首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
REASONS FOR PERFORMING STUDY: Lameness has often been suggested to result in altered movement of the back, but there are no detailed studies describing such a relationship in quantitative terms. OBJECTIVES: To quantify the effect of induced subtle forelimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses was measured at walk and at trot on a treadmill before and after the induction of reversible forelimb lameness grade 2 (AAEP scale 1-5). Ground reaction forces (GRF) for individual limbs were calculated from kinematics. RESULTS: The horses significantly unloaded the painful limb by 11.5% at trot, while unloading at walk was not significant. The overall flexion-extension range of back motion decreased on average by 0.2 degrees at walk and increased by 3.3 degrees at trot (P<0.05). Changes in angular motion patterns of vertebral joints were noted only at trot, with an increase in flexion of 0.9 degrees at T10 (i.e. angle between T6, T10 and T13) during the stance phase of the sound diagonal and an increase in extension of the thoracolumbar area during stance of the lame diagonal (0.7degrees at T13, 0.8 degres at T17, 0.5 degres at L1, 0.4 degrees at L3 and 0.3 degrees at L5) (P<0.05). Lameness further caused a lateral bending of the cranial thoracic vertebral column towards the lame side (1.3 degrees at T10 and 0.9 degrees at T13) (P<0.05) during stance of the lame diagonal. CONCLUSIONS: Both range of motion and vertebral angular motion patterns are affected by subtle forelimb lameness. At walk, the effect is minimal, at trot the horses increased the vertebral range of motion and changed the pattern of thoracolumbar motion in the sagittal and horizontal planes, presumably in an attempt to move the centre of gravity away from the lame side and reduce the force on the affected limb. POTENTIAL RELEVANCE: Subtle forelimb lameness affects thoracolumbar kinematics. Future studies should aim at elucidating whether the altered movement patterns lead to back and/or neck dysfunction in the case of chronic lameness.  相似文献   

2.
REASON FOR PERFORMING STUDY: Although there is anecdotal evidence of clinical effectiveness of chiropractic in treatment of equine back pain, little scientific work has been reported on the subject. OBJECTIVES: To quantify the effect of chiropractic manipulations on back and limb kinematics in horse locomotion. METHODS: Kinematics of 10 Warmblood horses were measured over ground at walk and trot at their own, preferred speed before, and one hour and 3 weeks after chiropractic treatment that consisted of manipulations of the back, neck and pelvic area. Speed was the same during all measurements for each horse. RESULTS: Chiropractic manipulations resulted in increased flexion-extension range of motion (ROM) (P<0.05) at trot in the vertebral angular segments: T10-T13-T17 (0.3 degrees ) and T13-T17-L1 (0.8 degrees ) one hour after treatment, but decreased ROM after 3 weeks. The angular motion patterns (AMPs) of the same segments showed increased flexion at both gaits one hour after treatment (both angles 0.2 degrees at walk and 0.3 degrees at trot, P<0.05) and 3 weeks after treatment (1.0 degrees and 2.4 degrees at walk and 1.9 degrees and 2.9 degrees at trot, P<0.05). The lumbar (L3 and L5) area showed increased flexion after one hour (both angles 0.3 degrees at walk and 0.4 degrees at trot P<0.05), but increased extension after 3 weeks (1.4 degrees and 1.2 degrees , at trot only, P<0.05). There were no detectable changes in lateral bending AMPs. The inclination of the pelvis was reduced at trot one hour (1.6 degrees ) and 3 weeks (3 degrees ) after treatment (P<0.05). The mean axial rotation of the pelvis was more symmetrical 3 weeks after the treatment at both gaits (P<0.05). There were no changes in limb angles at walk and almost no changes at trot. CONCLUSIONS: The main overall effect of the chiropractic manipulations was a less extended thoracic back, a reduced inclination of the pelvis and improvement of the symmetry of the pelvic motion pattern. POTENTIAL RELEVANCE: Chiropractic manipulations elicit slight but significant changes in thoracolumbar and pelvic kinematics. Some of the changes are likely to be beneficial, but clinical trials with increased numbers of horses and longer follow-up are needed.  相似文献   

3.
The objective was to evaluate the effects of gymnastic training on stride characteristics of walk and trot in therapy horses carrying riders of different weights. Eighteen horses used for therapeutic riding 5 days/week were randomly divided into 2 groups. Nine horses performed gymnastic (GYM) exercises after therapeutic riding on 4 days/week for 3 months, 9 horses did no additional exercises (SED). On days 0 and 90, an inertial sensor mounted to the girth on the ventral midline was used to evaluate stride characteristics when horses were ridden at walk (1.3 m/second) and trot (3.0 m/second) by able-bodied riders representing rider: horse body weight ratios (BWRs) 15%, 20%, and 25%. On day 0, the measured variables did not differ significantly between sedentary (SED) and GYM groups, but on day 90, the following statistically significant results were found: GYM-trained horses had higher regularity for all BWRs at walk and 15% and 20% BWRs at trot. Higher stride symmetry was found in GYM-trained horses carrying 25% BWRs at walk and all rider weights at trot. Dorsoventral displacement was higher in GYM-trained horses when carrying 20% and 25% BWRs at walk and 25% BWRs at trot. Dorsoventral power was lower in SED-trained versus GYM-trained horses carrying 15% BWR at walk and 20% BWR at trot. A more regular and symmetrical stride with a larger range of dorsoventral trunk motion is likely to provide a better therapeutic riding experience.  相似文献   

4.
Reasons for performing study: Research into kinematics of the healthy equine back, has been performed in the walk and trot. This study focuses on back kinematics during canter, over a range of velocities. Flexion extension (FE) movements in canter are greatest in the lumbosacral (LS) region. Previous research has focused on canter velocity of 7 m/s; therefore quantification of LS kinematics at varying velocities is required to understand LS functions in equine locomotion. Hypothesis: Range of flexion‐extension movement through the lumbosacral joint increases with increasing velocity. Methods: Six Thoroughbred horses (mean age 9.6 years) cantered on treadmill at 4 velocities (6.0, 6.5, 7.0 and 8.0 m/s, respectively). Reflective markers were placed over the 5th lumbar vertebra (L5), the lumbosacral junction (LS) and the 3rd sacral vertebra (S3). Lumbosacral angle (LS) was defined as the angle formed between L5, LS and S3. Flexion‐extension (FE) range of motion (ROM) was analysed using a 2 camera, 3D motion capture system ProReflex1. Linear regression was used to determine strengths of relationships between speed of canter and lumbosacral FE movements. Results: Range of FE ROM seen at the lumbosacral joint increased linearly with speed. FE ROM ranged 6.1°± 1.9 at 6 m/s, 6.3°± 1.9 at 6.5 m/s, 6.6°± 1.9 at 7 m/s and 7.2°± 1.9 at 8 m/s. Linear regression showed positive associations between speed and LS FE range of motion (r2= 0.993; P = 0.003). Conclusions and potential relevance: Results show linear relationships between LS FE movements and submaximal canter velocities. These results provide information on the LS joint at canter. Understanding the effects of velocity on the back of healthy horses may aid our understanding of the demands placed on this joint in sport horses at this gait.  相似文献   

5.
A recent epidemiological study indicated that various factors may be related to injury in dressage horses, but the mechanism by which these injuries occur has yet to be determined. The suspensory ligament (SL) is a frequent site of injury, and it is assumed that greatest strain is placed on this structure in collected trot; this has yet to be proved conclusively. The study aimed to investigate the effect of collected and extended trot on the hindlimb movement pattern. Four dressage horses were fitted with markers and inertial motion sensors (IMS). High‐speed video was obtained for 2 strides on each rein in collected and extended trot on 3 different surfaces: waxed outdoor; sand/plastic granules; and waxed indoor. Maximal tarsal flexion during stance and distal metatarsal coronary band ratio (MTCR), representing fetlock extension, were determined. Inertial motion sensor data determined stride duration, speed and stride length. Data were compared between collection and extension within horses on each surface, and compared between surfaces. Collected trot had significantly lower speed and stride length but longer stride duration than extended trot on all surfaces. All horses had less tarsal flexion and fetlock extension in collected compared with extended trot (P<0.05), which is likely to increase SL loading. The study findings indicate that extended trot may increase SL strain, providing a possible explanation for the high incidence of SL injury in horses trained for extravagant movement. It is possible that substantial use of extended trot could be a risk factor for development of suspensory desmitis, which might be one contributory factor in the prevalence of suspensory desmitis in young horses repeatedly undertaking extravagant movement.  相似文献   

6.
Despite the range of oral joint supplements available, there has been very limited research into their efficacy. The study aimed to determine the effect of an oral joint supplement on limb kinematics, orthopedic, physiotherapy, and handler evaluation in horses. Supplement S or placebo P was fed to 24 horses for 21 days each in a random order. Horses were evaluated at days 0 (baseline), 21 (after first treatment), and 42 (after second treatment). Assessments included the following: clinical orthopedic evaluation for straight line/lunging circle in walk and trot; high-speed motion capture determined hindlimb kinematics for straight-line trotting; grading of limb range of motion (ROM) and muscle tone based on standardized physiotherapy criteria; handler grading of specific criteria during pasture, groundwork, and ridden exercise. Effect of treatment, sequence, limb, and interactions were investigated using linear-mixed models. S was associated with significantly lower lameness grade in a straight line (P = .001) and circle (P = .010), with individual horses improving up to 2/10 grades over P/baseline. S was associated with significantly improved ROM and muscle tone. Ridden/groundwork scores were significantly higher with S compared to P/baseline. With S, horses were graded significantly higher for “ease of movement” at pasture compared with P/baseline. For horses with hindlimb lameness, S was associated with significantly greater tarsal flexion than baseline (4.2% greater, P < .020) or P (2.7% greater, P < .037). S was associated with less lameness and improved physiotherapy scores, ridden/groundwork scores, and pasture “ease of movement.” Increased midstance tarsal flexion of lame limbs may indicate improved mobility/comfort during peak loading, supporting a positive effect of S.  相似文献   

7.
REASON FOR PERFORMING STUDY: There are no detailed studies describing a relationship between hindlimb lameness and altered motion of the back. OBJECTIVES: To quantify the effect of induced subtle hindlimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses were measured during walk and trot on a treadmill before and during application of pressure on the sole of the left hindlimb using a well-established sole pressure model. Reflective markers were located at anatomical landmarks on the limbs, back, head and neck for kinematic recordings. Ground reaction forces (GRF) in individual limbs were calculated from kinematics to detect changes in loading of the limbs. RESULTS: When pressure on the sole of the hindlimb was present, horses were judged as lame (grade 2 on the AAEP scale 1-5) by an experienced clinician. No significant unloading of this limb was found in the group of horses (unloading was observed in 4 animals, but was not detectable in the other 2), but statistically significant effects on back kinematics were detected. The overall flexion-extension (FE) range of motion (ROM) of the vertebral column was increased at walk, especially in the thoracic segments. Axial rotation (AR) ROM of the pelvis was also increased. At trot, the FE ROM was decreased only in the segment L3-L5-S3. During the stance phase of the lame limb, the segment T6-T10-T13 was more flexed and the neck was lowered at both gaits; the thoracolumbar segments were more extended at walk and trot. There were no significant changes in the stride length or protraction-retraction angles in any of the limbs. CONCLUSIONS: Subtle hindlimb lameness provoked slight but detectable changes in thoracolumbar kinematics. The subtle lameness induced in this study resulted in hyperextension and increased ROM of the thoracolumbar back, but also in decreased ROM of the lumbosacral segment and rotational motion changes of the pelvis. POTENTIAL RELEVANCE: Even subtle lameness can result in changes in back kinematics, which emphasises the intricate link between limb function and thoracolumbar motion. It may be surmised that, when chronically present, subtle lameness induces back dysfunction.  相似文献   

8.
Effects of girth, saddle and weight on movements of the horse   总被引:1,自引:0,他引:1  
REASONS FOR PERFORMING STUDY: Although the saddle is seen as one of the biggest causes of back pain, and weightbearing is seen as an important aetiological factor in 'kissing spine' syndrome (KSS), the effects of a saddle and weight on the back movements of the horse have never been studied. OBJECTIVE: To determine the effects of pressure on the back, exerted by tack and weight, on movements of the horse. HYPOTHESIS: Weight has an extending effect on the horse's back and, as a compensatory mechanism to this extension, an alteration in pro- and retraction angles was expected. A similar but smaller effect was expected from a saddle only and a lungeing girth. METHODS: Data were captured during treadmill locomotion at walk, trot and canter under 4 conditions: unloaded; with lungeing girth; saddle only; and saddle with 75 kg of weight. Data were expressed as maximal extension, maximal flexion angles, range of motion of L3 and L5 and maximal pro- and retraction angles of the limbs. RESULTS: At walk and trot, there was a significant influence on back kinematics in the 'saddle with weight' situation, but not in the other conditions. Overall extension of the back increased, but the range of movement remained the same. Limb kinematics changed in the sense that forelimb retraction increased. At canter, both the 'saddle with weight' and 'saddle only' conditions had a significant extending effect on the back, but there was no effect on limb kinematics. CONCLUSIONS AND POTENTIAL RELEVANCE: Weight and a saddle induce an overall extension of the back. This may contribute to soft tissue injuries and the KSS. The data from this study may help in understanding the reaction of the equine back to the challenges imposed by man when using the animal for riding.  相似文献   

9.
OBJECTIVE: To study the effect of unilateral synovitis in the distal intertarsal and tarsometatarsal joints on locomotion, including the compensating effects within and between limbs. ANIMALS: 4 clinically normal horses. PROCEDURE: Gait analyses including kinematics, force plate, and inverse dynamic analysis were performed at the trot before lameness, after which synovitis was induced by injecting endotoxin into the right distal intertarsal and tarsometatarsal joints. Gait analyses were repeated 24 to 30 hours later during lameness. Differences between the stride variables during the 2 conditions (lame and sound) were identified. RESULTS: Tarsal joint range of motion, peak vertical force, and vertical impulse were decreased during lameness. Mechanical deficits included a decrease in negative work performed by the tarsal extensors during the early stance phase and a decrease in positive work by the tarsal extensors during push off. No compensatory changes in work were performed by other joints within the lame hind limb during the stance phase. Vertical impulse in the diagonal forelimb decreased, but there were no significant changes in forces or impulses in the ipsilateral forelimb or contralateral hind limb. CONCLUSION AND CLINICAL RELEVANCE: Results indicate that horses are able to manage mild, unilateral hind limb lameness by reducing the airborne phase of the stride rather than by increased loading of the compensating limbs.  相似文献   

10.
Movement analysis techniques allow objective and quantitative assessment of kinematic gait analysis. Consistent repeatability of the kinematic data is essential for such assessments. This study investigated whether the repeatability of a standardized Equinalysis Elite gait analysis system is sufficient to allow its use in clinical evaluation of equine lameness with reliable documentation of individual locomotion patterns. The extent to which examinations on different days affected the results when a standardized protocol was used was investigated. The repeatability of distal limb kinematics in nine sound horses over three successive days at one location was investigated. Measurements were performed at the examination area, for three motion cycles at the walk and trot, in each direction per day. Skin markers were placed on the lateral aspect of the coffin joint, forelimb fetlock joint, hindlimb fetlock joint, carpus, tarsus, elbow, and stifle, at clipped sites marked with a permanent marker. The inter-day repeatability of angular measurements of the carpus, tarsus, forelimb fetlock, and hindlimb fetlock joints was determined. A low degree of inter-day repeatability was found with statistically significant (P ≤ .05) differences between findings on different days, observed in the time-angle diagrams of left and right carpus, tarsus, forelimb fetlock, and hindlimb fetlock joints of all horses, at both walk and trot. The standardized Equinalysis Elite system for gait analysis of distal limb kinematics in the horse did not provide highly repeatable data in this setting.  相似文献   

11.
REASONS FOR PERFORMING STUDY: Basic information about the influence of a rider on the equine back is currently lacking. HYPOTHESIS: That pressure distribution under a saddle is different between the walk, trot and canter. METHODS: Twelve horses without clinical signs of back pain were ridden. At least 6 motion cycles at walk, trot and canter were measured kinematically. Using a saddle pad, the pressure distribution was recorded. The maximum overall force (MOF) and centre of pressure (COP) were calculated. The range of back movement was determined from a marker placed on the withers. RESULTS: MOF and COP showed a consistent time pattern in each gait. MOF was 12.1 +/- 1.2 and 243 +/- 4.6 N/kg at walk and trot, respectively, in the ridden horse. In the unridden horse MOF was 172.7 +/- 11.8 N (walk) and 302.4 +/- 33.9 N (trot). At ridden canter, MOF was 27.2 +/- 4.4 N/kg. The range of motion of the back of the ridden horse was significantly lower compared to the unridden, saddled horse. CONCLUSIONS AND POTENTIAL RELEVANCE: Analyses may help quantitative and objective evaluation of the interaction between rider and horse as mediated through the saddle. The information presented is therefore of importance to riders, saddlers and equine clinicians. With the technique used in this study, style, skill and training level of different riders can be quantified, which would give the opportunity to detect potentially harmful influences and create opportunities for improvement.  相似文献   

12.
The aim of this study was to evaluate the effect of three footing surfaces on the flexion/extension, and range of motion (ROM) of the carpus, tarsus and fetlocks in the horse. The percentage of stride spent in the stance phase of sound horses at the walk was also measured. Nine sound horses were walked on hard ground (HD), soft ground (SF) and a land treadmill (LT), and five complete gait cycles were recorded by a digital video camera. Retro-reflective markers were placed on the skin at four anatomical locations on the left fore and hind limbs, and data were analyzed using two-dimensional (2D) motion-analysis software. Maximal flexion/extension angles and range of motion were calculated for each joint, and the percentage of the stride spent in stance phase was determined for each stride.Maximal flexion of the tarsus and hind fetlock was greater on LT and SF compared to HD, while maximal flexion of the carpus was greater on LT compared to HD and SF. Maximal extension of the carpus was greater on HD compared to SF and LT, maximal extension of the tarsus was greater on HD and SF compared to LT, and maximal extension of the forelimb and hind limb fetlocks was greater on LT compared to HD and SF. The greatest overall ROM of the carpus and fetlocks was achieved on LT, while the greatest overall ROM of the tarsus was achieved on SF. The stance percentage of the stride for the hind limb was significantly different between all surfaces. In conclusion, walking surface influences flexion/extension of the carpus, tarsus and fetlocks in healthy horses, which should be considered when walking equine rehabilitation cases.  相似文献   

13.
Reason for performing study: During trot, the rider can either rise from the saddle during every stride or remain seated. Rising trot is used frequently because it is widely assumed that it decreases the loading of the equine back. This has, however, not been demonstrated in an objective study. Objective: To determine the effects of rising and sitting trot on the movements of the horse. Hypothesis: Sitting trot has more extending effect on the horse's back than rising trot and also results in a higher head and neck position. Methods: Twelve horses and one rider were used. Kinematic data were captured at trot during over ground locomotion under 3 conditions: unloaded, rising trot and sitting trot. Back movements were calculated using a previously described method with a correction for trunk position. Head‐neck position was expressed as extension and flexion of C1, C3 and C6, and vertical displacement of C1 and the bit. Results: Sitting trot had an overall extending effect on the back of horses when compared to the unloaded situation. In rising trot: the maximal flexion of the back was similar to the unloaded situation, while the maximal extension was similar to sitting trot; lateral bending of the back was larger than during the unloaded situation and sitting trot; and the horses held their heads lower than in the other conditions. The angle of C6 was more flexed in rising than in sitting trot. Conclusions and clinical relevance: The back movement during rising trot showed characteristics of both sitting trot and the unloaded condition. As the same maximal extension of the back is reached during rising and sitting trot, there is no reason to believe that rising trot was less challenging for the back.  相似文献   

14.
Reasons for performing study: Dressage involves training of the horse with the head and neck placed in a position defined by the rider. The best position for dressage training is currently under debate among riders and trainers, but there are few scientific data available to confirm or disprove the different views. Objective: To evaluate the kinematic effects of different head and neck positions (HNPs) in elite dressage horses ridden at trot. Methods: Seven high‐level dressage horses were subjected to kinetic and kinematic measurements when ridden on a treadmill with the head and neck in 5 different positions. Results: Compared to free trot on loose reins the HNP desired for collected trot at dressage competitions increased T6 vertical excursion, increased sacral flexion and decreased limb retraction after lift‐off. Further increasing head or head and neck flexion caused few additional changes while an extremely elevated neck position increased hindlimb flexion and lumbar back extension during stance, increased hindlimb flexion during swing and further increased trunk vertical excursion. Conclusions: The movements of the horse are significantly different when ridden on loose reins compared to the position used in collected trot. The exact degree of neck flexion is, however, not consistently correlated to the movements of the horse's limbs and trunk at collected trot. An extremely elevated neck position can produce some effects commonly associated with increased degree of collection, but the increased back extension observed with this position may place the horse at risk of injury if ridden in this position for a prolonged period. Potential relevance: Head and neck positions influence significantly the kinematics of the ridden horse. It is important for riders and trainers to be aware of these effects in dressage training.  相似文献   

15.
OBJECTIVE: To evaluate the accuracy of force plate gait analysis at the walk and trot in dogs with low-grade hindlimb lameness. MATERIAL AND METHODS: Nineteen healthy dogs and 41 dogs with low-grade unilateral hindlimb lameness due to stifle or hip joint problems were walked and trotted over a force plate. Peak vertical forces (PVF) were recorded, and a symmetry index (SI) was calculated from the PVF of the hindlimbs. 'Cut-off' values were determined from the SI of the normal dogs. These cut-off values were used to discriminate lame dogs from normal ones. Sensitivity and specificity were evaluated for measurements at walk and trot, and the Cohen's Kappa coefficient (k) was used to determine the agreement between clinical lameness and force plate measurements, and between force plate results at walk and trot. Receiver Operating Characteristics (ROC) curve were plotted for both gaits to evaluate accuracy. RESULTS: The sensitivity of the measurements at walk was 0.63, and specifity was 0.95. The sensitivity of the measurements at trot was 0.90, and specificity was 1.0. Moderate agreement was found between force plate measurements at walk and trot, and between clinical gait assessment and force plate measurements at walk. Good agreement was found between clinical gait assessment and measurements at trot. ROC analyses revealed the trot (94.7% [91.7%; 97.7%]) to be the more accurate test than the walk (85.0% [80.1%; 89.9%]). CONCLUSION: The trotting gait was more sensitive and accurate than the walking gait for the differentiation of dogs with a low-grade hindlimb lameness from normal ones using force plate gait analysis.  相似文献   

16.
This paper describes the handled walking and trotting kinematics (linear, temporal, and angular traits) of 35 Menorca Purebred (MEN) stallions, and the relationships among these variables is presented for the first time, along with a discussion of the influence of the hind limb pastern angle on kinematic variables at both gaits. For data collection, all animals, aged between 3 and 10 years old and belonging to 28 different studs, were recorded under the same experimental and environmental conditions, using a three-dimensional (3D) semiautomatic movement analysis system. A total of 24 kinematic variables (temporal, linear, and angular) at the walk and the trot and a morphometric variable measured at the mid stance position of walking (hind pastern angle) were included in this analysis. Angle-time diagrams of the hind pastern angle while walking and trotting normalized to stride duration were also obtained. Generally the MEN stallions' forelimb movements closely resembled the movement characteristics of other European dressage performance breeds, while the hind limb locomotion showed a greater likeness to Iberian dressage Purebreds. Despite this, their ability in collection and propulsion at the walk and the trot was relatively low. The hind limb pastern conformation was partially connected to the hind limb movements for both gaits, with an apparently negative effect of excessively upright pasterns on the amplitude at the trot, which indirectly reduced collection ability.  相似文献   

17.
REASONS FOR PERFORMING STUDY: Previous studies have implicated tension in the deep digital flexor tendon (DDFT) in the rotation of the distal phalanx (DP) after the breakdown of the dorsal laminae caused by laminitis. Howeveer, once the DP has rotated, the DDFT should become shorter, reducing the force it exerts on the DP. OBJECTIVE: To compare DDFT force and ground reaction forces (GRFs) in normal ponies and ponies with rotation of the DP as a sequel to laminitis. METHODS: Six normal ponies (Group 1) and 6 sound ponies with 6-13 degrees of rotation of the DP in relation to the dorsal hoof wall (Group 2) were assessed at trot using forceplate and motion analysis. The force in the DDFT was calculated by assuming that the extending moment at the distal interphalangeal (DIP) joint resulting from the GRF was equal to the flexing moment created by the force in the DDFT during the stance phase (inverse dynamics). RESULTS: In early stance, the peak DDFT force (mean+/-s.d.) in the normal ponies was 1.92+/-1.63 N/kg. However, in Group 2, the point of zero moment was palmar to the centre of rotation of the DIP joint for the first 40% of stance and hence DDFT force was zero. Force in the DDFT reached a peak of 10.00+/-3.56 N/kg at 60.7+/-5.6% of stance in Group 1 and 6.41+/-1.37 N/kg at 79.2+/-9.6% of stance in Group 2. CONCLUSIONS: DDFT force in Group 2 laminitic ponies was much reduced until late stance, when it neared normal values. POTENTIAL RELEVANCE: Further studies of ponies with rotation of the DP as a sequel to laminitis should assist farriery aimed at reducing the force in the DDFT through the breakover phase of stance to protect damaged dorsal laminae.  相似文献   

18.
Reasons for performing study: The specific biomechanical circumstances that induce excessive superficial digital flexor tendon (SDFT) strain in horses are unknown. Hypothesis: Carpal joint hyperextension during axial limb loading during the middle of stance disproportionately enhances SDFT strains compared to suspensory ligament (SL) strains. Methods: Superficial digital flexor tendon and SL strains were measured in 7 cadaver limbs during in vitro loading that maintained carpal extension or allowed carpal hyperextension by constraining, or allowing rotation of, the radius during loading conditions that simulated the middle of stance at the walk. The effect of carpal hyperextension on SDFT and SL strains and joint angles was assessed using repeated measures ANOVA. Results: Limb loading generally resulted in higher SL strains than SDFT strains for both carpal extension and hyperextension loading conditions. Compared to carpal extension, carpal hyperextension resulted in increased strains in both the SDFT and the SL; however, a greater increase in strain was seen in the SDFT. On average, carpal hyperextension caused approximately 3° greater carpal extension, 1° greater metacarpophalangeal joint hyperextension, 1° greater proximal interphalangeal joint flexion and <1° greater distal interphalangeal joint flexion than did carpal extension. Conclusions and clinical relevance: Carpal joint hyperextension is likely to induce disproportionately higher strain in the SDFT than in the SL. Factors that affect carpal stability are likely to affect the risk for superficial digital flexor tendinopathy.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.  相似文献   

20.
REASONS FOR PERFORMING STUDY: Kinematic studies are usually based on tracking markers attached to the skin. However, complex joints, such as the tarsal joint, function in 3-dimensions (3D), and have therefore necessitated application of the invasive bone pin technique, limiting kinematic studies to the research laboratory. This study investigates the feasibility of using skin-based markers for 3D analysis of tarsal joint motion. HYPOTHESIS: Three-dimensional motions of the tarsal joint can be measured with an acceptable degree of accuracy using skin markers. METHODS: Retroreflective markers were attached over the tibial and metatarsal segments. Markers were tracked automatically at trot. Three-dimensional skin correction algorithms were used for correction of skin displacement, and 3D motions derived from the corrected (CSD) and uncorrected (USD) skin displacement were compared with data from a previous study in which those motions were described using bone-fixed markers (BFM) by correlation, root mean square errors (RMS) and shape agreement (SA) of the curves. RESULTS: The RMS of BFM and CSD were smaller than those of BFM and USD for all motions. The correlation coefficients of BFM and CSD were higher than those of BFM and USD. SA was good or fair for all motions except internal/external rotation and medial/lateral translation. CONCLUSIONS AND POTENTIAL RELEVANCE: With appropriate correction for skin movement relative to skeletal landmarks, skin markers can identify tarsal 3D motions for flexion/extension, abduction/adduction, cranial/caudal translation, and proximal/distal translation, allowing analysis and comparison of information between horses during swing and stance phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号