首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为提升农机管理水平和用户收益,该研究利用影响作业效益的因素,以每台农机一天的作业信息作为一条数据评估农机当天作业效益。作业信息包括农机作业效率、油耗、作业质量、重复作业率、遗漏作业率、有效作业时间占比等。使用半监督BP_Adaboost方法对农机作业效益进行评估,对部分数据进行人工评分,根据评分结果标记农机每天作业效益的好坏,其中一部分作为训练样本,另一部分作为测试样本,再利用BP_Adaboost方法训练模型后对剩余未评分数据预测,以减少训练样本的人工标记工作量和提高模型准确性。从32 000条深松作业数据中选取1 000条样本进行标记,其中500条作为训练样本,500条作为测试样本,使用BP_Adaboost方法得到的模型预测准确率为93.36%,使用半监督BP_Adaboost方法增加训练样本得到的模型预测准确率为97.03%。根据作业效益推荐最优农机机具组合,增强作业能力,提高效益。  相似文献   

2.
基于北斗的农机作业大数据系统构建   总被引:1,自引:0,他引:1  
针对全国范围农机作业动态监测和量化统计的应用需求,该研究通过在农业机械上安装北斗终端,制订数据传输规范,完成了基于北斗的农机作业大数据系统建设。该系统由农业机械及北斗终端、农机制造企业物联网平台和农机作业大数据管理服务平台3部分组成。系统共接入农机290 153辆。经数据清洗、轨迹分割和参数提取3个数据处理步骤,可获得农机的工作时长、行驶里程和作业面积等基本统计量。以2021年夏小麦机械化收割为例,利用该系统进行数据获取、处理和统计分析,输出收割机分布热力图和作业重心转移图,进行了收割时长、收割效率与收割面积等统计,分析了小麦主产区对跨区作业的依赖程度。麦收期间在线收割机累计35 243辆,日均18 568辆,收割时长中位数均值为8.3 h/d,收割面积中位数均值为5.5 hm2/d,约75%的小麦收割机进行了跨区作业,跨区距离中位数约为597 km。应用结果表明,农机作业大数据系统可准确开展数据处理和作业统计,可以向农业农村部门、农机制造企业、农机合作社和农机手提供作业动态监测和数据分析服务。  相似文献   

3.
推进农业装备智能化能够有效解决农业劳动力短缺的问题。环境感知是农业装备智能化的首要条件。然而,农业环境的动态变化和非结构化特性限制了无人农机的环境感知能力。该文对无人农机的作业环境信息感知技术进行全面梳理,首先介绍了无人农机作业环境的典型要素和各类感知传感器,并分析了不同传感器的优缺点,然后分别从障碍物感知、作物行感知和农田边界及高程信息感知等方面,对无人农机作业环境信息感知技术进行归纳总结,最后讨论了无人农机作业环境信息感知技术面临的挑战及发展趋势,旨在推动环境感知技术在农业领域的应用,促进农业机械的智能化转型。  相似文献   

4.
《农业信息探索》2011,(5):15-15
近日,农业部发布2011年小麦、水稻、玉米跨区机收作业市场信息。共包括全国19个小麦生产省、21个水稻生产省和13个玉米生产省的跨区机收作业市场供求、价格等信息。发布跨区作业市场信息是对农机跨区作业市场进行宏观调控的有效手段.  相似文献   

5.
基于多学科技术融合的智能农机控制平台研究综述   总被引:9,自引:8,他引:1  
农业机械的自动化和智能化包含内容广泛,有农机定位与导航,动态路径规划,机器视觉和远程监控等,牵涉到大量的工程技术学科,包括导航、图像、模型与策略、执行器以及数据链等。农机定位与导航一般采用基于农机运动学模型结合GPS(global positioning system)/IMU(inertial measurement unit)组合导航信息,在导航路径规划算法指引下实现农机轨迹跟踪的方法。建立的农机运动学模型精度,GPS数据的连续性以及惯导器件误差系数漂移等因素都会影响该方法的有效性。路径跟踪通常采用各种现代控制理论与方法,而面对复杂的田间作业环境变化,农机的自主避障以及动态路径规划能力也会影响轨迹跟踪精度。机器视觉的稳定性和目标特征信息分离度影响着农机环境感知能力,目前目标识别主要采用hough变换,hough变换的全局检测特性决定了该算法运算量较大,需要探究改进特征提取算法。远程监控农机作业是智能农机发展的一个方向,构建无线导航,控制和视频数据传输网络有助于提高农机的智能化水平,可以采用分布式哈希表(distributed hash table)来研究网络覆盖和互联技术。该文融合多个学科,从高精度定位与导航技术、复杂环境及工况下农机运动精确自主控制技术、稳定清晰的机器视觉感知技术和基于4G网络和新一代物联网的高覆盖数据传输技术几个方面,论述了智能农机在光机电液多个学科领域内的研究现状,并指出采用北斗地基增强网络和网络RTK(real-time kinematic)技术、惯导定位误差精确建模与补偿、环境感知与自主避障、立体结构自组网技术以及多机协作是现代农业机械的发展方向。以期为现代化智能农业机械的设计提供参考。  相似文献   

6.
随着农村经济建设的高速发展,加上近几年农机购置补贴力度的加大,农民越来越多使用农机作业。农业机械相比手工作业具有效率高、效益好的特点,大中型机械、小型机械都普遍使用,且新机具推广应用快,品目多,很多用户不掌握机具构造原理,不具有维修设备和维修能力,维修较为困难,常常需要专业的农机维修网点进行维修。但是农机维修网点目前在乡村中仍然较为缺乏,很多农民的农机出现故障无法及时得到修理。文章讨论了如何加强乡村农机维修网点的建设。  相似文献   

7.
农机装备跨区作业存在作业任务重、转移范围大、作业时效性强等问题,传统的农机调度缺乏科学合理的调配方案。该研究开展了基于改进遗传算法的多机协同作业任务调度方法研究。首先对多块农田需连续进行多种生产任务的问题进行分析,建立在农机数量、转移距离、作业准备时间及作业时间等约束条件下的时间窗农机作业调度模型;然后以最小化作业时间为优化目标,提出改进多父辈遗传算法(Improved Multi-parent Genetic Algorithm, IMPGA)的优化方法求解农机作业规划方案;最后根据新疆塔城地区的农田数据及随机生成的农田任务进行模拟与仿真,并与标准遗传算法(Genetic Algorithm, GA)进行对比。结果表明:IMPGA和GA均能有效解决多任务多农机作业分配问题,IMPGA算法总体上优于GA,调度的最优时间和平均时间分别缩短2.47%和2.70%。该研究可为农机跨区作业提供合理的调度方案,也为规模化无人农场的生产经营提供科学依据。  相似文献   

8.
为解决农机作业过程中因突发状况引起的作业时间增加、某些作业任务无法完成等问题,该研究提出一种基于改进合同网算法的同种农机机群动态作业任务分配方法。基于农机性能参数和任务参数综合考虑用时最长农机的作业时间、农机机群油耗和路上的路程建立机群代价函数,建立单个田块和地头相邻田块的路径规划方法,参考合同网算法中的招-投标过程,建立农机对任务进行投标的代价函数,基于降低服务器计算量、减少通信次数、任务均衡分配和减小非作业路程等原则,通过选择招标者、设定招标阈值、中标者任务再分配和农机间任务交换等方式改进合同网算法。在不同时间进行基于传统合同网算法和改进合同网算法的农机机群动态作业任务分配仿真试验和农场实际播种作业试验。仿真结果表明,基于改进合同网算法的动态任务分配仿真结果比基于传统合同网算法的动态任务分配仿真结果机群时间代价降低0.83%~12.89%,与服务器通信次数降低77.4%~85%。农场实际试验结果表明:在不同的任务分配时间,基于改进合同网算法的动态任务分配的机群时间代价比实际理论机群时间代价降低30.20%~34.09%。本文提出的动态作业任务分配法能够满足农业生产中同种农机机群动态作业任务分配需求。  相似文献   

9.
气吸式精播机种、肥作业智能计量监测系统   总被引:9,自引:7,他引:2  
为了解决大型精播机作业质量的自动监测问题,设计了种、肥作业智能计量监测系统。系统能够完成计量种、肥施播量,监测种箱和肥箱排空以及种管和肥管堵塞等情况。与以往的研究不同的是:采用了间接测量法计量种、肥施播数量,双轮测距法测量作业面积,并采用光电阵列检测种、肥排空及堵塞信息。系统安装在2BJM-9型精播机上进行了田间生产试验,播种量测量相对误差<5%,施肥量测量相对误差<9.6%,作业面积测量相对误差<5.5%,报警最大响应时间为0.8 s。通过现场试验,证明其方法可行,监测效果较好,能实现精播机作业的全天候、全过程监测。  相似文献   

10.
基于物联网的内河小型渔船动态信息监控系统设计   总被引:1,自引:2,他引:1  
为规范内河流域渔业生产秩序,保障渔船作业安全,该文设计了基于物联网的内河小型渔船动态信息监控系统。该系统集成了无线传感器网络、远程信息传输、远端后台监控等多种技术方法。其中,无线传感器网络主要用于获取包括渔船位置、电捕鱼违法监测信息和渔船超载检测信息等渔业现场数据。依靠Zig Bee技术,该网络实现了对不同类别传感器数据的汇聚、判断以及远程播发。远程信息传输是利用GPRS/GSM移动通信网络与互联网传输技术,实现了多渔船作业信息向后台监控中心的实时传输。后台渔政监控中心,具有渔船在电子地图上的识别与定位,渔业生产的实时监控以及渔政执法的决策辅助等功能。该系统经测试,可满足内河流域作业渔船在实时监管和安全保障等方面的需求,提高了农业渔政管理的水平。  相似文献   

11.
基于农机空间运行轨迹的作业状态自动识别试验   总被引:2,自引:1,他引:2  
以物联网为代表的现代信息技术在农机作业管理领域的发展应用,实现了农机作业过程的定位监控,但现有农机远程监管系统对海量农机空间位置数据仅实现了远程存储、显示和简单分析,难以满足农机精准管理和数据智能处理的要求。该文采用数据挖掘中的聚类和空间数据分析方法,结合农机空间运行轨迹的特点,研究了基于空间运行轨迹点的农机作业状态自动识别算法;设计实现了典型农机运行状态自动识别方法,定量分析了农机作业班次内田间作业时间、空行转移时间、停歇时间的量化构成。农机试验表明:发展的基于空间索引和网格密度的聚类算法精度达89%以上。农机作业状态自动识别为农机作业生产率、农机利用率和作业成本核算提供了定量依据。  相似文献   

12.
无人驾驶农机自主作业路径规划方法   总被引:1,自引:3,他引:1  
针对无人驾驶农机自主作业的应用需求,该研究设计了一种基于区块套行作业模式的路径规划方法,以生成含有速度指令和机具状态指令的可执行路径,重点解决田内作业的四边形地块适应性、无人驾驶农机适应性和农田作业路径完整规划等问题。该方法由农田信息处理模块和路径规划模块组成,农田信息处理模块将测绘产生的地块轮廓数据和障碍物数据处理为便于运算的地块轮廓点数据和障碍物轮廓点数据形式,然后由路径规划模块利用用户输入的作业方向、作业幅宽、转弯半径和起始方位等作业参数,经过作业梯形区生成、掉头区与作业区划分、作业条带分割、障碍物条带处理、作业条带路由、掉头路径生成和最终指令路径生成等子模块,最终生成无人驾驶农机的指令路径。仿真试验结果表明,相对于相邻法,该方法的作业面积比及作业路程比分别提升了10.0%和8.8%。播种作业田间试验结果表明,无人驾驶农机自主作业的横向偏差的均值和标准差分别为左偏0.002和0.027m,满足作业要求。研究结果表明,该研究提出的方法适应不同的四边形农田和障碍物,可以结合不同的作业参数完成路径规划,能够满足无人驾驶农机自主作业的需求。  相似文献   

13.
针对多个农机社会化服务平台联合,实现跨平台任务匹配中存在的敏感数据泄露和集中式服务器不可信问题,该研究提出了基于密文策略属性基可搜索加密(ciphertext-policy attribute-based searchable encryption,CP-ABSE)的农机社会化服务联盟链隐私匹配方案。该方案基于联盟链构建农机社会化服务联合平台,为多平台数据共享提供去中心化的可信环境;基于CP-ABSE技术实现跨平台的任务匹配,支持对任务密文数据的检索以及细粒度的访问控制,保护作业任务发布方和农机手的敏感数据;使用智能合约实现农田作业任务与农机手之间的匹配服务,避免集中式服务器存在的单点故障和恶意违规操作等问题。安全性分析表明,该方案能够保证数据的完整性、机密性以及匹配结果的可信性。基于Hyperledger Fabric构建了一个原型系统,测试结果表明,当全局属性数量为200时,系统构建和私钥生成的运行时间分别约8和2.5 s,搜索令牌生成与数据加密的计算开销分别为60和80 ms,匹配智能合约平均时延约为250 ms。该方案破解了农机社会化服务平台间的“数据孤岛”问题,对于促进农机社...  相似文献   

14.
现如今,机械化技术在我国农业中的使用越来越多,使得传统的农业耕作技术发生了很大的变化,解放了生产力,大大提高了农业耕作的作业效率。农机深松整地作业是现代农业中一个十分重要的环节,对于耕地的保护非常有益。基于此,从农机深松整理作业的重要性与技术要点入手,探讨更好地应用深松整地作业技术的措施,以提升农耕工作的质量与效率。  相似文献   

15.
基于农机空间轨迹的作业面积的缓冲区算法   总被引:1,自引:2,他引:1  
农机规模化管理与市场化作业服务需要准确、实时、便捷的农机作业面积测量方法。该研究基于农机空间运行轨迹,设计了作业面积测量的矢量缓冲区算法和栅格缓冲区算法,并通过农机满幅作业和重叠作业对比试验,检验了上述2种缓冲区算法与距离测量算法分别在R1K(real time kinematic,实时动态差分)、亚米级和单点定位3种不同GNSS(global navigation satellite system,全球导航卫星系统)定位精度条件下的测量相对误差。试验结果表明:当农机具备自动导航满幅作业条件时,距离测量算法在任何定位精度下均能获得较高精度测量结果;缓冲区算法仅在差分定位时测量精度较高。当农机无导航重叠作业时,距离测量算法的误差会随着作业重叠率的增加而显著增大,而缓冲区算法不受作业重叠的影响,测量精度稳定。目前国内仍普遍采用人工操控的农机作业方式,重叠作业不可避免,缓冲区测量算法能够提供更加准确的作业面积测量结果。  相似文献   

16.
不确定场景下无人农机多机动态路径规划方法   总被引:1,自引:1,他引:1  
在现代化农业中,越来越多的龙头企业或农村合作社提供一系列的农业作业专业化服务,引入多台农机进行规模化作业,不仅提高效率,而且可以实现抢种抢收,减少自然灾害的风险。目前,多台农机并行作业仍以预先计划的固定农机和静态的固定路线为主,但在实际耕种、收割等作业中,常会出现农机突发故障、农机临时增加、农机工作效率不一致等不确定场景,这些不确定性给多台农机集群控制带来巨大挑战。因此,研究不确定场景下多机动态路径规划方法具有十分重要的理论意义和实用价值。该研究以总作业时长为综合优化目标,综合各种不确定场景,针对轮式自动驾驶拖拉机,提出了改进的迭代贪婪(Improved Iterated Greedy, IIG)方法进行多机动态路径规划,解决以往传统方法在不确定情况发生后路径规划结果低效甚至失效的问题。试验表明,该方法在不确定场景下可及时、高效的动态调整路径规划方案,能够为不同数量、不同性能的农机迭代找到当前最优路径。与传统的并排作业方法相比,IIG优化的矩形农田作业路径总作业时间平均下降约35%,且随着农机性能差异越大,节省时间越多;与迭代贪婪(Iterated Greedy, IG)方法相比,IIG在一般播种作业中总掉头时间平均减少约17%。该方法在不确定场景下路径优化效果较好,且具有很好的鲁棒性及环境适应性,可为农田无人作业多机路径规划提供参考。  相似文献   

17.
经过几十年的发展,澄江县农业机械化水平有了较大的提高,农机数量和农机总动力快速增长,农机作业量迅速增加。但由于农业机械多为传统的耕种农机具,农田作业比较单一,山区、半山区农机化作业程度较低,全县农机化水平发展不均衡。同时,农业生产、运输主要集中在山区、半山区,农机作业安全隐患较多,严重制约了澄江县农机化的发展。如何更好、更快地提高农业机械化发展水平,有效地服务农村、农业、农民,成为农机管理部门急需解决的一道难题。基于此,从农机管理机构设置、农机发展方向等方面进行了分析,并对澄江县农业机械化发展提出了一些思路。  相似文献   

18.
信息技术提升农业机械化水平   总被引:13,自引:12,他引:1  
为适应中国现代农业建设的需要,保持中国农业机械化水平持续增长,实现中国农业可持续发展,该文提出,应将先进的信息技术融入中国农业机械的设计、制造、作业和管理等环节,使农业机械装备实现信息化和智能化,从而整体提升农业机械化水平。文中介绍了参数化设计、基于知识工程的农机产品设计、基于产品数据管理的并行协同设计等农机产品设计的关键技术;柔性制造、计算机集成制造、虚拟与网络制造等农机产品制造的关键技术;农情信息采集、农业机械导航、田间管理等农业机械作业的关键技术;农业机械管理、农业机械调度等关键技术。分析了这些关键技术信息化的不足,总结了世界各国的发展趋势,指出了用信息技术提升中国农业机械化水平应解决的核心问题。为加强农机装备的信息技术创新,该文建议,应突破一批智能农业装备数字化设计技术、自动导航协调控制技术及农业装备现场总线技术等关键技术;研发一批大田和设施农业生产作业系统、果园作业智能装备和畜禽水产精准生产装备等重大技术产品;构建一批水肥药田间精准作业系统、畜禽水产自动饲喂系统和自动化加工生产线等农业机械精准作业系统,从而进一步用信息技术提升农业机械化水平。  相似文献   

19.
基于模糊隶属度的多站点多机协同即时响应调度系统   总被引:2,自引:2,他引:0  
为了实现多农机站联合调配完成农户的实时作业订单,该研究针对农田与农机的匹配与调度需求问题,综合考虑农户满意度、多农机站协同、订单数量、农田面积和位置坐标等因素,建立带有模糊时间窗并以调度总时长最小和调度农机数量最少为目标的多农机站即时响应调度数学模型。并设计了基于保留优秀父代基因的改进遗传算法的农机调度系统,完成多农机站响应多农田的同时作业需求的任务,在最短时间里即时调配农机按照最短路径至各农田完成作业要求。以武汉周边某地区的3个农机站和35个农田作业订单为例,验证所提出的模型和智能优化算法,并进行可视化界面展示。试验表明,当模糊隶属度为0.8时,调度总路程减少率为9.89%,农机数量降低率为15.38%;针对该地区各农机站农机数量的实际情况,在不影响农户满意度的前提下,单个农机站接受实时订单数量以不超过20为最佳。该研究实现了多农机站对多农田精准调度作业,有助于科学合理调度农机,提高农机作业效率,节约成本投入。  相似文献   

20.
现如今,农业机械化水平逐渐提升,农机保有量逐年增加,农机作业水平越来越高。但是,农村基层农机操作人员的安全意识普遍较低,这样就会对作业效率和质量造成不良影响。基于此,介绍加强农机操作中安全意识的重要性,然后分析农机操作现状,并探究提升驾驶员农机操作安全意识的措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号