首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Migration of the pine wood nematode (PWN), Bursaphelenchus xylophilus, in susceptible and resistant pines was investigated at the tissue level. PWN was inoculated onto the top cross‐cut surface of 20‐cm stem cuttings of susceptible Pinus thunbergii and resistant pines (P. strobus, P. rigida and P. thunbergii of a resistant family Namikata‐(t)‐73 (half‐sib)). PWNs were mainly distributed in cortical resin canals of susceptible P. thunbergii down to 15 cm from the inoculated surface by 6 h after inoculation (HAI) and all tissues (including cortical and xylem resin canals) down to the bottom at 192 HAI. In P. strobus, P. rigida and P. thunbergii family Namikata‐(t)‐73 (half‐sib), PWN was distributed in cortical resin canals down to 5 cm by 6 HAI and down to the base at 192 HAI. However, the distribution of PWN in xylem resin canals of the resistant pines was restricted near inoculated surfaces down to 5 cm, even at 192 HAI. These results demonstrated that migration of PWN in resistant pines was slowed in cortical resin canals and restricted in xylem axial resin canals, features which may be associated with the resistance.  相似文献   

2.
The Japanese black pine (Pinus thunbergii) is highly susceptible to pine wilt disease caused by the pine wood nematode (PWN; Bursaphelenchus xylophilus). To cope with this disease, researchers and tree breeders selected PWN‐resistant individuals in a previous breeding program. In an attempt to understand the mechanisms of resistance in the Japanese black pine, we created four LongSAGE (serial analysis of gene expression) libraries. A total of 20 818 tags were studied, including 5194 tags from a PWN inoculated resistant pine, 5218 a non‐inoculated resistant pine, 5194 an inoculated non‐resistant pine, and 5212 a non‐inoculated non‐resistant pine. The analysis of the libraries indicated that 14 tag species were significantly up‐regulated (e.g., pathogenesis‐related proteins 2 and 4, osmotin, lipoxygenase, and chalcone synthase), and nine were down‐regulated (eukaryotic translation initiation factor SUI1, translationally controlled tumor protein, and xyloglucan endotransglycosylase) by the PWN inoculation in both the resistant and non‐resistant pines. On the other hand, 38 tag species were significantly expressed at a higher level only in the resistant pine (catalase, dienelactone hydrolase family protein) and 25 were expressed at a higher level in the non‐resistant pine (pathogenesis‐related proteins 1, 2, and 3, and leucoanthocyanidin dioxygenase). These differentially expressed genes are presumed to reflect some of the differences between the resistant and non‐resistant pines. Our results provide valuable information on the complex responses induced in the resistant and non‐resistant pine trees in response to PWN invasion.  相似文献   

3.
In order to investigate the effect of invastion by pine wood nematode (PWN), this study analyzed severalfunctional indices, i.e., the increment in DBH and stand volume and biomass, in the damaqed stands with various mixedpercentages of Pinus massoniana and P. thunbergii and with different levels of damage. According to the results of rate of change in increment of DBH and stand volume, the forest ecosystem resistance against PWN increased with a reduct on n the m xed ratio of pine. The resistance was highest with a mixed percentage of 50%. The invasion of PWN hanged the corresponding relationship of increment between DBH and stand volume (pure stands 〉 7:3 conifer and roadleaf 〉 6:4 conifer and broadleaf 〉 5:5 conifer and broadleaf) among the P. thunbergii stands when there is no amage, but for P. massoniana stands this phenomenon did not occur. For the increment rate of DBH and stand volume, is significant change in P, thunbergii forest indicates that the resistance of pure P. thunbergii forest was higher than at of P. massoniana. The invasion of PWN accelerates the succession from pure stands to mixed stands and then tohe broadleaf evergreen stands.  相似文献   

4.
Japanese black pine (Pinus thunbergii) seedlings resistant to pine wood nematode (PWN; Bursaphelenchus xylophilus) are routinely selected in Japanese field inoculation trials. Correlations between morphological factors (such as height, stem diameter at ground level and number of branches on seedlings) and disease resistance were examined to improve the production efficiency of 1‐year‐old black pine seedlings for inoculation. Family relatedness and environmental conditions strongly affected seedling resistance; accordingly, logistic regression analysis was used to separate effects of these two variables. Height and stem diameter at ground level significantly correlated with disease resistance in seedlings inoculated with PWN. Because (a) interactions between stem diameter at ground level and environmental condition were significant and (b) height did not interact with any other factor, it was concluded that height of 1‐year‐old Japanese black pine seedlings independently correlated with PWN resistance. Thus, field inoculation tests should use tall seedlings to achieve enhanced survival rates.  相似文献   

5.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease, an epidemic disease that has severely damaged pine forests in East Asia. The disease has spread to northern areas in Asia and parts of Europe. To prevent disease spread as the forefront of damage prevention, a better understanding of infection status is highly important. Not all infected trees show disease symptoms, and such asymptomatic PWN‐carrying trees are likely to be overlooked and can become a pathogen reservoir. To elucidate PWN infection status in asymptomatic trees, we performed PWN inspection of branches and trunks in 21 test trees in two different conditions: trees that had experienced PWN inoculation and those with suspected PWN infection that had experienced transient foliage discoloration. We detected PWNs in eight test trees (38%) and in 13 (1.5%) of a total of 843 samples. The difference in these percentages suggests that nematode inhabitation was highly localized within the trees, possibly owing to the restricted migration of PWNs. Our data demonstrated that trees that were once weakened but recovered their vigour can persist, as the asymptomatic carriers, in the forest. The implications for disease control are also discussed.  相似文献   

6.
Ichihara  Fukuda  Suzuki 《Forest Pathology》2001,31(3):141-147
In order to study the changes in ectomycorrhizal development during symptom expression of pine wilt disease, root window observations were conducted concurrent with measurements of leaf water potential as well as photosynthetic and transpiration rates of 5‐year‐old Pinus thunbergii trees that were inoculated with the pinewood nematode (PWN) Bursaphelenchus xylophilus. Infected trees were compared with girdled and uninfected control trees. Ectomycorrhizas developed constantly during the experimental period in control trees but did not develop in the girdled trees. Ectomycorrhizal development ceased within 2 weeks in those trees that finally died after PWN infection. In the trees that survived PWN infection, ectomycorrhizal development ceased within 1–4 weeks of inoculation but was resumed thereafter within 3–6 weeks. Ectomycorrhizal development ceased prior to a decrease in both photosynthetic rate and leaf water potential in the inoculated trees.  相似文献   

7.
松材线虫病是我国松林毁灭性病害,已造成数千万松株死亡,发生区经济损失巨大,目前此病害正威胁着南方重点林区及重要风景名胜区松林的安全。我国松属资源丰富,科技人员队伍组织体系完备,抗性选育研究已有较好基础。因此尽快开展抗性选育有利于发生区森林恢复、非发生区林分改造和结构调整,有利于保护我国森林资源。本文对开展抗性选育提出了具体建议。  相似文献   

8.
The total area ofPinus densiflora andP. thunbergii forests in Ibaraki Prefecture in 1978 was 65,200 ha, which decreased to 30,300 ha by 1985 mainly due to pine wilt mortality caused byBursaphelenchus xylophilus. This damage has also continued thereafter. To estimate the survivability of pine trees in Ibaraki Prefecture, pine tree mortality has been studied in eight experimental forests for over 20 years, and ground surveys throughout the Prefecture were also conducted in 1995. Survival in the experimental forests corresponded well to the results of ground surveys. Pine forests remained as pure stands if control measures were undertaken or if they were located in cool areas. In warm areas where no control was undertaken, most of the pine forests disappeared and only a few pine trees remained in mixed forests, while on dry soils no mature or old pine trees survived. Since surviving pine forests are often cut for wood utilization,P. densiflora andP. thunbergii may decrease in area to become rare species in the future unless controls are applied and/or reforestation with resistant pines is carried out. A part of this paper was orally presented at the 108th Annual Meeting of the Japanese Forestry Society (1997).  相似文献   

9.
Interactions between the pine wood nematode (PWN), Bursaphelenchus xylophilus, and bacteria of the genus Pseudomonas were examined by cultivating axenic PWN and bacterial strains using callus of Pinus thunbergii. Ten (Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas cepacia and Pseudomonas spp.) of the 29 bacterial strains tested, significantly increased the reproduction of PWN. The rest of the bacteria (19 strains of 10 species) inhibited the reproduction of PWN completely. The growth of 18 of the 29 bacterial strains tested, including the 10 strains promoting PWN reproduction, was significantly increased by the presence of PWN. It indicated a mutualistic symbiotic relationship between PWN and the 10 bacterial strains in the genus Pseudomonas. The bacterial mutualistic symbionts are organisms, which may have co‐evolved with PWN rather than being accidentally associated. The finding provides further evidence for our hypothesis that pine wilt disease is complex, induced by both PWN and associated phytotoxin‐producing bacteria.  相似文献   

10.
Pinus densiflora and P. thunbergii, native to Japan, are highly susceptible to pine wilt disease caused by infection with a pine wood nematode (Bursaphelenchus xylophilus). Trees of these susceptible species have occasionally been found surviving in forests that are extensively damaged by this disease. Seedlings from a part of surviving trees that were selected as resistant families indicate lower mortality rates after the infection. The factors that prevent the symptoms from developing in resistant families of a susceptible species, P. densiflora, as based on the analysis of the pathogens behavior in the tree tissue and the anatomy of the resistant families, are presented in this paper. Nematode populations remained lower in the stems of seedlings from resistant families of P. densiflora than in the stems of non-resistant families. Areas dysfunctional in water transport developed in the stems of resistant families, but did not reach a size large enough to seriously block the ascent of sap. These results suggest that there are systems within the seedlings that prevent nematode migration and reproduction. The 2-year-old seedlings from resistant families of P. densiflora, however, did not suppress the pathogen activity. Numerous branches are a visible characteristic in the seedlings of some resistant families. The arrangement of the resin canals, the only channels in the tree to the pathogen migration, was disoriented at the joints between the branches and the main stem. Such a structure may be effective as a barrier to nematode dispersal.  相似文献   

11.
During the last few decades, pine wilt disease has spread to cool-climate regions in Japan and, more recently, the potential risk of it spreading into the European midwest has also become a concern. In a coastal pine stand (84.7?ha) in Akita, near the northern limit of pine wilt disease in Japan, we investigated seasonal variations in the incidence of damage caused by the disease to trees and oviposition by the disease’s insect vector, Monochamus alternatus, during a two-year period. Foliage discoloration occurred throughout each year, and its seasonal variation showed a bimodal pattern in Pinus thunbergii (a higher peak in May–June and a smaller peak in October) and a clear peak in June in P. densiflora, which differed from the patterns in seasonal variation seen for warm-climate regions. Oviposition scars by M. alternatus were found in 40–45% of the trees damaged each year. The percentage of trees that had oviposition scars was higher in P. thunbergii than in P. densiflora. This appeared to reflect the difference in seasonal discoloration pattern between the two species. Analysis of the oviposition risk showed that trees that exhibited discoloration starting between July and October had a significantly higher risk or significantly higher oviposition scar densities, particularly for those that became discolored between August and September (2.5–14.6-fold higher risk than during other months). Oviposition scar densities per damaged tree were similar within the period of higher oviposition risk. Considering both oviposition risks and scar densities, we concluded that trees with discoloration that become apparent between July and October are important targets for preventing the spread of pine wilt disease in Akita.  相似文献   

12.
马尾松不同种源氨基酸含量与抗松材线虫病的关系   总被引:6,自引:0,他引:6       下载免费PDF全文
在选出和验证抗病马尾松种源的基础上,研究了马尾松不同抗病性种源的树体内氨基酸含量的差异。结果表明,抗病种源在接种松材线虫前后均比较感种源含有较少的组氨酸、苏氨酸、甘氨酸、异亮氨酸、胱氨酸、甲硫氨酸、亮氨酸、酪氨酸和精氨酸等9种游离氨基酸。它们与感病指数均呈正相关,这说明游离氨基酸含量低的马尾松种源抗松材线虫病。11种固态氨基酸的含量与感病指数有负相关性,说明其含量较高的种源具较强抗病性能。  相似文献   

13.
Adult trees of Pinus armandii var. amamiana (PAAm) and P. thunbergii grown in the field were inoculated with 100000 or 1000 of the nematode Bursaphelenchus xylophilus to evaluate their susceptibility to pine wilt disease. PAAm trees inoculated with 100000 nematodes started to show disease symptoms 2 weeks after inoculation, and all died within 29 weeks. Although the PAAm trees inoculated with 1000 nematodes tended to show delayed disease symptoms compared with those inoculated with 100000 nematodes, all of them died within 33 weeks after inoculation. All P. thunbergii trees inoculated with 1000 nematodes had died 6 weeks after inoculation. In the nematode-inoculated PAAm trees, death of branches distal to the nematode inoculation site was the first visible symptom, followed by the systemic discoloration of needles, whereas the whole tree wilted simultaneously in P. thunbergii trees. In nematode-inoculated PAAm trees, the period from inoculation to death was longer than that in P. thunbergii. These results suggest that adult PAAm trees are susceptible to pine wilt disease, but are less vulnerable than P. thunbergii.  相似文献   

14.
松材线虫病的潜伏侵染及松墨天牛传播新途径   总被引:9,自引:1,他引:9       下载免费PDF全文
在南京用松材线虫接种 7种松树 ,于第 2a在无任何症状的松树的接种点上方 10cm处取样 ,分离线虫。结果表明松材线虫病的潜伏侵染现象比较普遍。在不同的松树品种上潜伏侵染现象有所差异。感病黑松和赤松很快死亡 ,只有在接种量小的情况下才有潜伏侵染现象发生。抗病性强的火炬松和湿地松感病后潜伏侵染现象比较普遍 ,并且样品中的线虫量也较高。而抗病性中等的马尾松和刚松感病后潜伏侵染现象的普遍性及样品中的线虫量均处于中等。短针松接种松材线虫后既不枯死 ,也无潜伏侵染现象。松墨天牛传播松材线虫的试验结果表明 ,未携带松材线虫的松墨天牛成虫在松材线虫病松枝上取食后 ,再到健康松枝上取食 ,有传播松材线虫的可能。这些结果表明在松材线虫病新病区清理病死木时 ,应采取早期诊断技术 ,把未表现症状的松树一起清除 ,以达到防治目的。  相似文献   

15.
The plantations of korean pine(Pinus koraensis)and scots pine(Pinus sylvesrisvar.mongolica)are mainly pure stands.Fires are gradually causing problems in theseplantations and being paid much more attention recently.Study on the influence of fire ontrees and the adaptation to fire,therefore,is of great important to probe the fire ecologicalproperties and the protection ways of these two species.The results are as follows:Bothof the species are easily damaged by fire,but korean pine is more susceptible.In the samefire,korean pine is damaged more seriously than scots pine although they have the samesize.Young individuals have low fire resistant capacity and can be damaged seriously,andolder ones have strong fire resistance and can be damaged lightly.Up-hill fire makes aserious damage to the trees distributed in up-slopes with the reason of higher fireintensity.Down-hill fire makes a serious damage to the trees distributed in down-slopcswith the reason of higher fire severity.The larger deocambium area in t  相似文献   

16.
Pine wilt disease is of major concern as it has destroyed pine forests in East Asia and Europe. Several studies have suggested that invasion by the pinewood nematode (PWN) Bursaphelenchus xylophilus, which causes this disease, evokes an excessive defence response in pine trees, resulting in tree death. However, few studies have quantitatively evaluated the correlation between PWN distribution and tree defence responses. Therefore, the present study aimed to quantify the number of PWNs and expression levels of putative pathogenesis‐related (PR) genes in different positions of Japanese black pine (Pinus thunbergii) seedlings over time. To quantify the number of PWNs in the seedlings, we used TaqMan quantitative real‐time PCR (qPCR) assay. During the early phase of infection, most PWNs were distributed around the inoculated sites, with only a small number being detected at distant sites, but the expression levels of PR genes were highly upregulated throughout the seedlings. Both the number of PWNs and expression levels of PR genes then increased drastically throughout the seedlings, all of which exhibited external symptoms. Thus, it appears that the rapid migration of PWNs induces a defence response throughout the seedling; however, this may not be effective in controlling these parasites, thereby ultimately leading to plant death.  相似文献   

17.
The susceptibility of jack pine, Pinus banksiana Lamb., to damage by the white pine weevil, Pissodes strobi (Peck) and the eastern pine shoot borer, Eucosma gloriola Heinrich, was examined over a three-year period (1994–1996) in a 400-family genetic test near New Liskeard, Ontario. Of the 7180 trees examined, white pine weevil damaged 1041 and eastern pine shoot borer damaged 1913 trees, yielding damage frequencies of 14.5% and 26.6%, respectively. Thirty families of jack pine never sustained weevil damage during the study period, while only one family escaped damage by the shoot borer. The expected, and observed, damage rates were significantly different for the weevil, but not for the shoot borer. There was no discernible spatial pattern in the incidence of shoot damage by either insect species, based on the geographic location of the parent trees. The data suggest that there is a basis for pursuing further studies to evaluate genetic resistance in tree improvement programs.  相似文献   

18.
The pinewood nematode (PWN) Bursaphelenchus xylophilus is an invasive pathogen that was introduced from North America to Asian countries and Portugal and is devastating native pine forests. Some native European and Asian Bursaphelenchus nematodes also have weak to moderate pathogenicity to native pine species. To evaluate the potential risk of native Bursaphelenchus species, we inoculated ten Japanese Bursaphelenchus species into native pine species (the dominant forest species) in Japan, and evaluated their pathogenicity using mortality and tracheal tissue damage as indices. Inoculation was conducted on August 3, 2007, and the symptoms were observed every 2 weeks until February 1, 2008. None of the inoculated trees, excluding the pathogenic PWN inoculated control, showed external disease symptoms; however, four species [a less pathogenic PWN isolate, B. luxuriosae, Bursaphelenchus sp. NK215 (undescribed), and NK224 (undescribed)] caused tracheal tissue damage in inoculated seedlings and showed weak pathogenicity. Therefore, we conclude that there are some potentially pathogenic native species of nematodes distributed in Japan. Interestingly, two of these weakly pathogenic species, B. luxuriosae and NK215, are not associated with Pinaceae trees, suggesting that nematode pathogenicity may be a pre-adaptive character. More experimental studies under different conditions are necessary to accurately evaluate the potential risk of these pathogens.  相似文献   

19.
The distribution of pine wood nematodes (Bursaphelenchus xylophilus, PWNs) in Japanese black pine (Pinus thunbergii) tissues was investigated by staining with fluorescein isothiocyanate-conjugated wheat germ agglutinin. After PWNs were inoculated to current-year stems of pine seedlings, their distribution at about 5 cm below the inoculation site was confined only to cortical resin canals 1 day after inoculation, and then spread to other tissues, including resin canals of short branches. When PWNs were inoculated onto cross or tangentially cut surfaces of stem segments, maximal PWN migration speed was estimated to be faster through cortical resin canals and xylem axial resin canals vertically (>6.7 and <2.3 mm/h, respectively) than through cortical tissues both vertically and horizontally (<1.2 and <0.2 mm/h). To examine whether PWNs in cortical resin canals could invade surrounding tissues, segments in which PWNs resided only in cortical resin canals were prepared by removing the top portion 6 h after inoculation. Additional incubation of such segments caused extended PWN distribution to xylem axial resin canals and then to other tissues. A similar experiment with top portions of girdled segments removed 12 h after inoculation also showed extended PWN distribution from xylem axial resin canals and pith to cortical resin canals and then to other tissues. These results provided direct evidence that PWNs have the ability to migrate from cortical resin canals and xylem axial resin canals to other tissues.  相似文献   

20.
Maritime pine (Pinus pinaster Ait.) is the tree species most affected by wildfire in the Iberian Peninsula. Prediction of the probability of fire-injured tree mortality is critical for management of burned areas, evaluation of the ecological and economic impact of wildfire and prescribed fire planning and application. Pine bark beetles (Scolytidae) frequently attack burned maritime pine stands and cause extensive post-fire mortality throughout the Iberian Peninsula. In the present study, maritime pine trees were monitored for three years following 14 wildfires in four ecotypes in Spain (11 fires in Galicia (Galician ecotype - NW Spain), one fire in Portillo (Meseta-Castellana ecotype - Central Spain), one fire in Rodenal (Rodenal ecotype - Central Spain), and one fire in Genalguacil (Sierra Bermeja ecotype - SW Spain)). Data on tree attributes, crown and bole injury, ground fire severity, Ips sp. presence and tree survival were obtained by examining 3085 trees. Logistic regression models for predicting the probability of delayed maritime pine mortality were developed by use of generalized estimated equations (GEE). An ample range of response to fire damage in mortality was evident among the four ecotypes and different models were fitted for each. The most important variables for predicting tree mortality were total crown volume damaged, presence of Ips sp. attack and cambium kill rating. The results highlight the extensive presence of Ips sp. in burned maritime pine forests and its importance in tree mortality process, the ample range of response of P. pinaster, in terms of post-fire mortality, as well as the need to develop site specific mortality models for the different ecotypes of this species following fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号