首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Three experiments were conducted to evaluate the effects of increasing dietary Cu and Zn on weanling pig performance. Diets were fed in 2 phases: phase 1 from d 0 to 14 postweaning and phase 2 from d 14 to 28 in Exp. 1 and 2 and d 14 to 42 in Exp. 3. The trace mineral premix, included in all diets, provided 165 mg/kg of Zn from ZnSO(4) and 16.5 mg/kg of Cu from CuSO(4). In Exp. 1, treatments were arranged in a 2 × 3 factorial with main effects of added Cu from tri-basic copper chloride (TBCC; 0 or 150 mg/kg) and added Zn from ZnO (0, 1,500, or 3,000 mg/kg from d 0 to 14 and 0, 1,000, or 2,000 mg/kg from d 14 to 28). No Cu × Zn interactions were observed (P > 0.10). Adding TBCC or Zn increased (P < 0.05) ADG and ADFI during each phase. In Exp. 2, treatments were arranged in a 2 × 3 factorial with main effects of added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 28) and Cu (control, 125 mg/kg of Cu from TBCC, or 125 mg/kg of Cu from CuSO(4)). No Cu × Zn interactions (P > 0.10) were observed for any performance data. Adding ZnO improved (P < 0.02) ADG and ADFI from d 0 to 14 and overall. From d 0 to 28, supplementing CuSO(4) increased (P < 0.02) ADG, ADFI, and G:F, and TBCC improved (P = 0.006) ADG. In Exp. 3, the 6 dietary treatments were arranged in a 2 × 2 factorial with main effects of added Cu from CuSO(4) (0 or 125 mg/kg) and added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 42). The final 2 treatments were feeding added ZnO alone or in combination with CuSO(4) from d 0 to 14 and adding CuSO(4) from d 14 to 42. Adding ZnO increased (P < 0.04) ADG, ADFI, and G:F from d 0 to 14 and ADG from d 0 to 42. Dietary CuSO(4) increased (P < 0.004) ADG and ADFI from d 14 to 42 and d 0 to 42. From d 28 to 42, a trend for a Cu × Zn interaction was observed (P = 0.06) for ADG. This interaction was reflective of the numeric decrease in ADG for pigs when Cu and Zn were used in combination compared with each used alone. Also, numerical advantages were observed when supplementing Zn from d 0 to 14 and Cu from d 14 to 42 compared with all other Cu and Zn regimens. These 3 experiments show the advantages of including both Cu and Zn in the diet for 28 d postweaning; however, as evident in Exp. 3, when 3,000 mg/kg of Zn was added early and 125 mg/kg of Cu was added late, performance was similar or numerically greater than when both were used for 42 d.  相似文献   

2.
Two 28-d experiments were conducted to evaluate the efficacy of low dietary concentrations of Cu as Cu-proteinate compared with 250 ppm Cu as CuSO4 with growth performance, plasma Cu concentrations, and Cu balance of weanling swine as the criteria. In the production study (Exp. 1), 240 crossbred pigs that averaged 19.8 d of age and 6.31 kg BW initially were group-fed (two or three pigs per pen) the basal diets (Phase 1: d 0 to 14 and Phase 2: d 14 to 28) supplemented with 0 (control), 25, 50, 100, or 200 ppm Cu as Cu-proteinate, or 250 ppm Cu as CuSO4 (as-fed basis). The basal diets contained 16.5 ppm Cu supplied as CuSO4 before supplementation with Cu-proteinate or 250 ppm Cu as CuSO4. There were quadratic responses (P < or = 0.05) in ADFI and ADG for wk 1, Phases 1 and 2, and overall because ADFI was higher for pigs fed 25 or 50 ppm Cu as Cu-proteinate, and ADG increased with increasing Cu-proteinate up to 50 ppm Cu. The Cu-proteinate treatment groups combined had a higher (P < or = 0.05) Phase 2 and overall ADFI and ADG than the CuSO4 group. In the mineral balance study (Exp. 2), 20 crossbred barrows that averaged 35 d of age and 11.2 kg/BW initially were placed in individual metabolism pens with total urine and fecal grab sample collections on d 22 to 26. Treatments were the basal Phase 2 diet supplemented with 0, 50, or 100 ppm Cu as Cu-proteinate, or 250 ppm Cu as CuSO4 (as-fed basis). Treatments did not differ in growth performance criteria. There were linear increases (P < 0.001) in Cu absorption, retention, and excretion (milligrams per day) with increasing Cu-proteinate. Pigs fed 100 ppm Cu as Cu-proteinate absorbed and retained more Cu and excreted less Cu (mg/d, P < or = 0.003) than pigs fed 250 ppm Cu as CuSO4. Plasma Cu concentrations increased linearly (P = 0.06) with increasing Cu-proteinate. In conclusion, weanling pig growth performance was increased by 50 or 100 ppm Cu as Cu-proteinate in our production Exp. 1, but not in our balance Exp. 2, compared with 250 ppm Cu as CuSO4. However, 50 or 100 ppm Cu as Cu-proteinate increased Cu absorption and retention, and decreased Cu excretion 77 and 61%, respectively, compared with 250 ppm Cu as CuSO4.  相似文献   

3.
Corn-soybean meal-based diets, consisting of a high-P control (HPC) containing supplemental dicalcium phosphate (DCP), a basal diet containing no DCP, and the basal diet plus Escherichia coli phytase at 500 or 1,000 phytase units per kilogram (FTU/kg; as-fed basis) were fed to evaluate growth performance in starter, grower, and finisher pigs. Pigs were blocked by weight and gender, such that average weight across treatments was similar, with equal numbers of barrows and gilts receiving each treatment in each block. In Exp. 1, 48 pigs with an average initial BW of 11 kg, housed individually, with 12 pens per diet, were used to evaluate growth performance over 3 wk. Overall ADG and G:F were increased linearly (P < 0.05) by dietary phytase addition. Final BW and plasma P concentrations at 3 wk also increased linearly (P < 0.05). In Exp. 2, 128 pigs with an average initial BW of 23 kg, housed four pigs per pen, with eight pens per diet, were used to evaluate growth performance over 6 wk. A linear increase in response to phytase was noted for ADG and G:F in all three 2-wk periods, as well as overall (P < 0.05). Percentage of bone ash also showed a linear increase (P < 0.01). In Exp. 3, 160 pigs (53 kg), housed five pigs per pen, with eight pens per diet, were used to evaluate growth performance over 6 wk. A linear increase was detected for final BW, as well as ADG and G:F in the first and second 2-wk periods, and overall (P < 0.01). Twenty-four 15-kg individually housed pigs were used to evaluate total-tract nutrient digestibility in Exp. 4. Daily absorption of P linearly increased (P < 0.05) with phytase supplementation. Results of this research indicate that E. coli phytase is effective in liberating phytate P for uptake and utilization by starter, grower, and finisher pigs.  相似文献   

4.
In each of two experiments, 924 pigs (4.99 kg BW; 16 to 18 d of age) were assigned to 1 of 42 pens based on BW and gender. Pens were allotted randomly to dietary copper (Cu) treatments that consisted of control (10 ppm Cu as cupric sulfate, CuSO4 x 5H2O) and supplemental dietary Cu concentrations of 15, 31, 62, or 125 ppm as cupric citrate (CuCit), or 62 (Exp. 2 only), 125 (Exp. 1 only), or 250 ppm as CuSO4. Live animal performance was determined at the end of the 45-d nursery phase in each experiment. On d 40 of Exp. 2, blood and fecal samples were collected from two randomly selected pigs per pen for evaluation of plasma and fecal Cu concentrations and fecal odor characteristics. In Exp. 1, ADG, ADFI, and G:F were increased (P < 0.05), relative to controls, when pigs were fed diets containing 250 ppm Cu as CuSO4. Pigs fed diets containing 125 ppm Cu as CuCit had increased (P < 0.05) ADG compared with pigs fed diets supplemented with 15 or 62 ppm Cu as CuCit. The ADG, ADFI, and G:F did not differ among pigs fed diets containing 125 and 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. In Exp. 2, pigs fed diets containing 250 ppm Cu as CuSO4 had improved (P < 0.05) ADG, ADFI, and G:F compared with controls. In addition, ADG, ADFI, and G:F were similar when pigs were fed diets containing either 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. Pigs fed diets containing 62 ppm Cu as CuSO4 or CuCit had similar ADG, ADFI, and G:F. Plasma Cu concentrations were not affected by dietary Cu source or concentration, but fecal Cu concentrations were increased (P < 0.05) as the dietary concentration of Cu increased. Pigs consuming diets supplemented with 125 ppm Cu as CuCit had fecal Cu concentrations that were lower (P < 0.05) than pigs consuming diets supplemented with 250 ppm Cu as CuSO4. Fecal Cu did not differ in pigs receiving diets supplemented with 62 ppm Cu as CuSO4 or CuCit. Odor characteristics of feces were not affected by Cu supplementation or source. These data indicate that 125 and 250 ppm Cu gave similar responses in growth, and that CuCit and CuSO4 were equally effective at stimulating growth and improving G:F in weanling pigs. Fecal Cu excretion was decreased when 125 ppm Cu as CuCit was fed compared with 250 ppm Cu as CuSO4. Therefore, 125 ppm of dietary Cu, regardless of source, may provide an effective environmental alternative to 250 ppm Cu as CuSO4 in weanling pigs.  相似文献   

5.
Benefits of feeding pharmacological concentrations of zinc (Zn) provided by Zn oxide (ZnO) to 21-d conventionally weaned pigs in the nursery have been documented; however, several management questions remain. We conducted two experiments to evaluate the effect on growth from feeding 3,000 ppm Zn as ZnO during different weeks of the nursery period. In Exp. 1 (n = 138, 11.5 d of age, 3.8 kg BW) and Exp. 2 (n = 246, 24.5 d of age, 7.2 kg BW), pigs were fed either basal diets containing 100 ppm supplemental Zn (adequate) or the same diet with an additional 3,000 ppm Zn (high) supplied as ZnO. Pigs were fed four or two dietary phases in Exp. 1 and 2, respectively, that changed in dietary ingredients and nutrient content (lysine and crude protein) to meet the changing physiological needs of the pigs for the 28-d nursery period. Dietary Zn treatments were 1) adequate Zn fed wk 1 to 4, 2) high Zn fed wk 1, 3) high Zn fed wk 2, 4) high Zn fed wk 1 and 2, 5) high Zn fed wk 2 and 3, and 6) high Zn fed wk 1 to 4. In Exp. 1 and 2, pigs fed high Zn for wk 1 and 2 or the entire 28-d nursery period had the greatest (P < .05) ADG. During any week, pigs fed high Zn had greater concentrations of hepatic metallothionein and Zn in plasma, liver, and kidney than those pigs fed adequate Zn (P < .05). In summary, both early- and traditionally weaned pigs need to be fed pharmacological concentrations of Zn provided as ZnO for a minimum of 2 wk immediately after weaning to enhance growth.  相似文献   

6.
Two experiments were conducted to evaluate the effects of dietary Zn and Fe supplementation on mineral excretion, body composition, and mineral status of nursery pigs. In Exp. 1 (n = 24; 6.5 kg; 16 to 20 d of age) and 2 (n = 24; 7.2 kg; 19 to 21 d of age), littermate crossbred barrows were weaned and allotted randomly by BW, within litter, to dietary treatments and housed individually in stainless steel pens. In Exp. 1, Phases 1 (d 0 to 7) and 2 (d 7 to 14) diets (as-fed basis) were: 1) NC (negative control, no added Zn source); 2) ZnO (NC + 2,000 mg/kg as Zn oxide); and 3) ZnM (NC + 2,000 mg/kg as Zn Met). In Exp. 2, diets for each phase (Phase 1 = d 0 to 7; Phase 2 = d 7 to 21; Phase 3 = d 21 to 35) were the basal diet supplemented with 0, 25, 50, 100, and 150 mg/kg Fe (as-fed basis) as ferrous sulfate. Orts, feces, and urine were collected daily in Exp. 1; whereas pigs had a 4-d adjustment period followed by a 3-d total collection period (Period 1 = d 5 to 7; Period 2 = d 12 to 14; Period 3 = d 26 to 28) during each phase in Exp. 2. Blood samples were obtained from pigs on d 0, 7, and 14 in Exp. 1 and d 0, 7, 21, and 35 in Exp. 2 to determine hemoglobin (Hb), hematocrit (Hct), and plasma Cu, (PCu), Fe (PFe), and Zn (PZn). Pigs in Exp. 1 were killed at d 14 (mean BW = 8.7 kg) to determine whole-body, liver, and kidney mineral concentrations. There were no differences in growth performance in Exp. 1 or 2. In Exp. 1, pigs fed ZnO or ZnM diets had greater (P < 0.001) dietary Zn intake during the 14-d study and greater fecal Zn excretion during Phase 2 compared with pigs fed the NC diet. Pigs fed 2,000 mg/kg, regardless of Zn source, had greater (P < 0.010) PZn on d 7 and 14 than pigs fed the NC diet. Whole-body Zn, liver Fe and Zn, and kidney Cu concentrations were greater (P < 0.010), whereas kidney Fe and Zn concentrations were less (P < 0.010) in pigs fed pharmacological Zn diets than pigs fed the NC diet. In Exp. 2, dietary Fe supplementation tended to increase (linear, P = 0.075) dietary DMI, resulting in a linear increase (P < 0.050) in dietary Fe, Cu, Mg, Mn, P, and Zn intake. Subsequently, a linear increase (P < 0.010) in fecal Fe and Zn excretion was observed. Increasing dietary Fe resulted in a linear increase in Hb, Hct, and PFe on d 21 (P < 0.050) and 35 (P < 0.010). Results suggest that dietary Zn or Fe additions increase mineral status of nursery pigs. Once tissue mineral stores are loaded, dietary minerals in excess of the body's requirement are excreted.  相似文献   

7.
Three experiments were conducted to evaluate the effect of feeding pharmacological concentrations of zinc (Zn), from organic and inorganic sources, on growth performance, plasma and tissue Zn accumulation, and Zn excretion of nursery pigs. Blood from all pigs was collected for plasma Zn determination on d 14 in Exp. 1, d 7 and 28 in Exp. 2, and d 15 in Exp. 3. In Exp. 1, 2, and 3, 90, 100, and 15 crossbred (GenetiPorc USA, LLC, Morris, MN) pigs were weaned at 24+/-0.5, 18, and 17 d of age (6.45, 5.47, and 5.3 kg avg initial BW), respectively, and allotted to dietary treatment based on initial weight, sex, and litter. A Phase 1 nursery diet was fed as crumbles from d 0 to 14 in Exp. 1, 2, and 3, and a Phase 2 nursery diet was fed as pellets from d 15 to 28 in Exp. 1 and 2. The Phase 1 and Phase 2 basal diets were supplemented with 100 ppm Zn as ZnSO4. Both dietary phases contained the same five dietary treatments: 150 ppm additional Zn as zinc oxide (ZnO), 500 ppm added Zn as ZnO, 500 ppm added Zn as a Zn-amino acid complex (Availa-Zn 100), 500 ppm added Zn as a Zn-polysaccharide complex (SQM-Zn), and 3,000 ppm added Zn as ZnO. Overall in Exp. 1, pigs fed 500 ppm added Zn as SQM-Zn or 3,000 ppm added Zn as ZnO had greater ADG (P < 0.05) than pigs fed 150 ppm, 500 ppm added Zn as ZnO, or 500 ppm added Zn as Availa-Zn 100 (0.44 and 0.46 kg/d vs 0.35, 0.38, and 0.33 kg/d respectively). Overall in Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had greater (P < 0.05) ADG and ADFI than pigs fed any other dietary treatment. On d 14 of Exp. 1 and d 28 of Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had higher (P < 0.05) plasma Zn concentrations than pigs on any other treatment. In Exp. 3, fecal, urinary, and liver Zn concentrations were greatest (P < 0.05) in pigs fed 3,000 ppm added Zn as ZnO. On d 10 to 15 of Exp. 3, pigs fed 3,000 ppm added Zn as ZnO had the most negative Zn balance (P < 0.05) compared with pigs fed the other four dietary Zn treatments. In conclusion, feeding 3,000 ppm added Zn as ZnO improves nursery pig performance; however, under certain nursery conditions the use of 500 ppm added Zn as SQM-Zn may also enhance performance. The major factor affecting nutrient excretion appears to be dietary concentration, independent of source.  相似文献   

8.
In Exp. 1, a total of 144 pigs (BW, 6.68 ± 0.17 kg) were weaned at 21 d, blocked by BW, and allocated to 48 pens with 3 pigs per pen. Pens were randomly assigned to 1 of 6 dietary treatments (0, 2.5, 5, 7.5, and 10% glycerol supplemented to replace up to 10% lactose in a basal starter 1 diet containing 20% total lactose, which was fed for 2 wk), and a negative control diet with 10% lactose and 0% glycerol. A common starter diet was fed for the next 2 wk. In Exp. 2, a total of 126 pigs (BW, 6.91 ± 0.18 kg) were weaned at 21 d of age, blocked by BW, and allocated to 42 pens with 3 pigs per pen. Pigs were assigned to 1 of 6 treatments in a 2 × 3 factorial arrangement in a randomized complete block design with factors being 1) glycerol inclusion in replacement of lactose in starter 1 diets (0 or 5%) fed for 2 wk, and 2) glycerol inclusion in starter 2 diets (0, 5, or 10%) fed for 3 wk. In Exp. 1, glycerol supplementation at 10% improved (P=0.01) ADG (266 vs. 191 g/d) and G:F (871 vs. 679 g/kg) during the starter 1 period when compared with the negative control. Incremental amounts of glycerol linearly (P<0.05) increased ADG and ADFI, but did not affect G:F during starter 1. There was no effect of feeding glycerol during the starter 1 phase on subsequent performance during the starter 2 phase or overall. Serum glycerol concentrations increased linearly (P=0.003) with increasing dietary glycerol, and serum creatinine (P=0.004) and bilirubin (P=0.03) concentrations decreased with increasing glycerol. In Exp. 2, glycerol did not affect performance during starter 1, but it linearly increased (P≤0.01) ADG and ADFI during starter 2 (464, 509, and 542 and 726, 822, and 832 g/d, respectively) and overall (368, 396, and 411 and 546, 601, and 609 g/d, respectively). At the end of the study, pigs were 1.0 and 1.5 kg heavier when fed 5 and 10% glycerol, respectively (linear, P<0.01). Serum glycerol concentrations increased linearly during starter 2 (P<0.001), but were not affected during starter 1. Glycerol supplementation increased serum urea N quadratically (P<0.001) and decreased creatinine linearly (P<0.05) in the starter 2 phase. Overall, data indicate that glycerol can be added to nursery pig diets at 10%, while improving growth performance.  相似文献   

9.
Two studies were carried out with the same group of pigs within a wean-to-finish system. In Study 1 (weaning to wk 8 postweaning), the effect of feeder-trough space in pens that were double-stocked on pig growth was evaluated. In Study 2 (end of wk 8 to 112 +/- 1.5 kg BW), the effect of variation in pig BW within a pen on growth was investigated. In Study 1, a randomized block design was used to compare two feeder-trough space treatments (Double [4 cm/pig] vs Control [2 cm/pig]). Pigs (n = 1,728) were randomly allocated at weaning (5.4 +/- 0.01 kg BW; 16 d of age) to mixed-sex pens (8 pens/treatment) of 108 pigs/pen on the basis of BW. Floor-space (0.30 m2/pig) and drinker allocation (13 pigs/drinker) were the same for both treatments. Two six-place (35 cm/place) feeders were positioned together in the center of each pen and were accessible from both sides. For the Double treatment, both feeders contained feed, whereas for the Control only one feeder contained feed. In Study 2, a randomized block design was used to compare three BW/variation in BW treatments: 1) Heavy BW/Low variation, 2) Light BW/Low variation, and 3) Mixed BW/Normal variation. The double-stocked pens of pigs from within previous feeder-trough space treatment were split into two groups of 54 pigs (equal sex ratio) having either high or low BW variation within pen. Pigs had free access to feed and water throughout the studies. In Study 1, doubling feeder-trough space did not affect (P > 0.05) pig growth from weaning to the end of wk 6. From wk 6 to 8, pigs on the Double treatment compared to the Control treatment had higher (P < 0.05) ADG and were heavier (P < 0.05), but had similar (P > 0.05) ADFI and gain:feed ratio. In Study 2, pen-BW treatment did not impact (P > 0.05) ADG or gain:feed ratio; however, Heavy/Low had greater (P < 0.01) ADFI than Light/Low with Mixed/Normal being intermediate for ADFI. At 112 kg BW, CV of BW within a pen was similar (P > 0.05) across treatments; however, days to market BW was greater (P < 0.001) for Light/Low than Heavy/ Low with Mixed/Normal being intermediate. In summary, increasing feeder-trough space from 2 to 4 cm per pig increased daily gain after wk 6 postweaning in double-stocked pens of pigs; however, sorting pigs on the basis of BW when splitting pens did not impact growth rate or variation in BW within a pen at market BW.  相似文献   

10.
In three experiments the interrelationship between dietary CP and recombinant porcine somatotropin (rpSt, i.m. daily) on ADG, feed efficiency (F/G) and carcass traits was examined in crossbred Yorkshire gilts and barrows given ad libitum access to their diets during the finishing period (55 to 110 kg BW). Pigs, blocked by BW and gender, were assigned (four/pen) within block. In Exp. 1, 140 pigs were assigned two/gender per pen to each of five pens/block and received a diet of either 12%, 18% or 24% CP (n = 2, 1 and 2 pens/block, respectively). Pigs received rpSt, either 0 or 120 micrograms/kg BW (12% and 24% CP groups) or 60 micrograms/kg BW (18% CP group). When CP was 12%, rpSt decreased ADG and increased F/G (P less than .05), whereas when CP was 18% or 24%, rpSt increased ADG and lowered F/G (P less than .05). Backfat thickness was reduced (P less than .05) by rpSt regardless of CP. In Exp. 2, 120 pigs were assigned two/gender per pen to each of five pens/block and received a diet of 24% CP. Either 0, 15, 30, 60 or 120 micrograms of rpSt/kg BW was administered to each pig. All doses of rpSt increased ADG, lowered F/G and decreased backfat thickness compared with measurements for control pigs (P less than .05). In Exp. 3, 140 pigs were assigned two/gender per pen to each of seven pens/block and received a diet of either 14%, 18% or 24% CP (n = 3, 2 and 2 pens/block, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Four experiments were conducted to evaluate the effects of supplementing graded levels (0 to 100 ppm) of L-carnitine to the diet of weanling pigs on growth performance during a 34- to 38-d experimental period. A fifth experiment was conducted to determine the effects of addition of L-carnitine to diets with or without added soybean oil (SBO) on growth performance. In Exp. 1, 128 pigs (initial BW = 5.5 kg) were allotted to four dietary treatments (six pens per treatment of four to six pigs per pen). Dietary treatments were a control diet containing no added L-carnitine and the control diet with 25, 50, or 100 ppm of added L-carnitine. In Exp. 2, 3, and 4, pigs (4.8 to 5.6 kg of BW) were allotted to five dietary treatments consisting of either a control diet containing no added L-carnitine or the control diet with 25, 50, 75, or 100 ppm of added L-carnitine. All diets in Exp. 1 to 4 contained added soybean oil (4 to 6%). There were seven pens per treatment (four to five pigs per pen) in Exp. 2, whereas Exp. 3 and 4 had five and six pens/treatment (eight pigs per pen), respectively. In general, dietary carnitine additions had only minor effects on growth performance during Phases 1 and 3; however, dietary L-carnitine increased (linear [Exp. 1], quadratic [Exp. 2 to 4], P < 0.03) ADG and gain:feed (G:F) during Phase 2. The improvements in growth performance during Phase 2 were of great enough magnitude that carnitine addition tended to increase ADG (linear, P < 0.10) and improve G:F (quadratic, P < 0.02) for the entire 38-d period. In Exp. 5, 216 weanling pigs (5.8 kg of BW) were allotted (12 pens/treatment of four to five pigs per pen) to four dietary treatments. The four dietary treatments were arranged in a 2 x 2 factorial with main effects of added SBO (0 or 5%) and added L-carnitine (0 or 50 ppm). Pigs fed SBO tended (P < 0.07) to grow more slowly and consumed less feed compared with those not fed SBO, but G:F was improved (P < 0.02). The addition of L-carnitine did not affect (P > 0.10) ADG or ADFI; however, it improved (P < 0.03) G:F. Also, the increase in G:F associated with L-carnitine tended to be more pronounced for pigs fed SBO than those not fed SBO (carnitine x SBO, P < 0.10). These results suggest that the addition of 50 to 100 ppm of added L-carnitine to the diet improved growth performance of weanling pigs. In addition, supplemental L-carnitine tended to be more effective when SBO was provided in the diet.  相似文献   

13.
本研究共开展两个试验,探讨饲粮类型和不添加维生素和微量矿物元素对猪肥育后期生长性能、胴体和肌肉品质、粪中微量矿物元素排泄的影响。在试验1中,选用128头平均体重(78.5±4.6)kg的肥育猪,根据体重和性别分成4组,每组4圈(重复),每个重复8头猪。四组试验猪的试验处理为2×2因子设计,即两种类型(玉米-豆粕型和玉米-杂粕型)饲粮和添加或不添加维生素/微量矿物元素预混料。在试验2中,选用112头平均体重(90.3±6.3)kg的肥育猪,根据体重和性别分成4组,每组4圈(重复),每个重复7头猪。试验处理同试验1。结果显示,在79~110kg肥育期中(试验1),采食玉米-豆粕型饲粮的猪的增重速度和采食量显著高于采食玉米-杂粕型饲粮的猪(P<0.01或0.05)。在90~105kg肥育期中(试验2),采食玉米-豆粕型饲粮的猪的增重速度仍然高于采食玉米-杂粕型饲粮的猪(P<0.05)。但是,维生素和微量矿物元素添加与否对生长性能无显著影响(P>0.05)。饲粮类型和不添加维生素和微量矿物元素对胴体和肌肉品质均无显著影响(P>0.05)。粪中微量矿物元素含量不受饲粮类型的影响(P>0.05),但不添加维生素和微量矿物元素时,粪中铜、铁、锰的含量显著降低(P<0.01),粪中锌含量也有降低的趋势(P>0.05)。对于生长性能、胴体和肌肉品质以及微量矿物元素排泄量,饲粮类型×维生素/微量矿物元素预混料的交互作用不显著(P>0.05)。结果表明,在猪的肥育后期(最后约25~40d),在玉米-豆粕型和玉米-杂粕型饲粮中可不添加维生素和微量矿物元素,从而可降低饲料成本和减少微量矿物元素的排泄。  相似文献   

14.
High dietary copper improves odor characteristics of swine waste   总被引:4,自引:0,他引:4  
We conducted two experiments to determine the effects of dietary copper concentration and source on odor characteristics of swine waste. In both experiments, 192 weanling gilts and barrows were allotted to 24 pens. Pens were randomly assigned to one of six dietary treatments, consisting of control (10 ppm Cu as cupric sulfate, CuSO4), 66 or 225 ppm Cu as CuSO4, or 33, 66, or 100 ppm Cu as cupric citrate (Cucitrate). An antibiotic was included in the diets for Exp. 1, but not Exp. 2. On d 28, fecal samples were randomly obtained from one pig per pen and stored at -20 degrees C until preparation and evaluation by an odor panel. The odor panel consisted of 10 individuals, and each panelist evaluated the odor intensity, irritation intensity, and odor quality of the samples. In Exp. 1, the odor and irritation intensity of the feces were lower (P < .05) from animals consuming diets containing 225 ppm Cu as CuSO4 and 66 or 100 ppm Cu as Cu-citrate compared to the control. The odor quality of the waste from animals consuming diets containing 225 ppm Cu as CuSO4 and 66 or 100 ppm Cu as Cu-citrate was improved (P < .05) compared to the 33 ppm Cu treatment. In Exp. 2, the odor intensity of the feces of pigs receiving diets supplemented with all concentrations of Cu-citrate was lower (P < .05) than that of feces from the control animals. Irritation intensity of the feces was not affected by treatment. Odor quality of waste of pigs supplemented with 225 ppm Cu from CuSO4 and all concentrations of Cu-citrate was improved (P < .05) compared to that of waste of the control pigs. Two gilts and two barrows from each nursery pen in Exp. 1 were continued through the growing-finishing phase on their respective experimental diets. The growing-finishing phase lasted 103 d, and fecal samples were randomly obtained from one pig per pen at the completion of the phase. During the growing-finishing phase, the odor intensity and the irritation intensity of the feces were lower (P < .05) from pigs supplemented with 66 and 225 ppm Cu as CuSO4 and 66 and 100 ppm Cu from Cu-citrate than from the control pigs. The odor quality of the waste was improved (P < .05) in all animals receiving supplemental Cu. These data indicate an improvement in odor characteristics of swine waste with the supplementation of Cu. In addition, lower concentrations of an organic nonsulfate Cu source resulted in similar odor characteristics of swine waste as 225 ppm CuSO4.  相似文献   

15.
Two experiments were conducted to evaluate the effects of live yeast supplementation on nursery pig performance, nutrient digestibility, and fecal microflora and to determine whether live yeast could replace antibiotics and growth-promoting concentrations of Zn and Cu in nursery pigs. In Exp. 1, 156 pigs were weaned at 17 d of age (BW = 5.9 kg) and allotted to a 2 x 2 factorial randomized complete block design (six or seven pigs per pen with six pens per treatment). Factors consisted of 1) dietary supplementation with oat products (oat flour and steam-rolled oats; 0 or 27.7%) and 2) yeast supplementation at 0 or 1.6 x 10(7) cfu of Saccharomyces cerevisiae SC47/g of feed. In Exp. 2, 96 pigs were weaned at 17 d of age and allotted to a 2 x 2 factorial randomized complete block design (four pigs per pen with six pens per treatment) with factors of 1) diet type (positive control containing growth-promoting concentrations of Zn, Cu, and antibiotics or negative control) and 2) live yeast supplementation (0 or 2.4 x 10(7) cfu of Saccharomyces cerevisiae SC47/g of feed). The inclusion of oat products in Exp. 1 decreased (P < 0.10) overall ADG and final BW. Yeast supplementation did not affect growth performance of pigs in Exp. 1 (P = 0.65); however, ADG in Exp. 2 was 10.6% greater (P < 0.01) and ADFI was increased by 9.4% (P < 0.10) in pigs supplemented with yeast in the positive control diet. Addition of Zn, Cu, and antibiotics to the diet improved gain:feed ratio during the prestarter period (P < 0.02) and overall (P = 0.10). In Exp. 1, inclusion of oat products increased (P < 0.01) total bacteria in feces when measured on d 10. Fecal lactobacilli measured on d 28 were reduced (P < 0.05) in pigs fed diets with oat products and yeast (interaction, P < 0.05). In Exp. 2, yeast supplementation decreased (P < 0.05) total bacteria and lactobacilli. Dietary yeast resulted in a greater (P < 0.05) yeast count in feces of pigs during the starter phase of Exp. 1. Yeast decreased (P < 0.10) the digestibility of DM, fat, and GE in the prestarter phase and DM, fat, P, and GE in the starter phase, whereas oat products increased the digestibility of DM, CP, fat, and GE (P < 0.05) in the prestarter phase. Results indicate that live yeast supplementation had a positive effect on nursery pig performance when diets contained growth-promoting antimicrobials. Nonetheless, the response was variable, and the conditions under which a response might be expected need to be further defined.  相似文献   

16.
Five experiments were conducted to test the effects of various dietary humic substances (HS; HS1, 2, 3, and 4, each with different fulvic and humic acid contents) on pig growth, carcass characteristics, and ammonia emission from manure. In Exp. 1, 120 pigs were allotted to 3 dietary treatments without HS (control) or with HS1 at 0.5 and 1.0% (8 pens/treatment and 5 pigs/pen) and fed diets, based on a 5-phase feeding program, from weaning (d 21.3 +/- 0.3 of age) to 60 kg of BW. In Exp. 2 and 3, 384 pigs (192 for each experiment) were allotted to 3 dietary treatments without HS, with HS1, or with HS2 (0.5%) for Exp. 2 and without HS, or with HS3 or HS4 (0.5%) for Exp. 3 (8 pens/treatment and 8 pigs/pen in each experiment). Pigs were fed diets, based on a 6-phase feeding program, from weaning (25.4 +/-0.2 and 23.6 +/-0.3 d of age for Exp. 2 and 3, respectively) to 110 kg of BW. In Exp. 4, 96 pigs were weaned at 22.1 +/-0.2 d of age and allotted to 2 treatments without or with HS1 at 0.5% (6 pens/treatment and 8 pigs/pen), and in Exp. 5 96 pigs were weaned at 20.9 +/-0.3 d of age and allotted to 3 treatments without HS, or with HS3 or HS4 (0.5%; 4 pens/treatment and 8 pigs/pen). Pigs were fed the diets for at least 2 wk before they were moved to an environmental chamber to measure aerial ammonia and hydrogen sulfide for 48 h at 5-min intervals. In Exp. 1, pigs fed diets with HS1 at 0.5% had greater (P < 0.05) ADG during phase 3 and greater (P < 0.05) G:F during phases 3 and 5 than control pigs. In Exp. 2, pigs fed diets with HS1 or HS2 at 0.5% had greater (P < 0.05) ADG and G:F than control pigs during the entire feeding period, whereas in Exp. 3 HS3 or HS4 did not improve pig growth performance. Ammonia emission from manure was reduced by 18 or 16% when pigs were fed diets with HS1 (P = 0.067) or HS4 (P = 0.054), respectively. The results of this study indicate that the effects of dietary HS are variable but may improve growth performance of pigs and reduce ammonia emission from manure. Further research is needed to clarify these effects and the mechanisms by which HS may cause them.  相似文献   

17.
Two studies were carried out in different wean-to-finish barns to determine the effects of double stocking on pig growth performance. In Study 1, pigs (n = 1,560) were used in a randomized complete block design with a 2 x 2 factorial arrangement of treatments: initial stocking treatment (Single [52 pigs/pen] vs Double [104 pigs/pen] stocked for 10 wk after weaning) and weighing frequency (High [12 times during the study] vs Low [3 times]) on pig performance from weaning (5.9+/-0.01 kg BW; 17 d of age) to harvest (114+/-0.67 kg BW). Floor and feeder space per pig were 0.650 m2 and 4 cm and 0.325 m2 and 2 cm for the single- and double-stocked treatments, respectively. In Study 2, pigs (n = 1,458) were used in a randomized complete block design to evaluate two initial stocking treatments (Single [27 pigs] vs Double [54 pigs] stocked for 10 wk after weaning) on pig performance from weaning (4.8+/-0.01 kg BW; 15 d of age) to harvest (24 wk after weaning). Floor and feeder space per pig were 0.640 m2 and 3.4 cm and 0.320 m2 and 1.7 cm for single- and double-stocked pens, respectively. In both studies, double-stocked pigs were split at the end of wk 10 into two equal-sized groups of similar mean BW and CV of BW, and one group was moved to a different pen in the same building. In Study 1, performance was not affected (P > 0.10) by frequency of weighing. For the first 10 wk after weaning, the Double compared to the Single treatment had lower ADG (7.7 and 7.9%, for Studies 1 and 2, respectively; P < 0.001) and lighter pigs at wk 10 (6.8 and 7.3%, respectively; P < 0.001). During the first 10 wk in Study 1, Double compared to the Single pigs had lower ADFI (7%; P < 0.001) but similar gain:feed (P > 0.10). From wk 11 to harvest, pigs on Double and Single treatments had similar (P > 0.10) ADG in both studies and, in Study 1, ADFI was unaffected by initial stocking treatment, but double-stocked pigs had greater gain:feed (4%, P < 0.01). Double-stocked pigs required an additional 2 d to reach a fixed harvest BW (P < 0.05) in Study 1 and were lighter (4%; P < 0.05) at 24 wk after weaning in Study 2. Carcass measures were similar (P > 0.10) for double- and single-stocked pigs. Double-stocked pigs that were moved at the end of 10 wk had growth performance similar (P > 0.10) to those that remained in the original pen. In summary, double stocking reduced growth rate to 10 wk after weaning but subsequently had no effect on growth rate and improved feed efficiency.  相似文献   

18.
Two experiments were conducted to determine the effect of lightweight pig removal and remixing on performance to slaughter. Experiment 1 was a growing-finishing trial utilizing a total of 900 pigs (26.2+/-0.1 kg initial weight) that were sorted and remixed at a mean replicate BW of 72 kg. Experiment 2 was a wean-to-finish trial (17 d mean wean age; 4.8 kg +/- 0.1 BW) utilizing 225 barrows with sorting and remixing occurring 3 wk after weaning. Treatments were 15 pigs/ pen from initial weight to slaughter (15S), 20 pigs/pen from initial weight to time of sort and remix and then reduced to 15 pigs/pen (20/15), and 15 pigs/pen from time of sort and remix to slaughter comprised of the five lightest pigs from each of three 20/15 pens per replicate (15M). Space allocation was 0.56 m2/pig from 26 to 70 kg and 0.74 m2/pig thereafter in Exp. 1. In Exp. 2, pen size was fixed at 2.44 x 4.27 m. In Exp. 1, there was no effect (P > 0.20) of treatment on performance prior to 70 kg. Least squares means for ADG from time of sort and remix to first pig removal from a pen for slaughter at 113 kg were 0.93, 0.87, and 0.91 kg/d for the 20/15, 15M, and 15S treatments, respectively (P < 0.05). When comparing the population represented by the 20/15 + 15M treatments vs the 15S population, there was no difference (P > 0.20) in ADG, ADFI, feed conversion, or carcass lean content. In Exp. 2, pigs in the 20/15 treatment grew slower (P < 0.05) than 15S pigs for the first 21 d (0.20 vs 0.22 kg/d, respectively) with a lower ADFI (P = 0.06) and no difference in feed conversion. When comparing the population represented by the 20/15 + 15M treatments vs the 15S population after sorting and remixing, there was no effect (P > 0.15) of experimental treatments on ADG, ADFI, feed conversion efficiency, carcass lean content, or daily lean gain. These results suggest that removal of lightweight pigs and remixing of the removed pigs into pens of similar-weight pigs is ineffective in improving the overall performance of a population of pigs during the postweaning period.  相似文献   

19.
Three experiments were conducted to evaluate the effects of feeding dietary concentrations of organic Zn as a Zn-polysaccharide (Quali Tech Inc., Chaska, MN) or as a Zn-proteinate (Alltech Inc., Nicholasville, KY) on growth performance, plasma concentrations, and excretion in nursery pigs compared with pigs fed 2,000 ppm inorganic Zn as ZnO. Experiments 1 and 2 were growth experiments, and Exp. 3 was a balance experiment, and they used 306, 98, and 20 crossbred pigs, respectively. Initially, pigs averaged 17 d of age and 5.2 kg BW in Exp. 1 and 2, and 31 d of age and 11.2 kg BW in Exp. 3. The basal diets for Exp. 1, 2, and 3 contained 165 ppm supplemental Zn as ZnSO4 (as-fed basis), which was supplied from the premix. In Exp. 1, the Phase 1 (d 1 to 14) basal diet was supplemented with 0, 125, 250, 375, or 500 ppm Zn as Zn-polysaccharide (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). All pigs were then fed the same Phase 2 (d 15 to 28) and Phase 3 (d 29 to 42) diets. In Exp. 2, both the Phase 1 and 2 basal diets were supplemented with 0, 50, 100, 200, 400, or 800 ppm Zn as Zn-proteinate (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). For the 28-d Exp. 3, the Phase 2 basal diet was supplemented with 0, 200, or 400 ppm Zn as Zn-proteinate, or 2,000 ppm Zn as ZnO (as-fed basis). All diets were fed in meal form. In Exp. 1, 2, and 3, pigs were bled on d 14, 28, or 27, respectively, to determine plasma Zn and Cu concentrations. For all three experiments, there were no overall treatment differences in ADG, ADFI, or G:F (P = 0.15, 0.22, and 0.45, respectively). However, during wk 1 of Exp. 1, pigs fed 2,000 ppm Zn as ZnO had greater (P < or = 0.05) ADG and G:F than pigs fed the basal diet. In all experiments, pigs fed a diet containing 2,000 ppm Zn as ZnO had higher plasma Zn concentrations (P < 0.10) than pigs fed the basal diet. In Exp. 1 and 3, pigs fed 2,000 ppm Zn as ZnO had higher fecal Zn concentrations (P < 0.01) than pigs fed the other dietary Zn treatments. In conclusion, organic Zn either as a polysaccharide or a proteinate had no effect on growth performance at lower inclusion rates; however, feeding lower concentrations of organic Zn greatly decreased the amount of Zn excreted.  相似文献   

20.
The effect of dietary phytase and the prebiotic inulin on apparent mineral digestibility, bone mineralization, and tissue mineral contents was evaluated in weanling and growing pigs. In Exp. 1, inulin and phytase were incorporated in a 2 × 3 factorial arrangement of treatments with 8 replicate pens per treatment in a randomized complete block design. There were 2 levels of phytase [0 and 1000 phytase units (FTU)/kg] and 3 levels of chicory inulin (0, 3, and 6%). Weanling pigs (17 d of age; 5 or 4 pigs per pen) with an initial BW of 6.0 ± 0.6 kg were evaluated for 35 d postweaning. Macromineral digestibility was calculated using chromic oxide as an index in fecal samples collected during the final week of the experiment in replicates 1 through 4. On d 36, 1 pig per pen was killed and the heart, liver, kidney, and left tibia were excised and weighed. Inulin did not have any effect on growth performance measurements. Phytase increased (P < 0.05) BW on d 35 and ADG and ADFI during the 21-to-35-d and 0-to-35-d periods. Inulin did not result in increased tissue mineral concentrations on a per unit (mg/kg) or total tissue basis. Phytase increased (P < 0.05) the concentration of Zn in the liver, Mn and Zn in the heart, and Mg and Mn in the kidney. Phytase also increased (P < 0.05) total P, Mg, S, Mn, Se, and Zn in the liver as well as tibia ash. Phytase increased the digestibility of Ca (P < 0.01) and P (P < 0.05). Experiment 2 was conducted with growing pigs (initial BW, 41 ± 5 kg) to evaluate 2 levels of inulin (0 or 6%) and 2 levels of phytase (0 or 1000 FTU/kg) in a 2 × 2 factorial with 6 replicates in a randomized complete block design. Total urine and feces were collected for 10 d from each of 24 barrows after a 21-d acclimation period. Inulin inclusion resulted in reduced Ca digestibility (P < 0.05). Phytase increased (P < 0.05) the digestibility of both Ca and P. These results indicate that dietary inulin does not affect the overall mineral status or growth performance of pigs, whereas phytase increases the utilization of Ca and several microminerals, in addition to P, and also increases growth performance. Inulin and phytase do not appear to interact to affect pig growth or mineral status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号