor to the odor. In vivo analyses also showed much higher levels of aroma compounds in the soft fruit compared to the firm fruit, with evidence of persistence of some compounds, including DMS. There were a number of similarities between the breath profiles of the two panelists, which confirmed the importance of DMS in "Hort16A" aroma.  相似文献   

20.
Headspace solid-phase microextraction (HS-SPME) was used to isolate the volatile compounds, which are formed during peroxidation of fatty acids in vegetable oils. Isolated compounds were characterized by GC-MS and quantified using GC with FID detection. Four fibers for HS-SPME method development were tested, and the divinylbenzene/carboxene/PDMS fiber was selected as providing the best detection of analyzed compounds. Extraction curves, limits of detection, repeatability, and linearity were investigated for 14 aldehydes, ketones, hydrocarbons, and alcohols being products of fatty acids autoxidation. Limits of detection for 11 of these were below 1 microg/L. For quantitative purposes, to minimize the influence of temperature on hydroperoxide formation and the changes in the volatiles profile of the extracts, sampling was performed at 20 degrees C. For compound characterization by GC-MS, sampling temperature of 50 degrees C was applied. The developed method was applied to the analysis of refined and cold-pressed rapeseed oil stored at 60 degrees C for 10 days, and for 10 different vegetable oils of various degree of peroxidation. All samples were subjected to sensory analysis. The results of PCA sensory analysis were related to the amount of volatile compounds isolated by SPME method. In cases where the amount of compounds was highest, the samples were perceived as the worst, whereas those with low levels of volatile compounds were the most desired ones according to sensory evaluation. The relation was observed for both total volatiles, quantified C5-C9 aldehydes, and 14 compounds selected in method development. SPME revealed to be a rapid and sensitive method for the extraction and quantitation of trace volatile compounds from plant oils even at ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号