首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four diets (1, 2, 3 and 4) were formulated to contain different potato protein concentrate (PPC) levels (0, 22, 56, and 111 g kg−1). Diet 5 contained 56 g kg−1 PPC and 17 g kg−1 methionine. A growth trial was conducted to investigate the effect on growth and feed utilization of incorporation of PPC and supplementation of methionine in the diet of rainbow trout. When the proportion of PPC exceeded 56 g kg−1 the growth of fish decreased while both growth and feed utilization decreased when the dietary PPC was 111 g kg−1. Protein productive value and condition factor of the fish decreased and mortality increased with the increase in the proportion of dietary PPC.  相似文献   

2.
Five isonitrogenous and isoenergetic diets were composed to investigate the effects of incorporation of potato protein concentrate (PPC) in the diet of rainbow trout, Oncorhynchus mykiss (Walbaum), on feeding rate, growth, feed utilization and body composition. The experimental diets contained 0, 22, 56, 89 and 111 g kg−1 PPC, respectively. A 4-week trial was conducted at about 12°C. The results showed that with increased incorporation levels of PPC, feeding rate, growth and feed efficiency decreased significantly. Incorporation of PPC in the diets significantly decreased the dry matter content and fat content of fish body, while protein and ash contents increased.  相似文献   

3.
Four practical diets containing different levels of soybean cake (0, 155, 320, 490 g kg−1) were prepared to investigate the effect of replacement of fishmeal by soybean cake on the Chinese longsnout catfish ( Leiocassis longirostris Günther) during a 62-day growth trial. The diets were isonitrogenous, isoenergetic and contained about 430 g kg−1 crude protein and 20 MJ kg−1 gross energy. With increasing levels of dietary soybean cake, growth rate and feed utilization decreased; feeding rate and the contents of dry matter, fat and energy of fish body were not significantly affected while body protein showed lowest value in the fish fed the diet containing 320 g kg−1 soybean cake.  相似文献   

4.
Six isonitrogenous (350 g kg−1 crude protein) and isoenergetic (17573 kJ kg−1) experimental diets incorporating raw and fermented sesame ( Seasamum indicum ) seed meal at 200, 300, and 400 g kg−1 into a fishmeal based diet were fed to rohu Labeo rohita fingerlings for 60 days and the growth performance and feed utilization efficiency of the fish was studied. The antinutritional factor phytic acid, from raw sesame seed meal, could be reduced below detection limit by fermentation with lactic acid bacteria ( Lactobacillus acidophilus ). Fermentation of the oilseed meal resulted in reduction of the tannin content from 20 to 10 g kg−1. In terms of growth response, feed conversion ratio and protein efficiency ratio, a diet containing 400 g kg−1 fermented sesame seed meal resulted in a significantly ( P  < 0.01) best fish performance. In general, growth and feed utilization efficiencies of fish fed fermented sesame seed meal diets were superior to those fed raw oilseed meal diets. Apparent protein digestibility (APD) values decreased with increasing levels of raw oilseed meal. APD was, however, significantly ( P  < 0.01) higher at all levels of incorporation of fermented sesame seed meal, while diets containing raw oilseed meal resulted in poor protein and lipid digestibility. Carcass protein and lipid contents of fish fed fermented sesame seed meal diets increased with increasing level of incorporation, being highest with 400 g kg−1 fermented oilseed meal-containing diet. The results showed that sesame seed meal may be incorporated in carp diets up to 200 g kg−1 and 400 g kg−1 in raw and treated (fermented) forms respectively.  相似文献   

5.
The objective of the present study was to investigate the effect of dietary phospholipid (PL) level on growth and feed intake of juvenile amberjack ( Seriola dumerili ) fed non-fishmeal (non-FM) diet containing alternative protein sources; soybean protein isolate, tuna muscle by-product powder and krill meal. Three non-FM diets were prepared to contain three levels (14, 37 and 54 g kg−1 dry diet) of PL (soybean lecithin acetone insoluble, 886 g kg−1) and growth performance was monitored in a 30-day growth trial by using 2.6 g of fish. The results indicated that final body weight, weight gain and feed intake significantly increased with increasing dietary PL level. At the highest dietary PL level (54 g kg−1 dry diet), the fish consumed 14.8% and 10.2% as much feed as those fish fed diets containing 14 g kg−1 dry diet and 37 g kg−1 dry diet PL, respectively. An increasing tendency with increasing dietary PL level on feed efficiency was observed. In conclusion, the present study demonstrated that dietary PL supplementation could increase feed intake, and improve the growth of juvenile S. dumerili fed non-FM diets. Therefore, purified PL might be a good candidate to stimulate the growth of fish through enhancing the feed intake when they are fed diets containing alternative protein sources.  相似文献   

6.
Two growth studies were conducted to determine the dietary threonine requirement of reciprocal cross hybrid striped (sunshine) bass. Semipurified diets were prepared with crystalline amino acids and lyophilized fish muscle to supply 350 g crude protein kg−1 diet. The basal diet contained 4.9 g threonine kg−1 from fish muscle, and test diets were supplemented with graded levels of L-threonine. In the first experiment, fish initially averaging ≊ 9.8 g each were fed diets containing threonine levels of 4.9, 7.5, 10.0, 12.5, 15.0 and 17.5 g kg−1 dry diet for 7 weeks. Weight gain, feed efficiency and protein efficiency ratio (PER) were significantly ( P < 0.01) influenced by dietary threonine level. Based on weight-gain responses, a threonine requirement (± SE) of 8.4 (± 0.8) g kg−1 dry diet was determined, and dietary threonine levels of 10.0 g kg−1 diet or greater resulted in the highest levels of free threonine in plasma.
Based on the results of the first experiment, a second feeding trial was conducted with diets containing threonine levels of 4.9, 6.5, 8.0, 9.5, 11.0 and 12.5 g kg−1 dry diet. Fish initially averaging ≊ 3.0 g each were fed each diet for 8 weeks. Weight gain, feed efficiency and PER values of fish were markedly improved, with increases in dietary threonine up to 8.0 g kg−1 dry diet. Regression analysis of weight gain, feed efficiency and PER data using the broken-line model resulted in threonine requirement estimates of 9.7, 8.5 and 8.6 g kg−1 dry diet, respectively. Based on these data, the threonine requirement of juvenile sunshine bass was determined to be ≊ 9.0 g kg−1 dry diet or 26 g kg−1 of dietary protein.  相似文献   

7.
High-energy diets for white sturgeon, Acipenser transmontanus Richardson   总被引:1,自引:0,他引:1  
Four diets formulated for salmon were fed to 0.11 kg white sturgeon, Acipenser transmontanus Richardson, for 8 weeks. Dietary compositions ranged from 258 to 402 g lipid kg−1, 535–378 g protein kg−1 and 22.7–14.4 g protein MJ−1 gross energy.
Fish in all treatments grew rapidly, utilized the diets efficiently and had body compositions similar to what has been found in previous studies, but there were some dietary effects. Sturgeon fed the diet with the highest lipid content and lowest protein/energy ratio had lower ( P < 0.05) specific growth rate, feed efficiency, and liver moisture and protein contents, and 6-phosphogluconate dehydrogenase activity, but higher liver lipid contents than fish fed the other three diets. Condition factor, organ to body weight ratios, whole-body and plasma concentrations of protein, glucose and triglyceride, and liver glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme activities did not differ significantly among dietary treatments. This suggests that white sturgeon subyearlings can utilize diets with high lipid contents (258–357 g kg−1) to display good growth without major adverse effects on body composition and liver lipogenic enzyme activities.  相似文献   

8.
Juvenile yellow perch Perca flavescens were fed semipurified diets with varying protein to metabolizable energy ratios (PME, g protein MJ−1 metabolizable energy) and nutrient densities in three experiments to determine recommended dietary protein and energy concentrations. Experiment 1 fish (18.6 g) were fed diets containing 450 g crude protein kg−1 dry diet and 14.5–18.8 MJ ME kg−1 dry diet for 10 weeks. No differences were found in the growth of experiment 1 fish fed the different diets. Experiment 2 fish (21.9 g) were fed diets containing 15.7 MJ ME kg−1 dry diet and 210–420 g crude protein kg−1 dry diet for 8 weeks. Fish fed the diet containing 340 g kg−1 protein (diet PME = 22) exhibited the greatest weight gain. Experiment 3 fish (27.1 g) were fed diets with a PME of 22 and varying nutrient density (yielding 205–380 g crude protein kg−1 dry diet) for 8 weeks. No differences were found in the growth of experiment 3 fish. Yellow perch fed the semipurified diets exhibited increased liver fat content, liver size and degree of liver discoloration compared with fish fed a commercial fish meal-based diet. Liver changes may have resulted from high dietary carbohydrate levels. We conclude that a protein level of 210–270 g kg−1 dry diet is suitable for juvenile yellow perch provided that the dietary amino acid profile and carbohydrate content are appropriate for yellow perch.  相似文献   

9.
Dietary phosphorus requirement of juvenile Atlantic salmon, Salmo salar L.   总被引:5,自引:0,他引:5  
The objective of this study was to determine the dietary phosphorus (P) requirement of juvenile Atlantic salmon, Salmon salar L. Triplicate groups of fish (mean initial weight 1.4 g) were fed semipurified, casein-gelatine-based diets containing one of five levels of P (4, 8, 10, 15 and 25 g kg−1) from Ca(H2PO4)2·H2O, or a commercial feed (17 g kg−1 P) for 9 weeks. Weight gains did not differ significantly among treatment groups fed the experimental diets but were slightly less than gains in fish fed the commercial feed. Feed efficiency (wet weight gain/dry feed consumed) was similar in all groups, averaging 1.45. Availability of dietary P, estimated from apparent retention and apparent digestibility, was 86%. Whole-body P concentrations declined in fish fed diets containing less than 10 g kg−1 P. Fitting a logistic curve to dietary P vs. whole-body P concentrations indicated that a minimum of 11 g kg−1 dietary P (9 g kg−1 digestible P) was required by juvenile Atlantic salmon to maintain whole-body P concentrations at initial levels. Calculation of a dietary requirement using a simple factorial model which incorporated measurements of P availability, feed efficiency and normal whole-body P concentration indicated that the dietary requirement was approximately 10 g kg−1. The dietary requirement established in this study (10–11 g kg−1) is higher than previously reported for Atlantic salmon or other fishes. Possible reasons for the wide range of reported dietary P requirements in fishes are discussed.  相似文献   

10.
A study was undertaken to estimate the effects of isonitrogenous diets (ca. 604 g kg−1 crude protein) containing formaldehyde-treated (FT) fish meal and graded levels of digestible protein (DP) (541, 491, 372, 347 and 247 g kg−1) on growth performance and tissue composition of juveniles white seabass. Five diets were formulated to contain increasing levels of FT fish meal (from 0 to 384 g kg−1) and decreasing levels of non-treated fish meal (from 480 to 96 g kg−1). Each dietary treatment was fed in triplicate to apparent satiation to groups of 25 fish for 50 days. Significantly higher growth performance and feed conversion ratio were obtained in fish-fed diets containing 491 or 541 g kg−1 DP, compared with all other treatments. Apparent digestibility coefficient of protein in the diets was not significantly affected by the inclusion of treated fish meal in the diets. Estimation of protein requirements using a broken-line regression analysis indicated that maximum weight gain would be obtained with a diet containing 503 ± 23 g kg−1 DP. The results from this study suggest that a single-diet formulation using protein treated with formaldehyde as filler might be useful to estimate the requirement of DP for fish.  相似文献   

11.
Rohu, Labeo rohita (Ham.), fingerlings (average wt 3.38 g) maintained in 25 m2 cement tanks were fed fish-meal-based, 300 g kg−1 protein diets containing different levels (0, 0.25, 0.5, 0.75 and 1.0 g kg−1) of L -carnitine in triplicate over a period of 126 days. Fish that received 0.5 g kg−1 carnitine showed significantly higher growth than those fed the basal diet or the rest of the carnitine diets. Fat digestibility, food conversion efficiency and protein efficiency ratio were better in carnitine-fed fish; however, viscerosomatic and hepatosomatic indices decreased. Muscle proximate composition was affected as a result of carnitine treatment. The results of the present study demonstrate a positive effect of carnitine on the growth and body composition of rohu.  相似文献   

12.
The quantitative dietary sulphur amino acid requirement of the Indian major carp, Labeo rohita (Hamilton), was determined by conducting a growth study. The experimental diets contained 400 g crude protein kg−1 from casein, gelatine and supplemental crystalline amino acids. Diets containing six graded levels of methionine (3.2, 6.5, 9.0, 11.5, 14 and 16.5 g kg−1) with a constant level of cystine (1.4 g kg−1) were formulated and fed to triplicate groups of Labeo rohita fingerlings twice a day to satiation for 60 days. The optimum dietary requirement for methionine was estimated using the break-point regression analysis at 11.5 g kg−1 of diet or 28.8 g kg−1 of dietary protein. Thus the total sulphur amino acid (Met + Cys) requirement was determined to be 12.9 g kg−1 of diet or 32.3 g kg−1 of protein. Higher survival, specific growth rate and food conversion efficiency values were observed for fish fed the diet containing optimum levels of sulphur amino acids.  相似文献   

13.
An 8-week feeding trial was conducted to determine the threonine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low-salinity water (0.50–1.50 g L−1). Diets 1–6 were formulated to contain 360 g kg−1 crude protein with fish meal, wheat gluten and pre-coated crystalline amino acids with six graded levels of l -threonine (9.9–19.0 g kg−1 dry diet). Diet 7, which was served as a reference, contained only intact proteins (fish meal and wheat gluten). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.48±0.01 g), each four times daily. Shrimps fed the reference diet had similar growth performance and feed utilization efficiency compared with shrimps fed the diets containing 13.3 g kg−1 or higher threonine. Maximum specific growth rate (SGR) and protein efficiency ratio were obtained at 14.6 g kg−1 dietary threonine, and increasing threonine beyond this level did not result in a better performance. Body compositions, triacyglycerol and total protein concentrations in haemolymph were significantly affected by the threonine level; however, the threonine contents in muscle, aspartate aminotransferase and alanine aminotransferase activities in haemolymph were not influenced by the dietary threonine levels. Broken-line regression analysis on SGR indicated that optimal dietary threonine requirement for L. vannamei was 13.6 g kg−1 dry diet (37.8 g kg−1 dietary protein).  相似文献   

14.
The objectives of this study were to describe the interactive effects of varying digestible protein (DP) and digestible energy (DE) contents on the feed intake, growth, protein utilization and whole body composition of juvenile mulloway ( Argyrosomus japonicus ) and to determine the optimal DP : DE ratio for growth. This was achieved by feeding mulloway diets containing one of four different DP levels (250–550 g kg−1) at two DE levels (16 or 21 MJ kg−1). Juvenile mulloway were stocked at each of two different sizes (70 or 200 g) in triplicate groups for each dietary treatment and fed twice daily to apparent satiation over 58 days. The results indicated that feed intake was not governed solely by energy demands but was also dependant on the DP content of the diet. Protein utilization did not improve with diets containing decreasing protein and increasing lipid content indicating that mulloway have a limited capacity to spare DP. Optimal DP content was found to be 444–491 g kg−1 depending on the DE content of the diet and the size of mulloway and is within the range reported for other sciaenid species. The use of formulated diets with 28.6 g of DP MJ DE−1 will achieve optimal growth and protein deposition for 70–275 g mulloway.  相似文献   

15.
The shrimp Penaeus stylirostris is currently produced on a commercial scale in Tahiti and New Caledonia. Both super-intensive (80 animals m−2) and semi intensive (25 m−2) systems are promoted. Locally produced commercial feed contains 380–400 g kg−1 crude protein (CP) without special consideration for environmental impact. The need for a 'low pollution' diet implies reconsideration of the optimum dietary protein level for this species. Under experimental conditions, six isoenergetic practical diets ranging from 270 g kg−1 to 440 g kg−1 CP were formulated and fed to satiation for 30 days to juvenile P. stylirostris ; average growth rates were between 5.5 and 7.5 g per month with survival rates > 90%.
The lowest protein levels 270–310 g kg−1, gave significantly ( P < 0.05) poorer growth (5.5 g per 30 days) than was observed with 330–430 g kg−1 CP; 330 g kg−1 CP may be recommended, and as it is lower than levels in diets used currently, there is a possibility of reducing nitrogenous waste. In addition to growth response, protein efficiency ratio, protein productive value and food conversion (feed/gain) all supported a recommended dietary protein level of 330 g kg−1. Future prospects for practical feeds with even lower CP levels are considered.  相似文献   

16.
Mature winged bean Psophocarpus tetragonolobus seeds were quick-cooked and the full-fat meal derived was used to completely replace menhaden fish meal as a dietary protein source for the African catfish Clarias gariepinus . Five dry practical diets (400 g crude protein kg−1 and 17.5 kJ gross energy g−1 dry diet) containing menhaden fish meal (diet 1) or winged bean meal with or without graded levels of supplemental L -methionine (diets 2, 3, 4 and 5; 0, 5, 10 and 15 g kg−1, respectively) were fed to catfish fingerlings (5.8  +  1.2 g) for 70 days. Weight gain, growth rate, feed conversion and protein utilization by catfish fed a winged bean meal diet without L -methionine supplementation (diet 2) was inferior ( P  > 0.05) to that in catfish fed the other diets, where performance differed nonsignificantly. Carcass protein of catfish was lower ( P  < 0.05) while liver protein was higher ( P  < 0.05) in catfish fed the winged bean meal diet without methionine supplementation. Results suggest that winged bean meal cannot replace fish meal as a protein source in catfish diets except with a minimum supplementation with 5 g L -methionine kg−1 diet.  相似文献   

17.
Atlantic salmon, Salmo salar L., fingerlings with a mean weight of 1.5 g were fed one of four casein-gelatine-based purified diets supplemented with soya lecithin (LC) and choline chloride (CH) for 84 days. The diets were supplemented with either: 0 g kg−1 CH and 0 g kg−1 LC, 0 g kg−1 CH and 30 g kg−1 LC, or 5 g kg−1 CH and 0 g kg−1 LC, or 5 g kg−1 CH and 30 g kg−1 LC. The same diets were also fed to 100-g salmon to assess the effects of LC and CH supplementation on digestibility. Fingerlings fed the diet with neither LC nor CH (0 g kg−1 LC and 0 g kg−1 CH) grew at a significantly slower rate than fish fed the supplemented diets. There were significant effects on growth of supplementation of both LC and CH. The results indicate that the choline requirement of Atlantic salmon fingerlings is satisfied by 4 g kg−1 inclusion in a gelatine-casein-based diet, and that dietary soya lecithin can fully replace choline chloride. The digestibility study with the larger fish indicated a beneficial effect of lecithin on the digestibility of both protein and energy.  相似文献   

18.
Five iso-nitrogenous (300 g crude protein kg−1 diet) semi-purified diets with graded levels of carbohydrate at 220 (D-1), 260 (D-2), 300 (D-3), 340 (D-4) and 380 (D-5) g kg−1 diet were fed ad libitum to Puntius gonionotus fingerlings (average weight 0.59±0.01 g) in triplicate groups (20 fish replicate−1) for a period of 90 days to determine the effect of the dietary carbohydrate level on the growth, nutrient utilization, digestibility, gut enzyme activity and whole-body composition of fish. Fifteen flow-through cement tanks of 100 L capacity with a flow rate of 0.5 L min−1 were used for rearing the fish. The maximum weight gain, specific growth rate, protein efficiency ratio, RNA:DNA ratio, whole-body protein content, protease activity, protein and energy digestibility and minimum feed conversion ratio (FCR) were found in the D-2 group fed with 260 g carbohydrate kg−1 diet. The highest protein and energy retention was also recorded in the same group. However, from the second-order polynomial regression analysis, the maximum growth and nutrient utilization of P. gonionotus fingerlings was 291.3–298.3 g carbohydrate kg−1 diet at a dietary protein level of 300 g kg−1 with a protein/energy (P/E) ratio of 20.58 −20.75 g protein MJ−1.  相似文献   

19.
The use efficiency and feed conversion of extruded and pelletized diets were compared. Eight isoproteic diets (220 g kg−1 digestible protein) were assayed for 90 days in a 2 × 2 × 2 multifactorial design with two carbohydrate levels (400 and 500 g kg−1), two lipids levels (40 and 80 g kg−1) and two diet processing (pelletization and extrusion) with three repetitions. The growth of Piaractus mesopotamicus fed with these diets and the quality control indices of diets were gauged. The density of extruded diets was lower as carbohydrate level was 400 g kg−1 and lipid 40 g kg−1. The interaction carbohydrate and diet processing presented higher leaching value for low carbohydrate level in extruded diet. Fish fed with extruded diets presented the best feed conversion and protein efficiency ratio. When high levels of carbohydrate and lipid are combined, the weight gain is impaired. The interaction between diet processing diet and lipid levels resulted in the best fish performance when pelletized diets with 40 g kg−1 lipid or extruded diets with 80 g kg−1 lipid were considered. The protein efficiency ratio increased with the increment of carbohydrates in the pelletized diets. The fish show low tolerance to lipids and a preference for carbohydrate when the lipid productive values are taken into account.  相似文献   

20.
Haematopoiesis and blood cells' functions can be influenced by dietary concentration of nutrients. This paper studied the effects of dietary protein:energy ratio on the growth and haematology of pacu, Piaractus mesopotamicus . Fingerling pacu (15.5±0.4 g) were fed twice a day for 10 weeks until apparent saciety with diets containing 220, 260, 300, 340 or 380 g kg−1 crude protein (CP) and 10.88, 11.72, 12.55, 13.39, 14.22 MJ kg−1 digestible energy (DE) in a totally randomized experimental design, 5 × 5 factorial scheme ( n =3). Weight gain and specific growth rate were affected ( P <0.05) by protein level only. Protein efficiency ratio decreased ( P <0.05) with increasing dietary protein at all levels of dietary energy. Daily feed intake decreased ( P <0.05) with increasing dietary energy. Mean corpuscular haemoglobin concentration was affected ( P <0.05) by DE and interaction between dietary CP and DE. Total plasma protein increased ( P <0.05) with dietary protein and energy levels. Plasma glucose decreased ( P <0.05) with increasing dietary protein. The CP requirement and optimum protein:energy ratio for weight gain of pacu fingerlings, determined using broken-line model, were 271 g kg−1 and 22.18 g CP MJ−1 DE respectively. All dietary CP and DE levels studied did not pose damages to fish health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号